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Abstract: Web platforms are gaining relevance in eHealth, where they ease the interaction between
patients and clinician. However, some clinical fields, such as the cardiovascular one, still need
more effort because cardiovascular diseases are the principal cause of death and medical resources
expenditure worldwide. The lack of daily control is the main reason hypertension is a current
health problem, and medical web services could improve this situation. To face this challenge,
this work proposes a novel intelligent web-based ecosystem, called SENIOR, capable of predicting
adverse blood pressure events. The innovation of the SENIOR ecosystem relies on a wearable device
measuring patient’s biomarkers such as blood pressure, a mobile application acquiring patient’s
information, and a web platform consulting environmental services, processing data, and predicting
blood pressure. The second contribution of this work is to consider novel environmental features
based on the users’ location, such as climate and pollution data, to increase the knowledge about
known variables affecting hypertension. Finally, our last contribution is a proof of concept with
several machine learning algorithms predicting blood pressure values both in real-time and future
temporal windows within one day has demonstrated the suitability of SENIOR.

Keywords: eHealth; web-based platforms; distributed services and platforms; artificial intelligence;
hypertension; telemedicine; personalized medicine

1. Introduction

The evolution of communication systems in recent decades has tremendously im-
pacted the way people communicate, allowing almost instantaneous interactions. We live
in an interconnected world sustained by technology, assisting most of our daily activities
and being an essential economic growth aspect. The development of new technologies
in recent years has allowed the creation of a wide variety of web platforms, enabling the
definition of new features and functionalities in web ecosystems. These advances are
especially relevant in the era of big data and artificial intelligence, serving as a bridge
between users and cloud computing environments. Based on the versatility of these tech-
nologies, web ecosystems have been developed for an enormous range of scenarios, where
eHealth environments are very promising for their positive impact on patients’ health.
In this context, the concept of telemedicine has been defined as a way of treating patients’
conditions remotely, reducing the visits to the doctor. Within this approach, web services
are one of the most implemented technologies, where the focus of the present publication
lies on the cardiovascular scenario.
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Cardiovascular diseases are the leading cause of death and medical resource expendi-
ture globally, being high blood pressure (HBP, also known as hypertension), a significant
risk factor for cardiovascular diseases. Although resources have been invested in reducing
the impact of this condition, hypertension remains a direct cause of mortality, loss of quality
of life, and consumption of healthcare resources. A study of the hypertension situation
between 1980 and 2015 [1] showed that the number of individuals with high blood pressure
increased from 442 to 874 million people in this period. From the age of 69 onward, this
percentage augmented to 60%. It is expected that the incidence of this disease will increase
by 2025, with an estimation of around 1.5 billion people affected worldwide. Additionally,
deaths associated with HBP have increased by 1.6% per year during this period, from 7.2
to 10.7 million people. In 2015, 14% of all deaths were associated with hypertension, re-
lated firstly to ischemic heart disease and, secondly, to cerebrovascular accident. This has
placed blood pressure as a risk factor in an increasing number of diseases and events such
as dementia or the risk of cognitive impairment, applying to all age and ethnic groups.
Leal et al. [2] reported that individuals with hypertension are much less productive, high-
lighting the enormous benefits that a better identification, treatment, and control of the
disease could have.

Most cases of hypertension appear to be caused by reversible environmental factors,
being the most critical weight gain leading to obesity, insufficient physical activity, in-
adequate sodium and potassium intake, and alcohol abuse [3]. Based on that, the main
strategy to control HBP is implementing lifestyle changes before or during drug treatment,
as long-term control of the disease has been achieved in these cases [3–5]. Additionally,
blood pressure measurements at home are essential to control the status of the disease
actively. Nevertheless, only a small percentage of patients follow these recommendations
since implementing effective strategies leading to sustained lifestyle changes is difficult [6].
The goal to stabilize this condition is to bring most patients to a scenario where all these
lifestyle deficiencies are addressed.

Considering the inefficiency of traditional methods to control HBP, the literature
has defined and implemented web-based systems aiming to support clinical monitoring
of hypertension patients [7]. These platforms also introduce relevant functionality for
the treatment, such as medication reminders or online consultations with the doctor.
Moreover, the literature has proposed using smartphone applications to ease the acquisition
of blood pressure measurements [8]. These applications have the advantage of directly
acquiring the measurements by pairing the blood pressure device, in contrast to traditional
web pages where the data is introduced manually. Nevertheless, web ecosystems are
complementary to these applications since web services are also needed in these approaches.
Additionally, there are solutions using machine learning (ML) and deep learning (DL)
techniques to predict hypertension, increasing the complexity in the development of the
system. Including these approaches in the development of web platforms would be greatly
beneficial to assist hypertensive patients.

In this context, the development of intelligent web ecosystems able to predict hyper-
tension presents several challenges. First, there is a lack of web platforms able to acquire
patients’ data in real-time, using monitoring devices able to send automatically blood
pressure measurements. Furthermore, there is a lack of technological solutions considering
the impact that environmental dimensions have over hypertension. Finally, there is an
absence of web platforms integrating ML and DL approaches to offer real-time blood
pressure predictions.

To improve the previous challenges, this manuscript presents SENIOR, a web ecosys-
tem to predict hypertensive crises in a early phase. The main contributions of this work are
the following:

• The design of SENIOR, consisting of three main elements: a wearable providing
heart blood pressure measures, a smartphone application used to acquire data, and a
web platform to process the data and perform predictions. This ecosystem provides
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predictions in real-time and it is able to identify blood pressure values within the next
8, 16, and 24 h, notifying the user about potentially dangerous values.

