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Abstract: Large scale computational models are important for studying impact cratering events that
are prevalent both on Earth and, more broadly, in this solar system. To address these problems,
models must reliably account for both large length scales (e.g., kilometers) and relatively long time
scales (hundreds of seconds). This work benchmarks two such approaches, a more traditional hydro-
dynamics approach and a finite-discrete element method (FDEM), for impact cratering applications.
Both 2D and 3D results are discussed for two different impact velocities, 5 km/s and 20 km/s, striking
normal to the target and, for 3D simulations, 45◦ from vertical. In addition, comparisons to previously
published data are presented. Finally, differences in how these methods model damage are discussed.
Ultimately, both approaches show successful modeling of several different impact scenarios.

Keywords: ALE; FDEM; finite-volume; impact modeling; cratering; code verification

1. Introduction

Impact cratering is a phenomenon that happens across a wide range of spatial scales,
from large geological scales which encompass examples such as asteroid impacts to very
small scales such as microparticle impacts. Particularly on the largest scales, experimental
data become limited as kilometer scales cannot be reached in the laboratory environment,
and many impact craters of interest are extraterrestrial. Thus, models operative at larger
spatial scales become critical for studying and understanding these impact craters. Con-
sequently, validation and verification of these models is important for the generation of
reliable results. In lieu of experimental data, code-to-code comparisons can be informative
for understanding differences in modeling approaches and the overall effect on results.

Impact cratering is a complex process that can be divided into three stages: contact
and compression; excavation; crater modification [1,2]. The initial stage, contact and com-
pression, occurs as the impactor strikes the target, transferring momentum and resulting
in a shock wave [1–3]. During this stage, target and impactor materials behave as fluids,
with hydrodynamics governing the motion of material [1–3]. The second stage, excavation,
occurs as material is ejected from the forming crater. This ejected material may be in the
form of solid particles or in the form of vapor [1,2]. During the final stage, crater modifica-
tion, strength and/or gravity dominate the crater formation, depending on the cratering
regime of the impact [1,2]. As excavation ends and modification begins, material begins
to settle into the crater floor, and other processes such as slumping and the overturned
flap occur [1,2]. For this final stage especially, more accurate modeling of solid materials,
including material strength and damage, is essential to better understanding impact crater
formation through computational models.
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This work presents a code-to-code comparison between a hydrodynamics code (hy-
drocode) and a finite-discrete element method (FDEM) code. The hydrocode approach
is a more traditional approach for addressing impact cratering problems [4–9], while the
FDEM approach has been traditionally used for brittle fracture in geomaterials [10–12].
These approaches are operative on similar spatial scales, but the underlying formulation,
particularly in how each approach accounts for damage, is very different.

Hydrocodes solve the equations for conservation of mass, momentum, and energy,
along with constitutive relations describing the response of different materials. Hydrocode
approaches have been under development for decades [13–15] and thus have many attrac-
tive features for addressing impact cratering problems. One such feature is the ability of
these models to employ Eulerian, Lagranian, or a combination of these two descriptions
of the equations of motion [15,16]. In Eulerian codes, material is allowed to freely move
or ‘flow’ through a spatially fixed mesh [15]. Such methods have advantages because
simulations are not limited by the consequences of excessive grid or element deformation,
though they are not without drawbacks. For example, tracking the interfaces between ma-
terials presents a challenge in the form of mixed material cells, in which multiple materials
exist in a single cell. In this case, material properties are often averaged [15,16]. Conversely,
in Lagrangian approaches, the mesh deforms with the material, making the tracking of
interfaces between materials trivial. Thus, this approach has advantages particularly for
problems considering solid materials. However, these formulations are subject to stability
issues and/or inaccuracies when elements experience significant deformation, and mesh
tangling can result [13,15]. In order to capitalize on the advantages of both Lagrangian and
Eulerian approaches, hybrid methods, or arbitrary Lagrangian–Eulerian (ALE) methods,
have emerged [16]. ALE methods use a mix of Lagrangian and Eulerian schemes in which
the solution from a distorted Lagrangian mesh is remapped to a spatially fixed Eulerian
mesh. In addition, adaptive mesh refinement (AMR) techniques have been developed
to provide dynamic mesh resolution in regions where material interfaces or shock fronts
exist [17].

While hydrocodes can capture a wide range of multiphysics, they typically do not
discretely resolve many features important to material deformation. Examples include
cracks, fragmentation, or grains/particles within polycrystalline or granular microstruc-
tures. While such limitations may seem like a disadvantage from a physical standpoint,
from the computational standpoint, this type of homogenization often makes this formula-
tion more computationally efficient than other approaches, which allows for the ability to
study very large systems in reasonable amounts of times.

