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Abstract: A single-shot three-dimensional measuring method based on quadrature phase-shifting
color composite grating projection is proposed. Firstly, three quadrature phase-shifting sinusoidal
gratings are encoded in red (R), green (G), and blue (B) channels respectively, composed single- frame
color composite grating. This color composite grating is projecting obliquely on the object by DLP.
After that, the color camera which is placed in a specific location is used to capture the corresponding
color deformed pattern and send it to the PC. Then, by color separation, the color deformed pattern
is demodulated as the corresponding three-frame monochromatic deformed patterns with a shifted
quadrature phase. Due to the existences of sensitivity differences and color crosstalk among the
tricolor channels, we propose a gray imbalance correction method based on the DC component’s
consistency approximation. By the established 3D reconstruction physical model, the measurement
of 3D shape can be achieved. Many experimental results for static and moving objects prove the
proposed method’s feasibility and practicability. Owing to the single-shot feature of the proposed
method, it has a good application prospect in real-time and high-speed 3D measurement.

Keywords: three-dimensional measurement; real-time three-dimensional measurement; color encod-
ing grating; color crosstalk

1. Introduction

In the past few decades, the optical three-dimensional (3D) shape measuring method
with the structured light projection has an enormous application in face recognition, indus-
trial inspection, and so on [1–6]. With the improvement of photoelectric device technology,
it has an increased performance in some fields, such as modern industry [7] and medi-
cal treatment [8]. For measuring static objects, multiple-shot methods [9,10] have higher
measurement accuracy than single-shot methods. However, the image quality will be
degraded due to the vibration, environmental noise, and other interferences in the image
shooting gap. The single-shot method [11] only needs one image and has less sensitivity
to vibration noise. Many single-shot methods are proposed. Takeda et al. proposed the
method of Fourier transform profilometry (FTP) [12,13] which can reconstruct the 3D
shape by only one image. However, due to the filtering process, its measuring accuracy
has some disadvantages in the actual measurement process. He et al. proposed a 3D
measurement method with orthogonal composite grating aided by fringe contrast and
background calibration [14]. The contrast and background of the demodulated deformed
fringes can be calibrated by these ratio coefficients to achieve the measurement of 3D shape.
Li et al. proposed a computer-generated Moiré Profilometry to get the 3D shape of the
objects [15,16]. Wan et al. proposed a single-shot 3D measurement based on hue-height
mapping [17]. This method calculated the phase with the hue information of the color
fringe pattern pixels to obtain the height distribution. Huang P et al. proposed the method
of single-shot color phase measuring profilometry (PMP) [18], a single-shot color grating
whose major color components are designed as three sinusoidal fringes having a shifted
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phase of 2π/3. When this color composite grating is used to measure objects, the image sen-
sor captures a corresponding color deformed pattern and sends it to the PC to achieve 3D
measurement. It may be introduced some errors by the existences of sensitivity differences
and color crosstalk [17–23] among the tricolor channels in the measuring process, which
are manifested in the inconsistency of the intensity of the tricolor components of the color
deformed pattern. Many scholars have proposed corresponding correction algorithms
to solve these problems of the existences of sensitivity differences and color crosstalk.
For example, Cao Yiping et al. proposed a function of chroma transfer function (CTF) to
improve tricolor measuring accuracy. Because the CTF can well calibrate the color crosstalk
and the grayscale imbalance, this method successfully reduces the errors caused by the
above issues in the fast phase measuring profilometry [24]. Pan Jiahui et al. proposed
the method based on tricolor camera combined with a tricolor filter for the calibration of
color crosstalk coefficients and the compensation of gray scale imbalance problems [25,26].
However, this method is too complex due to additional cameras and filters. Guangkai
Fu et al. proposed a 3D measurement with the color binary grating [27]. This method
may avoid the effect of color crosstalk by projecting the binary grating. However, because
its binary grating projection requires filtering, its measuring accuracy is still insufficient
compared to the sinusoidal grating projection.