• The identification of new environmental features to predict hypertensive crises:
weather and pollution. Furthermore, the mobile application implements several
surveys that patients have to complete periodically, providing information about the
location, weight, physical activity, diet, medication, social support, stress, depression,
and alcohol and tobacco consumption.

• The implementation of a proof of concept with seven volunteers and different ML
algorithms such as Bayesian Ridge, Support Vector Regression, and Random Forest.
The obtained results demonstrated the feasibility of SENIOR as a real-time ecosystem,
showing similar results to the offline solutions existing in the literature.

The remainder of the paper is structured as follows. Section 2 introduces the related
work existing in the literature. After that, Section 3 presents the methodology followed and
the architecture of the solution. Section 4 presents the results obtained in a proof of concept
with different volunteers and machine learning algorithms. Finally, Section 5 highlights
conclusions and future work.

2. Related Work

This section first performs a review of the state of the art concerning the application
of web platforms to treat hypertension based on a telemedicine approach. After that, it
presents relevant works that use machine learning and deep learning techniques to either
analyze the importance of domain-specific features or predict of blood pressure measure-
ments.

2.1. Web Ecosystems for the Treatment of Hypertension

Telemedicine research applied to hypertension started focusing on the use of web
platforms. Thiboutot et al. [9] implemented a web-based hypertension platform where
patients can introduce self-reported health variables, and doctors can provide feedback
about the treatment. This platform presented reminders of medical appointments to
the patients, who could also ask predefined questions that the platform solved. This
work represented an incipient approach to include web ecosystems for the control of
HBP. However, the measurements were not required to be provided frequently since the
platform notified the user only when data was not introduced during a consecutive period
of one month. Research in this direction has allowed the development of web platforms
with more functionality. Zhou et al. [7] implemented a cloud-based system for managing
hypertension, offering a web platform capable of managing blood pressure data uploaded
by patients, offering diagnoses services, and instant messenger service with the doctors.

Omboni et al. [10] reviewed the state of the art concerning the application of web
ecosystems over hypertension. The authors highlighted that these platforms allow the regis-
tration of patients’ clinical data and blood pressure measurements and their communication
with doctors. These systems usually introduce educational support, medication reminders,
and online consultations with doctors. This work highlighted that web ecosystems used as
a support technology for hypertension could improve patients’ adherence to the treatment,
generating a reduction of blood pressure values, thus improving patients’ quality of life.
These advantages may also reduce healthcare costs, especially in chronic treatments.

Although these web platforms are interesting to bring patients closer to doctors, most
of their features are reduced to the transmission of relevant information and communication
with the doctors. Additionally, one of the main disadvantages of these platforms is on
usability, where users need to access the website to register the measurements. To improve
this situation, in recent years, these ecosystems have included the use of smartphone
applications. Smartphones are continually increasing their computational capabilities,
and they can also be linked to blood pressure monitors to register the measurements
automatically [8]. Although the usage of these applications has proven to help reduce
blood pressure values [11], there is nowadays a lack of clinical trials in this field. Moreover,
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the diversity of monitoring devices complicates the development of applications, also
introducing issues regarding the accuracy of the measurement and a lack of standardization
of technologies used in nowadays wearables.

2.2. Application of Learning Techniques for HBP

To improve the management of hypertensive patients, the literature has focused
in recent years on the application of learning techniques. One relevant scenario has
been the identification of features that can negatively impact this disease. In this sense,
Lacson et al. [12] studied the Systolic Blood Pressure Intervention Trial (SPRINT) dataset
containing electronic health records, including a wide variety of characteristics in categories
such as demographics, medication, or laboratory parameters.

Other works in the literature have focused on the prediction of the disease in the
future. Ye et al. [13] used the XGBoost algorithm over data from electronic health records to
predict the risk of developing hypertension in the next year. These data contained features
from categories such as medication history or socioeconomic features. They highlighted
the enormous impact that the presence of other chronic conditions has over the appearance
of HBP. In addition, in this line, Nimmala et al. [14] determined if a person was prone to
develop HBP in the future, considering the following features: age, anger, anxiety, obesity,
and cholesterol level. For that, they used multiple machine learning (ML) algorithms,
where Random Forest obtained the best results. Moreover, LaFreniere et al. [15] applied
neural networks over a medical dataset to predict the risk of developing HBP, using features
such as age, blood pressure values, laboratory analysis, and smoking and exercise habits.
Finally, López-Martínez et al. [16] applied logistic regression considering as features the
gender, race, BMI, age, smoking habits, and previous diseases such as kidney disease and
diabetes.

Other works have also studied how to predict blood pressure values. Li et al. [17]
implemented a smartphone application able to pair with a wireless blood pressure monitor,
using multiple ML algorithms to predict the value of the blood pressure. They highlighted
that the literature only focused on medical data to perform the predictions, not using
contextual features. Because of that, they included features such as the altitude or geo-
graphical coordinates. This work documented a Root Mean Squared Error (RMSE) between
4 and 5.5 points for the diastolic pressure and between 7 and 9 for the diastolic pressure.
The differences between the algorithms tested were not significant.

Chiang et al. [18] defined the first work using a wearable to acquire domain-relevant
data, combined with a Bluetooth pressure monitor. This work performed predictions
of blood pressure one day ahead using features extracted from the exercise and sleep
data captured by the wearable. This work used multiple ML algorithms to calculate the
predictions, Random Forest being the method offering better results. The Mean Absolute
Error (MAE) ranged between 5 and 9 points among the different algorithms tested.