FDEMs operate on similar spatial scales as hydrocodes. FDEMs were introduced by
Munjiza in the late 1980s/early 1990s for the simulation of “transient dynamics on fragment-
ing solids” [18,19]. As the name indicates, FDEM merges the advancements achieved by
both the Finite-Element Method (FEM) and the Discrete-Element Method (DEM). From the
start, FDEM’s FEM portion was designed to be able to handle finite displacements, finite
rotations, and finite strain-based deformation of the solid [20,21]. The FEM approach was
then combined with contact detection, contact interaction, and objective discrete crack
initiation and crack propagation solutions that were inherited from the DEM [20,22]. FDEM
provides a framework for representing the transition from continuum to discontinuum
(i.e., fracture) of solid materials when they are subjected to loads that exceed the mate-
rial’s strength. This transition is allowed to occur at the boundaries of the finite elements.
The first implementations of FDEMs were mainly focused on the simulation of fracture and
fragmentation processes for cementitious materials [23]. These models used assumptions
that the material inside the finite elements behaves elastically and that the localization
process (fractures) was limited to the boundaries of the finite elements. More recently,
a growing need for the simulation of problems where the aforementioned assumptions
were no longer valid because of the large extent of permanent deformation mechanisms has
led to the incorporation of plasticity models inside of the finite elements [24]. Traditional
FDEM-based simulations involve the resolution of fracture, fragmentation, and contact
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problems. A typical solution for contact is via the implementation of penalty methods [25],
which are computationally robust but require the use of relatively high values of contact
stiffness (i.e., penalty coefficients), which in turn require smaller time step sizes. Combined
with the fact that contact problems also require a spatial search for contacts every certain
number of time steps [26,27], the result is that FDEM is more computationally expensive
than traditional continuum-based models. Another drawback of the FDEM, because it is a
Lagrangian-based method, is the time-step size restrictions imposed by highly deformed
elements [13,15]. This type of situation usually occurs in areas located close to impacts or
around high strain sources, such as explosions.

As mentioned previously, this work is focused on a code-to-code comparison of a
hydrocode and an FDEM code, with the goal of benchmarking both numerical methods for
impact cratering simulations and also evaluating the effects that the different numerical
methods have on the overall solutions. In this work, hydrocode simulations use the
ALE code Free LAGrange (FLAG), and FDEM simulations use the Hybrid Optimization
Software Suite (HOSS). Both codes are developed and maintained by Los Alamos National
Laboratory [28–33]. The following section contains brief summaries of each approach.
Section 3 describes the test problem and model setups for both FLAG and HOSS simulations.
Section 4 presents the comparisons for both 2D and 3D simulation results between FLAG
and HOSS. In addition, this section includes comparison with previously published results
from a wide range of hydrocodes. Finally, Section 5 presents a final summary and key
conclusions of this work.

2. Computational Methods

This section presents more specific details about the underlying formulations between
the two codes studied in this work, FLAG and HOSS. A summary of each code focuses on
key aspects of the approaches that are of relevance to this study.

2.1. FLAG—Hydrodynamics Approach

The FLAG hydrocode uses a second-order finite-volume approach [30–32] to solving
the Euler equations for conservation laws:

ρDu
Dt

= −∇P

Dρ

Dt
+ ρ∇ · u = 0

dE
dt

+ P
dV
dt

= 0, (1)

where ρ is density, u is velocity, P is pressure, E is energy per unit mass, V is volume, and
D
Dt is the Lagrangian differential

(
∂
∂t + u · ∇

)
[3]. FLAG is massively parallel and supports

fully unstructured grids in 1–3 spatial dimensions [30–33].
FLAG has been used for a variety of physics applications at temporal and spatial

scales that vary by several orders of magnitude [17,34–36]. It has the capability to run
simulations in Eulerian, Lagrangian, and ALE frameworks [33]. FLAG has a variety of
meshing tools for problem initialization as well as AMR capabilities [17,33].

In addition to a selection of computational approaches and meshing strategies, FLAG
also offers a variety of options for equations of state (EOS) and material models, including
failure and damage models [30–33]. These features are vital for modeling crater formation
from high-velocity impacts into solid materials [1–3]. FLAG has been verified and validated
for impact cratering simulations in both the strength-dominated and gravity-dominated
cratering regimes [4] and has been used to study impact structures in the strength regime
on extraterrestrial bodies [6].
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2.2. HOSS—Finite-Discrete Element Method

FDEM combines aspects of both discrete- and finite-element methods. FDEM sim-
ulations consist of continuous, solid domains that are discretized into finite elements.
Individual solid domains are allowed to interact with one another and, upon meeting
some failure criterion, may develop new discontinuities or undergo fragmentation, result-
ing in the creation of new discrete domains. The governing equations for FDEM can be
expressed as

M
d2x
dt2 + C

dx
dt

= f, (2)

where M and C are the lumped mass and damping matrices, respectively, x is the dis-
placement vector, and f is the equivalent nodal force load. Equation (2) is solved using a
second-order central difference time integration scheme to obtain the temporal evolution
of the system.