A 3D measuring method with single-shot quadrature phase-shifting color compos-
ite grating projection is proposed. Three quadrature phase-shifting sinusoidal gratings
are encoded into tricolor channels, respectively, to compose a frame of color composite
grating. This color composite grating is projected obliquely on the object by DLP to get
the corresponding color deformed pattern with a camera. Then, by color separating, this
color deformed pattern is demodulated as the corresponding three frames of monochrome
deformed patterns with the shifted phase of π/2. Because this method is a non-full cycle
equal-step phase-shifting algorithm, the sum of shifted phases within a cycle is π. The
background image is well exacted by the sum of red and blue components. A gray im-
balance correction method based on the DC component’s consistency approximation is
proposed to correct the image caused by the existences of sensitivity differences and color
crosstalk. By the established 3D reconstruction physical model, the measurement of 3D
shape can be achieved.

2. Principle

The schematic diagram of the optical 3D measurement with a grating projection is
shown in Figure 1. DLP obliquely projects a frame of coded grating onto the object to be
measured. The camera which is placed in a specific location captures the corresponding
deformed pattern and sends it to the PC. The PC can effectively restore the 3D shape of
objects with the corresponding algorithms.
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2.1. The Phase Measuring Principle of the Traditional Color PMP

In the PMP of the traditional single-shot color grating projection, tricolor channels of
the color grating are encoded with three sinusoidal gratings which have a shifted phase of
2π/3. The captured corresponding color deformed pattern is expressed as:

IC(x, y) = IR(x, y)
→
R + IG(x, y)

→
G + IB(x, y)

→
B (1)

where IR(x, y), IG(x, y), and IB(x, y) can be expressed as:
IR(x, y) = A(x, y) + B(x, y)cos[2π f x + ϕ(x, y)]
IG(x, y) = A(x, y) + B(x, y)cos[2π f x + 2π/3 + ϕ(x, y)]
IB(x, y) = A(x, y) + B(x, y) cos[2π f x + 4π/3 + ϕ(x, y)]

(2)

with (x, y) the pixel coordinates of the captured image. The DC component A(x, y), the
contrast B(x, y), the frequency f , and the modulated phase ϕ(x, y) are parameters of the
deformed pattern. ϕ(x, y) can be calculated as:

ϕ(x, y) = arctan

{ √
3[IR(x, y)− IB(x, y)]

2IG(x, y)− IR(x, y)− IB(x, y)

}
(3)

2.2. The Phase Measuring Principle of Single-Shot Quadrature Phase-Shifting Color Composite
Grating

Figure 2 shows a single-shot quadrature phase-shifting color composite grating:
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Figure 2. The quadrature phase-shifting color composite grating: (a) intensity distribution of tricolor
channels of the color composite grating pattern; and (b) the encoding process of the color composite
grating pattern.

The three sinusoidal gratings designed with a shifted phase of π/2, as shown in
Figure 2a, are, respectively, encoded into the tricolor channels and compose a frame of the
quadrature phase-shifting color composite grating, as shown in Figure 2b. The captured
corresponding color deformed pattern obtained is expressed as:

IC(x, y) = IR(x, y)
→
R + IG(x, y)

→
G + IB(x, y)

→
B (4)

where IR(x, y), IG(x, y), and IB(x, y) are the intensity distribution of three components in
the tricolor channels, respectively. Their mathematical model is expressed as:

IR(x, y) = A(x, y) + B(x, y)cos[2π f y + ϕ(x, y)]
IG(x, y) = A(x, y) + B(x, y) sin[2π f y + ϕ(x, y)]
IB(x, y) = A(x, y)− B(x, y)cos[2π f y + ϕ(x, y)]

(5)

ϕ(x, y) is calculated as:

φ(x, y) = arctan
{

2IG(x, y)− [IR(x, y) + IB(x, y)]
IR(x, y)− IB(x, y)

}
(6)
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2.3. Gray Imbalance Correction Method

In the actual measurement process, these demodulated monochrome phase shifting
deformed patterns have problems of gray imbalance due to the existences of sensitivity
differences and color crosstalk among the three color channels, as mentioned in the In-
troduction, seriously affecting the measuring accuracy; thus, it is necessary to correct the
above three-frame monochromatic deformed patterns.