Finally, Table 1 presents a summary of the features used by each publication studied
in this section. It also indicates that the present work partially studies health records.
Although we do not have access to users’ health records, we do acquire data concerning
their current physical and mental status using surveys.
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Table 1. List of features considered in the publications analyzed in the literature. A green tick (3)
indicates that a publication has considered a particular feature, while a red mark (7) highlights that
the work did not consider it.

Lacson
et al. [12]

Ye et al.
[13]

Nimmala
et al. [14]

LaFreniere
et al. [15]

López-Martínez
et al. [16]

Li et al.
[17]

Chiang
et al. [18] This Work

Blood
pressure 3 3 3 3 3 3 3 3

Age 3 3 3 3 3 3 7 3

Gender 3 3 7 7 3 3 7 3

BMI/Weight 3 7 7 3 3 3 7 3

Measurement
instant 7 7 7 7 7 3 7 3

Smoke 3 7 7 3 3 7 7 3

Alcohol 7 7 7 7 7 7 7 3

Heart rate 3 7 7 3 7 3 3 3

Location 7 7 7 7 7 3 7 3

Laboratory
analysis 3 3 7 3 7 7 7 7

Medication 3 3 7 7 7 3 7 3

Health
record 3 3 7 7 3 7 7 Partially

Height 7 7 7 7 7 7 7 3

Physical
activity 7 7 7 3 7 7 3 3

Diet 7 7 7 7 7 7 7 3

Social support 7 7 7 7 7 7 7 3

Anxiety/Stress 7 7 3 7 7 7 7 3

Depression 7 7 7 7 7 7 7 3

Weather 7 7 7 7 7 7 7 3

Pollution 7 7 7 7 7 7 7 3

Use of ML/DL 3 3 3 3 3 3 3 3

3. Materials and Methods

This section first presents the methodology followed to implement and validate the
proposed web ecosystem. After that, we present the design and implementation of SENIOR,
highlighting its different modules.

3.1. Followed Methodology

The first aspect to consider in this work was the selection of the most suitable device
used for acquiring blood pressure measurements. For that, the main requirement was to
use a wearable device allowing a wireless interconnection with the smartphone without
manually introducing the values. After analyzing the alternatives, we decided to use the
Omron HeartGuide [19] due to its accuracy. Once having the device, we implemented a
smartphone application to acquire the data from the wearable and self-assessed by the
via surveys.

We then implemented a web platform to communicate with the smartphone appli-
cation in a bidirectional way. It allowed the transmission of the required data from the
application to the web platform and its storage in a database. Additionally, it included
the functionality to send notifications to the application. This platform was also capable
of acquiring environmental data from the location transmitted by the application and,
particularly, about the weather and pollution status at that instant in the users’ location.

After finishing the implementation of SENIOR, we created a proof of concept and
tested it with seven users. The data acquisition was performed during a month, having
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three measurements per day: before breakfast, after lunch, and before going to bed. The ap-
plication automatically and frequently gathered the geographical coordinates, and the
surveys were completed according to the particular periodicity of each type of survey.
Surveys that do not require a frequent update, such as the specification of chronic medicine
consumption or corporal weight, were only completed at the beginning of the experiment
and after changing the values. On the contrary, periodical surveys were completed every
week, where each survey had assigned a particular day of the week to be user friendly.
The user also completed those surveys representing particular events at the moment of the
consumption, such as alcohol, tobacco, or nonchronic medicines. Additionally, notifications
were presented to the users indicating the moment to complete a recurrent survey. If the
user delayed it, the application periodically showed a reminder aiming to gather all needed
data. More information concerning these surveys is presented in Section 3.2.

When the acquisition period was completed, we studied the collected data and gener-
ated a dataset for each user to implement a personalized machine learning (ML) model.
Additionally, we decided to generate a dataset including all users’ data and compare its re-
sults with the individual approach results. After organizing the data, we started exploring
the creation of ML models to predict blood pressure values, testing multiple algorithms.
Once we tested the suitability of these models, we extended the capabilities of SENIOR,
including functionality to send personalized notifications to the users with predicted mea-
sures within hypertensive ranges. Remarkably, the predictive mechanisms implemented
offer both real-time and future predictions. In terms of real-time calculations, the SENIOR
framework determines the estimated blood pressure associated with the features gathered
by the platform in that instant. Moreover, the framework offers blood pressure predictions
within 8, 16, and 24 h temporal windows.

3.2. Web Ecosystem Design and Proof of Concept Implementation

This work presents a web ecosystem, called SENIOR, whose architecture is composed
of three main elements, as represented in Figure 1. The particularities of each entity are
subsequently described:

• Wearable: device able to measure physical characteristics of patients. The device has
the requirement of being capable of connecting with the smartphone application to
communicate the data. Furthermore, this device must be worn by the user at any
moment (except for charging).

• Smartphone application: the user installs and utilizes the application developed
in this project. This software gathers the data acquired by the wearable, personal
data provided by the user and information based on completing surveys analyzing
different health variables. Moreover, it obtains the geographical coordinates of the
smartphone. All these data are sent to the web platform using encryption to preserve
the confidentiality of the data.

• Web platform: this element is the main entity of the architecture. On the one hand, it
receives the data compiled by the smartphone application, storing them in a database
system. On the other hand, it uses these data to generate a prediction of future blood
pressure values, transmitting these results to the application. Additionally, this plat-
form offers a categorization of the pressure value, notifying the user if the predicted
value would be within normal ranges or represent an hypertensive crisis. Finally, this
element queries weather and pollution external services to provide contextual data to
users’ measurements.
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Smartphone 
applica�on

Web pla�ormWearable

User’s physical data User’s data

No�fy predic�on

Acquisi�on of:
- Blood pressure
- Heart rate
- Number of steps

- Acquire data from the wearable
- Present surveys to complete
- Obtain the device loca�on

- Acquire data from the smartphone
- Store the acquired data
- Communicate with external services
- Perform blood pressure predic�ons
- Send no�fica�ons to the smartphone

Figure 1. Main elements of the SENIOR web ecosystem.