A formal introduction to the FDEM formulation and descriptions of the contact de-
tection and interaction algorithms are presented in detail elsewhere [20,22]. The material
behavior is represented through a large-strain adaptation of the continuum-based consti-
tutive law [21], which includes material non-linearities such as plasticity. The material
can deform elastically and/or inelastically until surpassing either its tensile or shear
strengths (or some combination of the two), resulting in the onset of damage [37,38]. Once
the strength of the material is surpassed, the strain-softening behavior of the material is
governed by a stress-displacement formulation that is incorporated into the constitutive
law [39].

HOSS has been used to simulate a diverse array of problems, ranging from lab-scale
experiments [10,40,41] to earthquake rupture [42,43]. Although HOSS has been used to
model small-scale, high strain-rate impact problems in the past [44–46], this is the first time
it has been used in the context of large-scale impact modeling.

3. Code Verification Problem

The code verification simulations were based on the problem initially introduced by
Pierazzo et al. in a multi-code benchmarking study [5]. The verification problem consists
of a 1 km diameter sphere of aluminum (Al-6061) impacting an aluminum target at 5 km/s
and 20 km/s [5]. A schematic of this test problem is shown in Figure 1. Most of the results
do not consider material strength, as in the initially proposed test problem, which allows for
focus on the early stages of crater formation as well as for direct comparison to previously
published results. In addition to modeling the materials as strengthless, simulations of
this same verification problem using models for both material strength and damage are
discussed later in Section 4.4. Relevant material parameters are included in the problem
setup discussions for each code.
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Figure 1. 2D schematic of the Al-Al (Al-6061) test problem. The Al target can be modeled either as
a rectangular block, as in FLAG, or as a semicircle, as in HOSS. Both configurations are shown in
this schematic. The insets show examples of the different meshes employed by the two methods.
The dashed lines show lines in which pressure decay data were taken in 2D and 3D runs for
comparison in Sections 4.1 and 4.3.
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Several simulations were completed using this test problem configuration, many of
which are consistent with those performed by Pierrazzo et al. [5] so that comparisons
between results could be made. These simulations included a mesh resolution study in
2D, which tested mesh resolutions in the range of 5–40 cells per projectile radius (cppr).
For the mesh resolution study, shock pressure decay was recorded at tracer particles along
the impactor trajectory from the point of impact to 10 km into the target, shown with
a dashed line in Figure 1 (labeled as the vertical tracer). 3D simulations included both
normal impacts and impacts 45◦ from vertical (also referred to as the oblique impact).
Shock pressure decay was recorded in 3D simulations, but a mesh resolution study was
not performed because of the significant computational cost of 3D simulations. Similar to
the 2D case, the shock pressure decay was measured at different tracers from the impact
point, including a vertical, horizontal, and 45◦ from vertical (i.e., diagonal) tracer line, all of
which are indicated with dashed lines in Figure 1. Note that for the diagonal tracers, data
were taken at approximately one projectile radius (∼0.5 km) downrange from the impact.
This tracer placement is consistent with data presented previously by Pierazzo et al., which
also reported diagonal tracer data originating from one projectile radius downrange [5].

Because the target and impactor had the same material composition, the theoretical
maximum pressure can be calculated for a 1D impact:

P = ρ0(C0 + SUP)Up, (3)

where P is the maximum pressure, ρ0 is the initial density, C0 is the reference sound velocity
(at 0 pressure), S is the linear EOS coefficient, and Up is the particle velocity, equal to half
of the impact velocity when target and impactor have the same material [3]. S can also be
expressed in terms of shock velocity Us with the following relationship: Us = C0 + SUp [3].
Substituting the values for the verification problem into Equation (3) yields a maximum
pressure of 58.725 GPa for the 5 km/s impact and 506.25 GPa for the 20 km/s impact.

3.1. FLAG Setup

The 2D FLAG setup included a circular impactor with diameter 1 km, a 10 km ×
25 km target block, and surrounding air with dimension 23.5 km × 25 km. The simulation
ran until the shock wave reached the back of the target, 10 km from the point of impact.
The mesh was uniform rectilinear with zone sizes corresponding to 5, 10, 20, and 40 cppr.
The schematic shown in Figure 1 is representative of this setup.