The existences of sensitivity differences and color crosstalk are mainly generated by
the inconsistency of white balance and spectral mismatch between the digital projector
and CMOS camera. Therefore, the monochrome phase shifting deformed patterns demod-
ulated by the captured single frame of color deformed pattern are used for coefficient
compensation to make the three-frame monochrome phase shifting deformed patterns
intensity distribution map closer to the same. The coefficient compensation method is
proposed. First, the intensity of one component of the three-frame demodulated monochro-
matic deformed patterns is selected as the reference, and the other two components are
multiplied by a compensation coefficient to make the intensity of the three components
basically the same. Taking the green component as the benchmark here, the three-frame
corrected monochrome deformed patterns are expressed as:

IRM(x, y) = KGR ∗ (IR(x, y)− IG0 + BGRP) + IG0
IGM(x, y) = IG(x, y)
IBM(x, y) = KGB ∗ (IB(x, y)− IG0 + BGBP) + IG0

(7)

where IRM(x, y), IGM(x, y), and IBM(x, y) represent the intensity distribution diagrams
of the tricolor channels after correction. KGR and KGB are the compensation coefficients,
BGRP and BGBP are the offsets of the zero phase point of the monochromatic phase shifting
deformed pattern, and IG0 is the intensity value of the zero phase point of the green
component. They can be expressed as:

KGR =

M
∑

x=1
IRPEAKS(y)

M
∑

x=1
IGPEAKS(y)

KGB =

M
∑

x=1
IBPEAKS(y)

M
∑

x=1
IGPEAKS(y)

BGRP =

M
∑

x=1

N
∑

y=1
(IG(x,y)−IR(x,y))

M×N

BGBP =

M
∑

x=1

N
∑

y=1
(IG(x,y)−IB(x,y))

M×N

IG0 =

M
∑

x=1

N
∑

y=1
IG(x,y)

M×N

(8)

where IRPEAKS(y), IGPEAKS(y), and IBPEAKS(y), respectively, represent the average of the
peak values of each cycle of the row of monochromatic phase shifting deformed patterns
of the tricolor channels. M, N are the height and width of the image.

In the proposed measurement method, the numerator in the calculated truncated
phase (Equation (6)) is the sum of the two components of the red and blue channels.
According to Equation (5), it can be seen that the designed quadrature color composite
grating has a phase shifting between the components in the red and blue channels, and the
half sum of these components should be the background image, as shown in Equation (9):

IRB0 = (IRM + IBM)/2 = A(x, y) (9)
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Due to the existence of sensitivity differences and color crosstalk in the color deformed
pattern, the half sum of the red and blue components may show volatility to some extent.
According to the method of low-pass filtering, the Fourier spectrum of IRB0(x, y) is ac-
quired by Fast Fourier Transform. Through Gaussian filtering window, the zero-frequency
components can be extracted by filtering out higher-order harmonic components of that
Fourier spectrum. Then, this zero-frequency component is transformed by inverse Fourier
transform to get a “uniform light field” IRB1(x, y) which is closer to the actual value. Due
to the influence of filtering, the high-frequency energy is removed and some errors are
introduced. To reduce the error caused by filtering, a gray imbalance correction method
based on the DC component’s consistency approximation is proposed. In this method, by
the least square method, an evaluation function, is introduced to compare the similarity of
two images, which is expressed as:

E =
M

∑
x=1

N

∑
y=1

[IRB0(x, y)− k ∗ IRB1(x, y)]2 (10)

where E is the square of the gray difference value of each pixel of the image between
IRB0(x, y) and IRB1(x, y). When E takes the minimum value, dE/dk is zero, which is
expressed as:

dE
dk

=

M
∑

x=1

N
∑

y=1
[IRB0(x, y)− k ∗ IRB1(x, y)]2

dk
= 0 (11)

The value of k is calculated to be:

k =

M
∑

x=1

N
∑

y=1
IRB0(x, y)IRB1(x, y)

M
∑

x=1

N
∑

y=1
IRB1(x, y)IRB1(x, y)

(12)

The half sum of red and blue can be calibrated as:

IRBM = k ∗ IRB1 (13)

Thus, Equation (6) can be rewritten as:

φM(x, y) = arctan(
2 ∗ (IG(x, y)− IRBM(x, y))

IR(x, y)− IB(x, y)
) (14)

Due to the arctan function, ϕM(x, y) is wrapped and should be unwrapped to be
ΦM(x, y) [28]. In the same way, the corresponding unwrapped phase of the reference plane
is acquired as Φr(x, y) and the phase Φh(x, y) that is caused by the height of measured
object can be represented as:

Φh(x, y) = ΦM(x, y)−Φr(x, y) (15)

Thus, by the phase-to-height mapping [29,30] shown as

1
h(x, y)

= a(x, y) + b(x, y)
1

Φh(x, y)
+ c(x, y)

Φr(x, y)
Φh(x, y)

(16)

the measurement of 3D shape is successfully achieved. a(x, y), b(x, y), and c(x, y) are the
experiment system parameters obtained through calibration.
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3. Experiments and Analysis
3.1. Experimental System

Using the experimental platform shown in Figure 3, we measured the 3D shape of
many measured objects with the proposed method to verify its feasibility and validity in
the actual measurement process. In this experimental platform, the digital light projector
is PLED-W20 produced by ViewSonic, and the color camera is DFM 72AUCO2 with the
imaging resolution of 1024 × 768 pixels.
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Figure 3. Experimental system.

3.2. Experiments and Analysis

Many experiments measuring the 3D shape of many objects with the proposed method
were carried out. Figure 4 shows one of the experimental results. Here, the face model
shown in Figure 4a is used to be measured. Figure 4b shows the color fringe pattern that is
caused by a reference plane, which is shown in Figure 3, captured by color camera, and
the single-frame color deformed pattern of the measured object is shown in Figure 4c.
The three-frame monochromatic fringe patterns demodulated in tricolor channels of the
single-frame captured color fringe pattern are shown in Figure 4d–f and the three-frame
monochromatic deformed patterns demodulated in tricolor channels of the single-frame
captured color deformed pattern are shown as Figure 4g–i. Due to the overlapping among
tricolor channels, the issues of the existence of sensitivity differences and color crosstalk
are unavoidable. The experimental data show that the above issues exist and seriously
introduce some errors in phase resolution. Thus, we need to correct the monochromatic
phase-shifting deformed patterns before calculating the phase to reduce the errors intro-
duced by the existences of sensitivity differences and color crosstalk.

The existences of sensitivity differences and color crosstalk among these monochro-
matic phase-shifting deformed patterns are corrected by the proposed method. The refer-
ence plane background image before gray imbalance correction is shown in Figure 5a; the
reference plane background image after gray imbalance correction is shown in Figure 5b;
the background image of the measured object before gray imbalance correction is shown in
Figure 5c; and the background image of the object after gray imbalance correction is shown
in Figure 5d. After comparison and analysis, we found that, by using the proposed method
to correct the background, the errors caused by the existence of sensitivity differences and
color crosstalk are further reduced. It must be pointed out that some blurriness in the
corrected background image of measured object is caused because of the filtering process.
Therefore, the proposed method has some disadvantages in measuring sharp objects.
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Figure 4. Experimental data: (a) measured object; (b) color fringe pattern; (c) color deformed pattern;
(d–f) the demodulated monochromatic fringe patterns of R, G, and B; and (g–i) the demodulated
monochromatic deformed patterns of R, G, and B.
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Figure 5. Gray imbalance correction: (a) reference plane background image before correction;
(b) reference plane background image after correction (c) background image of the measured object
before correction; and (d) background image of the measured object after correction.

Figure 6a shows the corresponding wrapped phase calculated by these monochromatic
deformed patterns after correction. The reconstructed result of the measured face model
is shown in Figure 6b. It is clearly shown that the 3D shape of measured face model is
well restored, and this reconstructed result proves the feasibility of the proposed method
in measurement of 3D shape. The restored result by the eight-step PMP was chosen as
the quasi-truth value to analyze measurement accuracy of the proposed method. Then, a
comparison experiment between the traditional color PMP and the proposed method was
carried out.
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Figure 6. The experimental results: (a) wrapped phase of measured object; and (b) reconstructed object.