This main architecture is extended in Figure 2, presenting the whole architecture of
SENIOR. We can first observe that the user provides data to the application, both directly
and from the wearable. These data, in addition to environmental data obtained from
external services, are stored by the web platform into the database system. After that,
datasets are generated, used to train machine learning algorithms to produce models. Once
the models are available, the user can request blood pressure prediction based on current
data provided by the application.

Smartphone 
applica�on

Web pla�orm Database

User Wearable Machine 
Learning

Datasets

Personal 
data

Physical 
measurements

Physical 
data

User’s data

Data 
extrac�on

Store data

Training 
data

External 
services

Query 
data

External 
data Acquired

data

Query dataNo�fy predic�on

Blood pressure 
predic�on

Figure 2. Complete architecture of SENIOR, including all communication flow between elements.

3.2.1. Wearable

The Omron Heart Guide [19] is a wearable able to measure blood pressure using a
small component placed under the wristband. This wearable can also acquire data about
the heart rate, the number of steps, and the quality of sleep. The cuff of this device is
similar to those used in traditional blood pressure monitors. Because of that, this device
has been certified by the FDA as a way to measure blood pressure in a portable and
precise way. Nevertheless, the user must be relaxed and stay in a particular position for
the measurement, initiating it using a button available in the wearable. This functioning,
together with the limitation of eight measurements per day imposed by its SDK, prevented
us from acquiring blood pressure measurements from the user continuously.

3.2.2. Smartphone Application

The second main element of SENIOR is the Android application installed in the
smartphone. This application is compatible with Android smartphones with version 6 or
higher. Additionally, it asks the user for permissions about execution in the background,
network access, Bluetooth connections and location. In terms of storage, it uses the private
space of the application, increasing the confidentiality of the temporal data stored.
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The functionality of this element of the SENIOR ecosystem is presented in Figure 3.
The application acquires information related to users’ physical data using the Omron
device via the provided SDK and, particularly, blood pressure values, heart rate, and the
number of steps. After each blood pressure measurement, it sends these three datapoints to
the web platform. Furthermore, the application presents multiple types of surveys to cover
different mental and sociological aspects, including healthy habits of the users concerning
physical activity, diet, and consumption of harmful substances such as alcohol or tobacco.
On the other hand, each user must register to create a profile, also used for authentication.
Some of these fields represent features that are later considered by the ML models. Finally,
the application gathers the user’s geographical coordinates using the GPS, essential to
consult the weather and pollution values of the environment.

After presenting the architecture of the application, we describe the SDK provided by
Omron to link the wearable to the application. The device is controlled by three processes
subsequently presented:

• Scanning: the application uses the Bluetooth of the smartphone to search for devices
compatible with the SDK, returning a list of objects representing these devices. This
kind of object allows the connection with the wearable and filters for a specific model
during the search.

• Connection: with the selected object, we need to complete the configuration of the
wearable, specifying the weight, height, and stride of the user. On the other hand,
we can configure alarms, date format, and temporal windows to collect sleep data.
When we initiate the connection process, the communication between the devices
starts, returning an object representing the linked device. With this resulting object,
we will be able to start data transfers.

• Transfer: with the previously indicated object, we can access blood pressure, steps,
and sleep data stored in the application, including timestamps of the measurements.

GPS

Device

Complete

Extract

ObtainSurveys:
• Physical ac�vity
• Diet
• Medica�on
• Social support
• Anxiety
• Depression
• Smoking
• Alcohol
• Height and weight

Profile:
• Username
• Name
• Last name
• Date of birth
• Gender
• Country of birth
• Residence data
• Educa�on level
• Password

Complete

Figure 3. Data dimensions acquired by the smartphone application.

After introducing the connection between the wearable and the application, we present
the functioning of the different views and services defining the application. Figure 4
describes the architecture of the proposed application differentiating two main categories
of elements, those representing background processes and those managing the views shown
to the user. The application is designed for working in the background, gathering data
automatically without requiring interaction from the user, except for completing surveys.
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If these data cannot be sent to the web platform due to connection issues, the application
backups this data and tries to send them afterward.

Main 
menu

Loca�on 
service

Wearable 
service

Backup 
service

General 
service

Executes

Profile, wearable 
and backup data

Presents

views

Background processes User interface

Executes

Surveys

Personal data

Wearable

Figure 4. Architecture of the smartphone application designed.

First, we will introduce the user’s interface since some of the background services
depend on them. The user’s first view is the login interface (Figure 5a), where the user can
register or log in if already registered. In the case of a login operation, the smartphone sends
the information to the server to verify if the user already exists. If the provided credentials
were correct, the user accesses the main menu of the application (Figure 5c). However, if it
is the case of a new user, the register button will present the register process (Figure 5b),
asking to provide the required user data. Once the registration process is completed,
the user will access the main menu view. Once identified, the user can access all functions
defined in the application, and the background services start running. The application
stores the status of the session, not requiring a new login if the user accesses the application.

(a) Login interface. (b) Register view. (c) Main menu.