In 3D, the computational domain included an impactor sphere with diameter 1 km,
a target box with dimension 10 km × 25 km × 10 km, and surrounding air with dimension
23.5 km × 25 km × 10 km. Figure 2 shows the initial 3D configuration used in FLAG.
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!"#$%

&
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%

Figure 2. Initialization of 3D FLAG simulations of an aluminum impactor (blue) striking an aluminum
target (grey). (a) shows the impactor and surface of the 3D target, and (b) presents a close-up of the
impactor and mesh.
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FLAG simulations used a SESAME tabular EOS [47] and a Barton artificial viscosity
model [48]. The Al-6061 in the problem was initialized with a density of 2700 kg/m3 and
specific internal energy of 0 J. The air was modeled as a γ-law gas with γ = 1.4 and was
initialized at 273 K with density 1.2922 kg/m3. FLAG simulations had free boundary
conditions. The ALE strategy was by geometry. Shock pressure decay data came from
20 ∼ equally spaced tracer particles along the line of impact. In the 3D oblique simulations,
tracers were placed along the diagonal impact trajectory as well as the vertical and hori-
zontal directions from the point of impact, illustrated in Figure 1. Although 2D simulations
showed FLAG converged at resolutions between 10 cppr and 20 cppr depending on impact
velocity, the computational cost of running such resolutions in 3D is prohibitively expen-
sive. Thus, the resolution for 3D simulations was 5 cppr, consistent with the 3D resolution
used by the codes in the Pierazzo et al. study [5]. The computational domain consisted
of about 8.6 million zones, divided across 360 cores. For comparison, a resolution of
10 cppr in 3D would have 67.6 million zones and would require 2815 cores for comparable
load sharing. 40 cppr would have more than 4.29 billion zones and would require nearly
179,000 cores for comparable load sharing. The 5 cppr resolution has the additional benefit
of allowing for a fair comparison to results presented by Pierazzo et al. [5]. Simulations
used Cartesian geometry.

3.2. HOSS Setup

The 2D HOSS set up consisted of a circular impactor with diameter 1 km and a 7.5 km
radius semicircular target (Figure 1). The simulations concluded shortly after the shock
wave reflected off of the boundary of the target domain, 7.5 km from the point of impact.
The mesh consisted of evenly sized triangular elements that varied with the cppr of interest
(5, 10, 20).

Figure 3 illustrates the 3D HOSS simulation domain that consisted of a spherical
aluminum impactor with diameter 1 km and a 7.5 km radius hemispherical target. Both
the aluminum impactor and target were considered to be strengthless, and a Tillotson
EOS [49] was used to describe the aluminum’s bulk response. The HOSS implementation
of the Tillotson EOS, which follows the procedure outlined by Melosh [2], is shown in
Equation (4).

P =

(
a +

b
(E/E0η2) + 1

)
ρE + Aµ + Bµ2 (4)

where E is the energy density, ρ is the density, η = ρ/ρ0, and µ = η − 1. Relevant param-
eters for the EOS are included in Table 1. Tracer points were equally spaced throughout
the domain to record the temporal evolution of displacement, velocity, and pressure as
functions of distance and time. A resolution of ∼5 cppr was selected for consistency in
the code comparison. The computational cost for HOSS is also prohibitively expensive for
high-resolution 3D simulations. For 5 cppr, the HOSS computational domain consisted of
2.8 million tetrahedral elements divided across 1961 cores. If the resolution were 40 cppr,
the same computational domain would have roughly 4.5 billion tetrahedral elements and
would require 3 million cores assuming the same load balancing.

Table 1. Tillotson equation of state parameters for aluminum.

Parameter Description [49,50] Value Units

ρ0 Density 2700 kg m−3

a Tillotson parameter 0.5 –
b Tillotson parameter 1.63 –
A Bulk modulus 75.2 GPa
B Tillotson parameter 65 GPa
E0 Tillotson parameter 5 MJ kg−1

α Tillotson parameter 5 –
β Tillotson parameter 5 –

Eiv Energy of incipient vaporization 3.0 MJ kg−1

Ecv Energy of complete vaporization 13.9 MJ kg−1
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Figure 3. HOSS 3D Simulation domain for an aluminum on aluminum impact, where (a) shows the
full simulation domain, and (b) displays a zoomed in region where the impactor is initialized.

4. Results and Discussion
4.1. 2D Mesh Resolution Study

2D simulations are advantageous because the computation time is sufficiently reduced
to accommodate studying the effects of mesh resolution on the results. Figure 4 shows
the effect of mesh resolution on shock pressure decay, varying from 5–40 cppr, for normal
impacts of 5 km/s and 20 km/s for both FLAG and HOSS. Overall, both codes showed
similar shock pressure decay trends among the resolutions tested. For the lower velocity,
the FLAG results show some dependence in the pressure decay regime, with a notable
difference in decay from the 5 cppr resolution compared to the more aligned results from
the 10, 20 and 40 cppr simulations. At the higher impact velocity, FLAG results were well
matched and seemed to converge in the 10–20 cppr range. Conversely, HOSS results show
the same dependence in the maximum pressure calculated at the point of impact, with the
higher resolution showing a slightly lower maximum pressure.
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Figure 4. 2D mesh resolution study for FLAG and HOSS for (a) 5 km/s normal impact and
(b) 20 km/s normal impact.