Figure 7 shows the 547th column data of the reconstructed result by these methods.
The reconstructed result of measured face model by the eight-step PMP is shown as a
dotted line in Figure 7. The reconstructed result of measured object by the traditional
single-shot color PMP is shown as a chain line in Figure 7. The reconstructed result of
measured object by the proposed method is shown as a solid line in Figure 7. It is obvious
that the reconstructed 3D shapes of the measured object with all three methods are well
achieved. As is known, the large-step PMP has very high efficiency and measuring accuracy.
Therefore, we take the data reconstructed by eight-step PMP as the reference standard. By
comparing and analyzing the data of Column 548, Lines 378–408, 432–462, and 555–591
shown in Regions A–C in Figure 7a, which are the “bridge of nose”, “tip of nose”, and
“jaw” parts of the face model, the reconstructed details of the above area after correction
by the method are closer to the reconstructed results by eight-step PMP than those of the
traditional color PMP. The comparison experimental results show that the detail accuracy
of the proposed method is better than that of the traditional color PMP.
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Figure 7. (a) The 547th column data of the reconstructed result; and (b–d) zooms in of Regions A–C
in (a).

To further compare the measuring accuracy between the traditional single-shot color
PMP and the proposed method, by the difference method, the restored result of the eight-
step PMP was chosen as the quasi-truth value to calculate height error distribution of the
above two methods. Figure 8a shows the height error distribution by traditional single-shot
color PMP. Figure 8b shows the height error distribution by the proposed method. It is
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observed that the height error distribution of the proposed method is smaller than that
of single-shot color PMP. To quantitatively compare and analyze the measurement errors
of the traditional color PMP and the proposed method, the mean absolute error (MAE)
and the root of mean square error (RMSE) of these methods are calculated. By traditional
color PMP, the MAE is 0.2683 mm and the RMSE is 0.3453 mm. By the proposed method,
the MAE is 0.1992 mm and the RMSE is 0.2546 mm. It is obvious that the measurement
errors of the proposed method are smaller, and the measuring result is closer to that of
the eight-step phase-shifting algorithm. The comparison of MAE and RMSE proves the
validity of conclusions.
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Figure 8. Comparison height error distributions: (a) traditional color PMP; and (b) the proposed method.

The experiments and analysis sufficiently proved that the proposed method has a
good feasibility and validity in the measurement of 3D shape. In this work, we use a set
of complementary deformations to extract the background. Because it has a π shifted
phase between red and blue channels and the interplay of them is lower, the background
image is obtained with smaller errors. These complementary deformed patterns can
effectively suppress random errors in the measuring process due to the feature of inverse
phase between the red and the blue channels. Therefore, the proposed method has better
measuring accuracy than the method of single-shot color PMP after the gray imbalance
correction. It must be pointed out that there are some shortcomings of the proposed method
for measuring colored objects. Because the captured deformed pattern is also modulated by
the color of the object, some errors are introduced to result in lower measurement accuracy.
However, it is single-shot so that it has higher speed and less sensitivity to mechanical
disturbances, and it also has a good application prospect in real-time measurement.

3.3. Real-Time Measurement

To show the real-time measuring practicality of the proposed method, many real-time
measuring experiments were also carried out. Here, the real-time measurement of the
moving gloved hand is taken as an example. Figure 9a–c shows the deformed patterns at
States A–C from the real-time recorded video. Figure 9d–f shows the deformed patterns of
G component after correction. The corresponding reconstruction results of the gloved hand
are shown as Figure 9g–i, respectively. It is observed that the different states of the moving
gloved hand can be well restored by the proposed method. The real-time experimental
results prove the practicality of the proposed method in real-time measurement process.
In the real-time measurement, the frame rate of the recorded video is only 30 fps with
the video resolution of 640 × 480 pixels due to the performance limitation of the camera.
Because of its single-shot feature, if a higher performance DLP and camera are adopted,
the frame rate can be higher.
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Figure 9. Reconstructed results of real-time measuring at different states: (a–c) the deformed patterns
in States A–C from the recorded video; (d–f) the deformed patterns of green component after
correction; and (g–i) the corresponding reconstructed results of the gloved hand.

4. Conclusions

A single-shot 3D measuring method based on quadrature phase-shifting color com-
posite grating projection is proposed. A corresponding physical model of 3D reconstruction
is derived systematically. The existence of sensitivity differences and color crosstalk among
the tricolor channels are effectively corrected. Many experimental results prove the prac-
ticality and validity of the proposed method. Compared with the traditional color PMP,
the proposed method uses a set of complementary deformed patterns to extract a purer
background. Therefore, the proposed method has the better measuring accuracy than the
method of traditional single-shot color PMP. Owing to its single-shot feature, it also has a
good application prospect in high speed and real-time measurement.
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