Figure 5. Views representing the access to the application, including register and login operations.
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From the main menu, the user can access the list of available surveys (Figure 6a).
In particular, Figure 6b represents a question from the physical activity survey, while
Figure 6c represents an example of the depression survey. These recurrent surveys defined
in the application can contain predefined questions and free text fields to introduce a
numeric value. Finally, Figure 6d presents the survey of the consumption of occasional
medication, which presents a list of different categories of medicines, including examples
of common pharmacological brands. Once any survey is completed, the user must push the
finish button. In that instant, the application codes the responses in JSON representation
and sends them to the web platform. Despite medicine surveys, the rest of the surveys are
designed not to allow multiple responses, and those fields asking for a number force the
introduction of only numbers.

(a) List of available
surveys

(b) Question in physical
activity survey

(c) Question in
depression survey

(d) Occasional
medication survey

Figure 6. Examples of the user interface related to surveys.

After introducing the user interface of the application, we subsequently present the
services developed in the application to offer its essential functionality. As previously
depicted in Figure 4, the application has a general service always active, which is in
charge of launching and managing other subservices focusing on particular tasks. These
subservices are alive until they accomplish their purpose.

In particular, this main service must surpass the restrictions imposed by recent An-
droid versions over background services, which can kill services even if they have priority.
We have implemented a pinned notification to force Android to believe that our application
is in the foreground. This notification is also useful for the user, which can verify if the
application is correctly running. Next, we present a description of the tasks performed by
each subservice:

• Location service: this subservice is executed by the general service every 30 min. It
focuses on acquiring the location of the smartphone using the GPS and transmit it to
the web platform aiming to obtain weather and pollution data. Due to this service,
the application must ask for location permissions.

• Wearable service: it is executed every 15 min, and its tasks are to verify if the wearable
has information to transmit to the application. If there is data available, it starts a
transfer process for its acquisition.
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• Backup service: it is executed every 30 min, and it is in charge of verifying if there
are data not sent to the web platform due to a connection problem. It is essential to
note that this service does not store the location data since the external services do not
implement queries over past instants.

3.2.3. Web Platform

Figure 7 presents the architecture of the implemented web platform, where we can
observe three central modules with different functions. First, it contains a module in charge
of data formatting, used to send and receive data in JSON format, since the data exchanged
between the smartphone and the server have been coded in JSON format due to its broad
usage and compatibility with most programming languages. It is also worthy to note that
the JSON data have been encrypted and transmitted by HTTPS.

This web platform has a second module to communicate with external services to
acquire weather and pollution environmental data, masking the particularities of each
service. Additionally, it has been developed, considering the possible addition of new
services and data types in the future. Additionally, the web platform has a module focused
on the communication with the database, allowing modular and transparent management
of the data, permitting its storage and consultation. Finally, there is a module in charge of
executing predictions based on machine learning models previously trained. This module
encapsulates the complexity of performing the prediction and managing the results of
multiple ML algorithms.

External services 
module

Web pla�orm

Format 
module

Database 
module

Weather 
service

Pollu�on 
service

Databases

Uses

Queries Stores and 
queries

Predic�on 
module

Queries

ML models

Figure 7. Elements integrating the implemented web platform.

This element of the SENIOR ecosystem has been implemented using Flask [20], fol-
lowing a REST architecture. This web platform presents several REST endpoints to operate
with the smartphone:

• /register: the web platform receives the data introduced by the user in the smartphone
and sent by the application. It must verify that the user does not exist, creating a new
database for the user. The users’ password is represented in SHA512 to prevent its
transmission and storage in plain text.

• /login: it receives the identification of the user. The web platform must access the
database to verify that the username and password match the data already registered
in the platform. If the user exists, the platform sends the profile data to the application.

• /device: this endpoint receives the data concerning new measurements acquired by
the wearable and stores them into the user’s database.

• /weather: it obtains the location and city in which the user currently is. The platform
then emits a query to the external services and stores the response in the general
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database containing weather and pollution data. Additionally, it must also update
the user’s database with a new entry to link these data with the environmental status.
These particular implementation aspects are explained in Management of the Database
System Section.

• /surveys: this endpoint acquires the results of the surveys completed by the user,
updating the user’s database.

• /predict: it receives data concerning the patient’s current status evaluated from the
different dimensions considered in the present study. These data are provided to the
ML models previously trained to predict future blood pressure values using multiple
ML algorithms. The platform returns a real-time prediction followed by near-future
predictions for the next 8, 16, and 24 h.

Apart from these three modules, the platform includes three additional components,
presented in subsequent sections. The first one is in charge of acquiring environmental
data from external services, while the second communicates with the database system to
store and retrieve data. Finally, the third component consists of the prediction of blood
pressure values using ML algorithms.

Communication with External Services

Focusing on these external services, we used OpenWeatherMap [21] as the provider
of weather data, a service allowing 60 requests per minute in its free plan, enough for
our scenario. Regarding the acquisition of pollution data, we used The World Air Quality
service [22], which provides information about the air quality worldwide. We opted to
unify these queries from the webserver instead of the smartphone application due to
privacy concerns. Thus, the web platform sends to these external services the coordinates
of each user, without any further identification data from the user. All data requested from
these external services are presented in Figure 8.

Weather service:
• Current temperature
• Max temperature
• Min temperature
• Atmospheric pressure
• Apparent temperature
• Humidity
• Wind speed
• Cloudiness

Pollu�on service:
• Nitrogen oxide (NO2)
• Ozone (O3)
• Sulfur dioxide (SO2)
• Suspended par�cles (PM10)
• Carbon monoxide (CO)Web

pla�orm

Queries Queries

Data Data

Figure 8. Data obtained from each external service.