4.2. 3D Impact Cratering Simulations

This section presents qualitative comparisons of the 3D simulations from both FLAG
and HOSS. Figure 5 shows the particle velocity evolution in both codes at 0.5 s and 1.0 s
after impact from a normal impact with a velocity of 20 km/s. Overall, the shock wave
propagates similarly; however, there are some distinct differences. Within the target itself,
both FLAG and HOSS simulations show the highest velocity occurs at the front of the shock,
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as expected. In both codes, the highest particle velocities in the entire system appear in the
crater ejecta. While both codes capture the ejecta, the ability for discrete elements to break
away from the mesh in the FDEM approach allows for much more ejecta to appear within
the crater in the HOSS simulations. However, it is worth noting that a considerable part of
the material located inside the crater, shown in Figure 5b,d, corresponds to the impactor
material. Also for consideration, the SESAME EOS used in the FLAG simulations allows
for material vaporization. The resulting vapor plume of ejected material is significantly
underdense and thus not visible in these figures, which have been thresholded on density
to remove the surrounding air. The FLAG simulations appear to show interactions between
waves, resulting in some variations in the velocity profiles. This behavior can be attributed
to the shock reflection, regions of compression and tension, and the pressure differential
between the target and ambient air. These effects, while visible in the velocity plots, do not
affect the crater formation in a significant way.

!"#$

!"#$

%&''

%&''

()*+ ()*+

,)(+,)(+

- .

/
0

Figure 5. Particle velocity from a 2.0× 104 m/s normal impact at 0.5 s (a,b) and 1.0 s (c,d) as calculated
from 3D simulations from FLAG and HOSS. (a,c) show particle velocity from 3D FLAG simulations,
and (b,d) show particle velocity from HOSS simulations. The length of the horizontal green bar
shown inside the crater represents a distance of 1000 m.

Figure 6 presents similar particle velocity plots for an oblique impact with a velocity
of 5 km/s. Similar to the normal impact case, the highest velocities occur in the crater
ejecta. Figures 7a,b and 8a,b directly overlay the crater profiles for both the normal and
oblique impacts just discussed. The HOSS target is shown in green, on top of the FLAG
target, which is shown in orange. The impactors themselves are also distinguished, where
red indicates the FLAG impactor and dark green indicates the HOSS impactor. Overall,
the HOSS simulations tend to predict slightly deeper craters than FLAG. In general, this
is a result of the higher amount of ejecta/fragmentation accounted for within the crater
in HOSS. Some of this ejecta will not leave the crater, but rather settle into the bottom,
producing a crater depth closer to what FLAG predicts. The predicted crater diameters are
similar between FLAG and HOSS.
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Figure 6. Particle velocity from a 5× 103 m/s 45◦ oblique impact at 0.5 s (a,b) and 1.0 s (c,d) as
calculated from 3D simulations from FLAG and HOSS. (a,c) show particle velocity for 3D FLAG
simulations, and (b,d) show particle velocity for 3D Hoss simulations. The length of the horizontal
green bar shown inside the crater represents a distance of 1000 m.
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Figure 7. FLAG and HOSS simulations overlaid to show differences in the crater profiles from a
20 km/s normal impact (a,b) at 0.5 s and 1.0 s. The FLAG simulations are represented with an orange
target material and red impactor. HOSS simulations are shown with a green target material and dark
green impactor. (c–f) show 3D cross-sections of the impact scenario at 0.5 s and 1.0 s, where dark
blue and cyan represent the target and impactor, respectively. The length of the horizontal green bar
(a,b) and of the vertical white bar (c–f) shown represents a distance of 1000 m.
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In the case of an oblique impact, as shown in Figure 8, both codes capture ejecta.
In FLAG, the ejecta is predominately the impactor material, whereas the ejecta in HOSS
is comprised of both impactor and target material. In both cases, material appears as
though it is being ejected in discrete segments; however, it is important to consider the
different meshing strategies. In FLAG, the ejected material moves through a deformed,
but connected, mesh, while in HOSS, individual, and also deformed, elements can separate
and move away from their original positions. Both approaches result in ejected material,
but the manner in which the codes handle ejected material is quite different.

Figure 7c–f also shows 3D cross-sections of the impact event in both FLAG and HOSS.
In these figures, the target is represented as dark blue, and the impactor is represented as
cyan. In these figures, the effect that the different mesh strategies have on the shape of
the ejected material can be clearly seen. It is more apparent that the material is moving
through a connected mesh in FLAG, resulting in less distributed impact ejecta. Conversely,
the ejected material in HOSS is more distributed, spraying outward because of the ability
of discrete elements to move apart from the initial mesh.

!

"

#$%&

'$#&

Figure 8. FLAG and HOSS simulations overlaid to show differences in the crater profiles from a
5 km/s oblique impact at (a) 0.5 s and (b) 1.0 s. The FLAG simulations are represented with an
orange target material and red impactor. HOSS simulations are shown with a green target material
and dark green impactor. The length of the horizontal green bar shown inside the crater represents a
distance of 1000 m.

As mentioned previously, the inclusion of discrete elements and the Lagrangian
framework in HOSS often comes at a cost of increased run times in comparison to the
more traditional hydrocodes such as FLAG. Table 2 compares the computational resources
required for the 3D normal and oblique simulations completed. The HOSS simulations were
all run for a specified number of time steps, resulting in uniform run times and simulated
times. FLAG required fewer cores and ran for less time than HOSS to reach the same or
longer simulated times. The one exception was the oblique 20 km/s simulation, which
suffered from mesh tangling and did not fully complete in FLAG. However, even with
this enhanced computational efficiency, FLAG still requires high performance computing
capabilities to complete these 3D simulations.



Appl. Sci. 2021, 11, 2504 11 of 19

Table 2. Computational resources required for the 3D impact simulations.

Normal—5 km/s 45◦—5 km/s Normal—20 km/s 45◦—20 km/s

Number of cores 1961 1961 1961 1961
HOSS Run time (hr:min) 32:00 32:00 32:00 32:00

Simulated time (s) 1.07 1.07 1.07 1.07
Number of cores 360 360 360 360

FLAG Run time (hr:min) 02:27 03:34 01:48 01:58
Simulated time (s) 3.00 1.10 2.06 0.29

4.3. Benchmarking against Other Hydrocodes

In this section, the FLAG and HOSS results are compared to those reported in the
benchmarking study by Pierazzo et al. [5]. The study used multiple hydrodynamic/shock
codes: ALE3D, AUTODYN, CTH, iSALE, RAGE, SOVA, SPH, and ZEUS-MP. These codes
span a variety of approaches, including Eulerian, ALE, and smooth-particle hydrodynam-
ics [5]. ALE3D is a hybrid (finite-element + finite-volume) multiphysics code developed
at Lawrence Livermore National Laboratory and is based on ALE solutions. ALE3D has
been used to simulate asteroid impacts, atmospheric entry, and breakup [51]. AUTODYN
is part of the ANSYS Workbench package that was specifically designed to resolve the
material response under high strain-rate loading conditions. For solid modeling, AU-
TODYN uses Lagrangian elements, while for fluid modeling, there is an option of using
Eulerian formulations or smooth-particle hydrodynamics solvers. Researchers have used
AUTODYN to simulate hypervelocity impacts of asteroids on the surface of the Earth [52].
CTH is a solid mechanics code that was developed at Sandia National Laboratories with a
special focus on strong shock applications. CTH has been used to simulate many types
of impact problems, such as those conducted for the Federal Emergency Management
Agency [53] and for the National Aeronautics and Space Administration [54]. iSALE is an
open-source hydrocode widely used by the planetary science community. It was devel-
oped for modeling fluid flows across a variety of speeds. However, it is largely serial and
primarily used in 2D simulations [55,56]. The RAGE hydrodynamics code, developed and
maintained by Los Alamos National Laboratory, is an Eulerian hydrocode with capabilities
for radiation hydrodynamics and AMR [57]. SOVA uses an Eulerian approach and models
multi-material problems and dusty flows [58]. SPH has no underlying grid and can model
solid materials [59]. Finally, ZEUS-MP is an Eulerian code that can model radiative and
magnetized materials [60]. These codes are discussed in more detail in the benchmarking
paper by Pierazzo et al. [5], but clearly this collection of shock codes represents a wide
range of model formulations that can be used for impact cratering studies.

Table 3 first compares the results from FLAG and HOSS to the theoretical maximum
pressures for normal 5 km/s and 20 km/s impact velocities for the most resolved simula-
tions. Note that the theoretical maximum pressure is derived from impedance matching in
1D for strengthless materials [3]. This table also includes the mean value, determined from
all codes tested by Pierazzo et al. and their corresponding relative errors for comparison [5].
Note that the theoretical value applies only to the maximum pressure and not the shock
pressure decay throughout the target. In addition, because the original comparison of
Pierazzo et al. was published more than a decade ago, it is also expected that FLAG
and HOSS would both show improvements from advances in numerical methods, model
development, etc., that were not present in the other codes during the original study but
may have since been implemented.

Overall, the Pierazzo et al. results show relative errors of ∼25–30% [5]. Indeed,
the FLAG and HOSS results both show improvement on these values, particularly in the
5 km/s case. In the 20 km/s case, the relative errors for FLAG and HOSS are somewhat
larger than for the simulations with a 5 km/s impact velocity, consistent with the codes
tested in the original study.
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Table 3. Maximum pressures from 2D simulations in FLAG and HOSS compared to the theoretical maximum. These values
are also compared to the mean of the values reported in Pierazzo et al. [5] by various codes. The relative error is reported
with respect to the 1D analytical solution.