Management of the Database System

Once a new user registers on the platform, the web platform creates an individual
database for the user, aiming to preserve the confidentiality of the information stored by
not mixing data from multiple uses. Within each of these databases, multiple collections
are created, defining different data categories. Figure 9 presents this structure to easily
understand its modeling, where we can observe particular collections for physical mea-
surements, users’ profile data, and data concerning the results of the completed surveys.
Additionally, we can identify a general database containing weather and pollution data,
shared by all users’ databases. This approach was motivated by multiple users using the
application in the same city, generating duplicate environmental data that could be unified
to improve the efficiency of the platform.

In terms of its implementation, we followed a nonrelational approach for our storage,
using MongoDB [23] and implementing the communication with the web platform using
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PyMongo [24]. We made this decision considering that the volume of the stored data
would considerably increase when using the web ecosystem in comprehensive clinical
trials with thousands of patients and larger acquisition temporal windows. Additionally,
the acquired data coded in JSON was compatible with nonrelational data structures, easing
the implementation.

…
Database

user 1
Database

user 2
Database

user 3
Database

user n
Weather and pollu�on 

database

Profile data 
collec�on

Measurements 
collec�on

Surveys 
collec�on

Weather and 
pollu�on links 

collec�on

Weather and pollu�on 
collec�on

JSON 
documents

Figure 9. Structure of the database system implemented in the proposed web ecosystem.

Prediction of Blood Pressure Values

This last component focuses on the application of machine learning techniques to
predict real-time and future blood pressure values. For that, the first step in this process is
to extract datasets from the database. These datasets are essential since they are structured
following a format compatible with ML algorithms. In particular, each tuple of the dataset
contains all the relevant data associated with a blood pressure measurement. Additionally,
it ensures a plain representation of the data, removing the complexity and particularities of
the database design and implementation.

In this sense, we consider essential to indicate how the datasets have been created.
First, we have defined a dataset per user, extracting the data stored in each individual
database. Additionally, we were interested in having a global dataset including the acquired
data from all users studied to identify differences in subsequent results. This general dataset
contains an additional field indicating the identifier of the user. It is essential to highlight
that each tuple of any dataset corresponds to a blood pressure measurement, completing
the rest of the data based on the following criteria:

• Measurements: additionally to the blood pressure value included in the tuple, we also
store the heart rate and the number of steps registered at the moment of the blood
pressure verification.

• Periodic surveys: for each survey of this category, we select the closer data after each
given blood pressure measurement, storing them in the tuple. We select future data
because these surveys contain questions regarding the previous week.

• Alcohol and smoking habits: we obtain those entries from the database whose reg-
istration is within the 24 h previous to the pressure measurement. We consider this
temporal window to contemplate the elimination of alcohol in the blood.

• Medicine surveys: for occasional medicines, we include in the tuple the name of
those medicines consumed in the 24 h previous to the measurement. For chronic
treatments, we always consider the closest past survey since the doctor can change
chronic medication.
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• Height and weight survey: as before, we acquire the closest data to the pressure
measurement.

• Weather and pollution data: the data regarding these dimensions are directly included
in the tuple since each blood pressure measurement has associated a request to the
external services.

Focusing on the content of the datasets generated, Table 2 presents the complete list of
features studied by the framework, divided by categories. Additionally, we include the
data type of each characteristic, where N represents the domain of natural numbers, R the
set of real numbers, and S the domain of strings. It is essential to highlight that, for each
survey completed by the user, we indicate in the dataset each response as an individual
feature. For example, the stress survey contains 14 features, each one corresponding to a
question of the survey. Moreover, and to better understand the dataset, Figure 10 presents
the distribution of vectors per user in the general dataset, indicated as the percentage of
vectors over the complete dataset. We can observe that the number of vectors per user is
quite balanced. These differences depend on the number of occasional surveys completed,
such as smoking, alcohol, or nonchronic medication consumption.

User 1
14.7%

User 2

13.7%
User 3

15.1%

User 4 13.6%

User 5

14.4%

User 6

14.7%
User 7

13.9%

Figure 10. Distribution of vectors per user in the general dataset.

Once introduced the procedure followed to generate datasets and the structure of
these datasets, we present the process followed for training ML models able to predict
blood pressure values. We used Python and, particularly, the Scikit-learn library [25]
for the implementation of the training processes. First, we divided the data into two
subsets, where the first one represented the 80% of the data and was used to train the ML
models. The second subset, containing the remaining 20% of the datasets, was necessary for
calculating the prediction error of the models. These data were normalized and adapted to
be compatible with ML algorithms, such as treating corrupt and missing values or encoding
categorical features. After that, we performed a feature filtering process, removing those
features from each dataset highly correlated with the label. We also removed features
whose variance was equal to zero, indicating a lack of variability. Most of these features
were related to medicine surveys without data or questions from surveys always registering
the same response.

Before providing these data to the ML algorithms, they must be separated from the
data defining the labels to predict. In our scenario, these labels are the systolic and diastolic
pressure values. They are grouped both ensemble and individually since some tested
algorithms cannot be trained with more than one label. To train the ML models, we have
tested the most common algorithms in the literature, namely Random Forest (RF), Decision
Tree (DT), Support Vector Regression (SVR), Bayesian Ridge (BR), Linear Regression (LR),
and Polynomial Regression (PR). For them, we have applied the RamdomizedSearchCV from
Scikit-learn to automatically obtain a range of parameters offering the best combinations for
each algorithm, returning the trained model. In particular, Table 3 presents the optimal



Appl. Sci. 2021, 11, 2506 15 of 22

values selected for most relevant parameters used for each algorithm. The optimal number
of iterations to search for the best combination is 100, selecting between these models the
one offering best results.

Table 2. List of features considered by SENIOR grouped by category.

Category Type Feature Category Type Feature

1. Medication

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

med_Acenocoumarol
med_Acetylsalicylic_acid
med_Adenosine
med_Alprazolam
med_Amiodarone
med_Atenolol
med_Cetirizine
med_Clorazepate
med_Dexketoprofen
med_Diazepam
med_Diphenhydramine
med_Digoxin
med_Dimenhydrinate
med_Doxylamine
med_Fentanyl
med_Glucagon
med_Hydrochlorothiazide
med_Hydroxyzine
med_Ibuprofen
med_Insulin
med_Labetalol
med_Lercanidipine
med_Lidocaine
med_Lorazepam
med_Lormetazepam
med_Metamizole
med_Midazolam
med_Morphine
med_Naproxen
med_Nifedipine
med_Nitroglycerin
med_Paracetamol
med_Propranolol
med_Sertraline
med_Magnesium_sulfate
med_Tramadol
med_Verapamil
med_Zolpidem

5. Alcohol
N
N
N
N
N
N

alcohol_beer
alcohol_destiled_mix
alcohol_other
alcohol_other_fermented
alcohol_wine
alcohol_wine_mix

6. Stress
survey

N
N
N
N
N
N
N
N
N
N
N
N
N
N

stress_q1
stress_q2
stress_q3
stress_q4
stress_q5
stress_q6
stress_q7
stress_q8
stress_q9
stress_q10
stress_q11
stress_q12
stress_q13
stress_q14

7. Smoke N
N
N

smoke_cigarettes
smoke_electronic
smoke_other

8. Personal
data

S
R
S
S
S

birth_country
birth_date
education_level
gender
home_country

9. Physical
dimension

N
N
N
N
N
N
N

diastolic
systolic
heart_rate
height
measurement_time
steps
weight

10. Physical
activity
survey

R
R
R
R
R
R
R

physical_q1
physical_q2
physical_q3
physical_q4
physical_q5
physical_q6
physical_q7

2. Depression
survey

N
N
N
N
N
N
N
N
N
N

depression_q1
depression_q2
depression_q3
depression_q4
depression_q5
depression_q6
depression_q7
depression_q8
depression_q9
depression_q10

11. Diet
survey

N
N
N
N
N
N
N
N
N
N
N
N
N
N

diet_q1
diet_q2
diet_q3
diet_q4
diet_q5
diet_q6
diet_q7
diet_q8
diet_q9
diet_q10
diet_q11
diet_q12
diet_q13
diet_q14

3. Social
support

N
N
N
N
N
N
N

social_q1
social_q2
social_q3
social_q4
social_q5
social_q6
social_q7

12. Weather

R
R
R
R
R
R
R
R

weather_clouds
weather_feels
weather_humidity
weather_pressure
weather_temp
weather_temp_max
weather_temp_min
weather_wind_speed

4. Pollution
R
R
R
R
R

pollution_co
pollution_no2
pollution_o3
pollution_pm10
pollution_so2
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Table 3. List of the optimal values for the automatically selected parameters for each implemented
machine learning (ML) algorithm.

Model Parameter Value Description

Random Forest max_features 72 Number of features considered

min_samples_split No limit Minimum number of samples to split a node

max_depth No limit Max depth in the tree

n_estimators 189 Number of trees in the forest

Decision Tree max_features 46 Number of features considered

min_samples_split 54 Minimum number of samples to split a node

max_depth 25 Maximum depth of the tree

splitter 189 Strategy used to split a node

Support Vector Regression Kernel Lineal Type of kernel used by the algorithm

C 1 Regularization parameter

gamma 2027 Coefficient of the kernel

Bayesian Ridge n_iter 152 Maximum number of iterations

Linear regression n_jobs 122 Number of jobs used for the computation

Polynomial regression grade 4 Grade of the polynomial

During the training process, we have used cross-validation with k = 10 to detect over-
fitting. The only exception was polynomial regression due to incompatibilities with the
library. After the training phase, we have used the Root Mean Square Error (RMSE) and the
R-squared correlation coefficient to determine the error obtained by the prediction using
the testing subset of the dataset.

4. Results

This section presents the results obtained from the evaluation of the trained machine
learning (ML) models, using the Root Mean Square Error (RMSE) and the R-squared
correlation coefficient metrics to measure the quality of the predictions. First, we address
the quality of real-time predictions, presenting a comparison between algorithms and
datasets. Additionally, we present the most relevant features used by the ML algorithm
offering the best predictions. Moreover, we compare these real-time predictions with future
ones based on 8, 16, and 24 h temporal windows.

Regarding real-time predictions, Figure 11 presents a plot per trained model, indicating
the RMSE associated with each dataset over both individual and aggregated approaches.
We can observe two bars per user, corresponding to diastolic (lighter color) and systolic
(darker color) predictions. It is interesting to note that Random Forest and Decision Tree
present the same error for diastolic and systolic predictions since these algorithms are the
only ones allowing multi-label training. The other requires training independent models
for each blood pressure value. Focusing on the results, we can observe that the RMSE
dramatically grows for users 2, 3 and 6 in SVR, BR, LR and PR algorithms. This situation is
motivated by underfitting during the training process, where the quality of the data was
not enough to allow those algorithms to converge. Without considering these particular
situations, the ML algorithms offer good results.