Maximum Pressure 1D Analytic Solution Pierazzo et al. [5] Mean * FLAG HOSS

5 km/s—point of impact 58.725 GPa – 59.58 GPa 52.66 GPa
Relative Error – – 1.46 % −10.33 %

5 km/s—200 m into target 58.725 GPa 40.4 GPa 55.77 GPa 54.85 GPa
Relative Error – −31.2 % −5.03 % −6.59 %

20 km/s—point of impact 506.25 GPa – 492.63 GPa 438.96 GPa
Relative Error – – −2.69 % −13.29 %

20 km/s—685 m into target 506.25 GPa 379.0 GPa 407.99 GPa 393.24 GPa
Relative Error – −25.14 % −19.41 % −22.32 %

* Note that the relative errors shown for these data were calculated with respect to the analytical values shown in this table, which show
slight variations to relative error presented in the original paper. This difference comes from the different reference densities of Al-6061 and
Al-2024 [3].

The pressure decay from FLAG and HOSS obtained for several impact cases, includ-
ing 5 km/s normal and oblique impacts and 20 km/s normal and oblique impacts, are
compared against other hydrocodes. Unless otherwise noted, all subsequent comparisons
are for 3D simulations. To compare the pressure decay for 3D normal and oblique impact
angles, pressure values are recorded along vertical, diagonal (45◦ from vertical), and hori-
zontal lines extending outward from the impact point. These lines are shown schematically
as dashed lines in Figure 1.

In the case of the normal impacts, the results can also be compared to the analytical
solutions in Table 3, shown as a constant dotted line in Figure 9. This figure, which includes
digitized results from Pierazzo et al. [5], shows that all of the codes tested produce pressure
values at the impact point that underpredict the analytical solution. The degree to which the
codes underpredict the analytical solution varies highly in the 5 km/s impact velocity case.
In the 20 km/s impact velocity case, the codes in general come very close to the analytical
prediction, although most predictions are just under the analytical value. In this case, HOSS
shows the best match to the analytic value close to the point of impact. However, it also
shows some subsequent oscillations before the shock decay regime, whereas hydrocode
simulations resulted in a slightly lower maximum pressure but a smoother decay curve.

It is worth noting that for the 5 km/s normal impact case, the 2D FLAG simulations
slightly overpredict the analytic value (see Table 3), while the 3D simulations underpredict
the analytic value (see Figure 9a). This dimensional difference can be attributed to to the
increased number of directions in which shocks can travel and dissipate in 2D versus 3D as
well as the 1D calculation of the analytic solution.
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Figure 9. 3D normal impact, vertical tracers from FLAG and HOSS simulations, plotted with data
from Pierazzo et al. [5] for (a) 5 km/s impact and (b) 20 km/s impact.

Figures 10–12 show the shock decay computed with FLAG and HOSS for oblique
impact scenarios in comparison to the data presented by Pierrazzo et al. [5]. Overall,
the results from the HOSS and FLAG simulations have similar shock pressure decay to
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the codes tested by Pierrazo et al. [5]. The FDEM simulations exhibit a fair amount of
variability in the region directly below the impact point. Farther from the impact point
(roughly 1 km), the pressures calculated by both HOSS and FLAG exhibit stable, power-
law decay with distance. Overall, the FLAG results are fairly smooth in the shock decay
region, which is somewhat in contrast to the variations seen in the particle velocity profiles
(see Figures 5a,c and 6a,c). However, because the shock pressure decay is based on the
maximum pressure at each point over all time, rather than the value at each point for one
specific time, the smooth decay is expected. Plotting pressure rather than velocity does not
show the same variations.
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Figure 10. 3D oblique impact (45◦ from vertical), vertical tracers from FLAG and HOSS simulations,
plotted with data from Pierazzo et al. [5] for (a) 5 km/s impact and (b) 20 km/s impact.
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Figure 11. 3D oblique impact (45◦ from vertical), horizontal tracers from FLAG and HOSS simulations,
plotted with data from Pierazzo et al. [5] for (a) 5 km/s impact and (b) 20 km/s impact.
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Figure 12. 3D oblique impact (45◦ from vertical), diagonal tracers from FLAG and HOSS simulations,
plotted with data from Pierazzo et al. [5] for (a) 5 km/s impact and (b) 20 km/s impact.
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4.4. Implications for Modeling Fracture

For impact cratering cases in the strength-dominated regime, strength and damage
also play a role in the crater formation process [1,2]. Thus, modeling the 5 km/s normal
impact simulations, which lie in the strength regime, with the inclusion of strength and
damage models can provide additional insight into simulating cratering processes.

The FLAG simulations used a constant yield stress with linear hardening behavior
to model both target and impactor, and damage was modeled using the Johnson–Cook
model [61]. The yield stress was 276 MPa, and the hardening parameter was 0.1 [62].
The HOSS simulations also used a constant yield stress with linear hardening. This
simulation used a yield stress of 276 MPa and a linear hardening of 113.3 MPa. In addition,
the properties of cohesive bonds between the elements were assigned such that fracture
occurred once the stress in the material surpassed its ultimate tensile strength (310 MPa).