Figure 12 presents a heat map containing those users who did not suffer underfitting
during the training process, thus excluding users 2, 3, and 6 to visualize better the data
previously introduced by Figure 11. This heat map indicates that users 1, 4, and 5 present
better RMSE values than user seven and the general dataset. Additionally, Random Forest
presents the best results in predicting both systolic and diastolic blood pressure values.
Nevertheless, particular algorithms can independently predict either systolic or diastolic
values better than Random Forest, offering the possibility to select which algorithms are
more suitable for each user.
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Figure 11. Histograms indicating the Root Mean Square Error (RMSE) of each trained model for the
real-time approach. Lighter colors represent the diastolic blood pressure while darker bars indicate
systolic values.

Figure 12. Heatmap indicating the RMSE error for each trained model.

Once evaluated the algorithms in terms of the RMSE, Figure 13 presents their evalua-
tion using the R-squared correlation coefficient. We can observe that several algorithms
have similar correlations, being Random Forest the algorithm having the best results.
The correlation values presented in this figure are calculated based on the relationship
between the real blood pressure values and those predicted by the algorithms. This rela-
tionship is represented in Figure 14 for predictions using Random Forest over the general
dataset and differentiating between systolic and diastolic values. We can observe that the
trend of the dots is almost linear in the systolic predictions, while the diastolic predictions
are a little sparser.
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Figure 13. R-squared correlation coefficient for real-time predictions.
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Figure 14. Comparison between real and predicted values for systolic and diastolic predictions using
Random Forest over the general dataset.

To better understand the relevance that individual features have over the predictive
process, Figure 15 presents the list of the most important features considered by the RF
classifier, corresponding to the algorithm presenting better results for real-time predictions.
This representation results from the evaluation of the general dataset containing data from
all seven subjects. As can be seen, the training process has determined that the most
relevant feature corresponds to the users’ age. In this regard, the risk of suffering high
blood pressure increases when people get older. Additionally, the second most relevant
feature is the user identifier, which is evident considering that we have a hypertensive
patient between the subjects. Following these features, we can see three medicines, where
Lercanidipine is an antihypertensive drug, Sertraline is an antidepressant, and Zolpidem
is used to treat sleeping problems. Nevertheless, these medicines were consumed by the
hypertensive subject, thus increasing the relevancy of these features.
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Figure 15. Feature importance after the application of Random Forest over the general dataset.

Furthermore, this figure highlights two diet survey questions, which correspond
to the type of meat (or the absence of meat consumption), and the number of fish and
seafood consumed by the subject per week. It is relevant to note that a transition from
red meat to white meat or fish has proven to reduce high blood pressure. Additionally,
people following plant-based diets tend to have lower blood pressure. After these features,
we can observe the importance of physical activity, where the number of daily steps,
the duration of vigorous physical activity, and the number of days per week going out for
a walk impact tension values. Moreover, the measurement instant during the day is also
relevant since blood pressure increases during the day until the afternoon, decreasing in
the evening and night. The heart rate is also related to blood pressure (a high heart rate
presents a risk for hypertension), while people with an elevated weight have a higher risk
of suffering hypertension. Finally, we can observe multiple features regarding the weather.
Although these features do not have a high impact on the system, they are interesting to
consider. Finally, pollution features have not substantially impacted this analysis since the
users tended to remain in the same cities, not generating variability in the collected data.
Nevertheless, these features may intervene in longer temporal acquisition windows and
with the use of different users or algorithms.

After introducing the results of real-time predictions, we compare in Figure 16 the
RMSE error between real-time and future predictions using Random Forest, considering
future temporal windows of 8 h, 16 h, and 24 h. We have selected Random Forest for the
comparison since it is the algorithm that offers the best results in real-time predictions.
We can observe that the errors in the predictions generally increase when we use greater
temporal windows, although the differences are acceptable. However, it highlights a
considerable increase in the error when evaluating the general dataset. This situation
is motivated by the great variability of data contained in this dataset, impacted by the
uncertainty and future variations.
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Figure 16. Comparison between real-time and future predictions using Random Forest.

5. Conclusions

This work presents SENIOR, a web ecosystem able to perform predictions of blood
pressure values and composed of three main elements, which represents the first contribu-
tion of this work. The first element of the ecosystem is a wearable that acquires physical
data from the user, such as blood pressure or heart rate. A smartphone application repre-
sents the second element, automatically acquiring data from the wearable, asking the user
to complete surveys with relevant health information. In addition to the user’s location,
these data are sent to a web platform integrated into SENIOR, corresponding to the third
element, which processes and stores them, acquiring environmental data from external
services. These environmental data represent the second contribution of the manuscript,
where we present novel features based on weather and pollution data. The last contri-
bution is a proof of concept to evaluate SENIOR, where these data are used to generate
machine learning models that can predict blood pressure values and, consequently, infer if
a user will suffer a hypertensive crisis. These predictions can be performed in real-time
or considering a future temporal window of 8, 16, or 24 h. Finally, this platform has been
tested with seven users, presenting promising results aligned with the current literature.

Nevertheless, more work in the future is needed, requiring a higher volume of users
and longer acquisition temporal periods to improve the intelligent models.For that, we
aim to evaluate SENIOR in a larger trial once the risk of the COVID-19 pandemic reduces,
having users from different countries with different cultures, allowing us to study scenarios
with different weather and pollution. Moreover, it would be interesting to personalize
the predictions, only returning results from the algorithms that have better results for
each user. Additionally, we consider it relevant to make the smartphone application
compatible with more wearables in the future, as well as improving the web service to
accept a higher volume of users since Flask is just recommended for experimentation and
not production services.
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