The particle velocity and damage metrics are presented in Figures 13 and 14, re-
spectively. Snapshots are shown at 0.4 s and 0.8 s. Because of the difference in damage
formulations, it is difficult to directly compare across codes. Thus, the damage in FLAG
is termed ‘continuum damage,’ as it indicates damage incurred within a cell/zone. Dam-
age in HOSS is termed ‘discrete damage,’ as it indicates damage incurred between two
cells/zones. In both cases, a damage value of 0 represents completely undamaged mate-
rial while 1 represents a fully damaged region. In HOSS, fully damaged regions directly
correspond to fractures or cracks evolving within the material. Damage in FLAG is more
homogenized, so there is not a direct correlation with a discrete crack network.

While the FLAG and HOSS particle velocities shown in Figure 13 are relatively similar,
the damage from both codes, shown in Figure 14, is very different. HOSS shows a significant
amount of damage developing and evolving in the wake of the shockwave as it travels
through the medium. In FLAG, however, only highly damaged regions in the crater ejecta
are visible at these early times. The FLAG simulation did continue to run to 3.0 s, and more
damage is evident at later simulation times, below the crater floor and surrounding the
crater walls, similar to the shape of the damaged region in HOSS at early times (see
Appendix A).
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Figure 13. Particle velocity from a 5× 103 m/s normal impact in which strength and damage are
considered in the material models. Snapshots are shown at 0.4 s (a,b) and 0.8 s (c,d) and are calculated
from 3D simulations from FLAG and HOSS. (a,c) show particle speed from 3D FLAG simulations,
and (b,d) show particle speed from 3D HOSS simulations. The length of the horizontal green bar
shown inside the crater represents a distance of 1000 m.
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Figure 14. Continuum and discrete damage measures from a 5× 103 m/s normal impact in which
strength and damage are considered in the material models. Snapshots are shown at 0.4 s (a,b) and
0.8 s (c,d) and are calculated from 3D simulations from FLAG and HOSS. (a,c) show continuum
damage from 3D FLAG simulations, and (b,d) show discrete damage from 3D HOSS simulations.
The length of the horizontal green bar shown inside the crater represents a distance of 1000 m.

5. Conclusions

This work presented a code-to-code comparison between a modern hydrodynamics
code, FLAG, and an FDEM code, HOSS. This study successfully benchmarked both numer-
ical methods for impact cratering simulations. This work explored multiple Al-Al impact
scenarios, in both 2D and 3D, in order to evaluate the differences each numerical method
had on the overall solution obtained. Both numerical methods produced qualitatively
similar velocity contours and predicted similarly sized craters in the early stages of crater
formation. From a quantitative point of view, both codes produced maximum pressures
with lower relative errors than previously published results of the same simulations using
different hydrocodes. In addition, both FLAG and HOSS demonstrated abilities to incorpo-
rate strength and damage processes into impact simulations, key components to modeling
strength-dominated crater formation.

One notable difference in these two approaches is the meshing strategies used. FLAG
employs an ALE strategy that allows for deformation of the mesh and also transport
of material through the mesh, but ultimately the mesh remains connected and cannot
break apart. Conversely, HOSS allows for elements in the mesh to both deform and break
away from the initial configuration, disconnecting along element edges. Partially as a
result of these mesh strategies, primary differences in results are apparent in damage
evolution and computational expense. HOSS shows more damage evolution in the system,
particularly at early times, resolved to a level in which individual cracks can form and
evolve. This meshing strategy also allows for more distributed ejecta coming from the
impact crater. While FLAG does not have the ability to resolve damage in the same way
at early simulation times, it is more computationally efficient, requiring fewer cores and
less computation time to achieve the similar if not longer simulation times. At later times,
the extent of damage in FLAG simulations more closely resembles the extent of damage in
HOSS simulations, as shown in Appendix A.

Overall, both approaches appropriately capture the impact cratering process at dif-
ferent impact velocities and impact trajectories. Major aspects of the cratering process,
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including shock wave propagation, shock pressure decay, and crater profiles, are cap-
tured with reasonable accuracy determined through comparison between the codes and to
previous published simulated data.
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Abbreviations
The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
Al aluminum
ALE arbitrary Lagrangian Eulerian
cppr cells per projectile radius
DEM discrete-element method
EOS equation of state
FDEM finite-discrete element method
FEM finite-element method
FLAG Free LAGrange
HOSS Hybrid Optimization Software Suite

Appendix A. FLAG Damage Figures

As mentioned in Section 4.4, the FLAG simulation ran to a stopping time of 3.0 s.
Figure A1 shows damage in the FLAG simulation about 1.0 s after impact, and Figure A2
shows damage in the FLAG simulation at the simulation stopping time of 3.0 s.
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Figure A1. FLAG simulation of 5× 103 m/s Al-Al (Al-6061) normal impact, 1 s after impact, colored
by damage.

Figure A2. FLAG simulation of 5× 103 m/s Al-Al (Al-6061) normal impact, 3 s after impact, colored
by damage.
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