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Abstract: A simple and efficient method is proposed for the analysis of twist of rectangular box-girder
bridges, which undergo distortion of the cross section. The model is developed in the framework
of the Generalized Beam Theory and oriented towards semi-analytical solutions. Accordingly, only
two modes are accounted for: (i) the torsional mode, in which the box-girder behaves as a Vlasov
beam under nonuniform torsion, and, (ii) a distortional mode, in which the cross section behaves as a
planar frame experiencing skew-symmetric displacements. By following a variational approach, two
coupled, fourth-order differential equations in the modulating amplitudes are obtained. The order of
magnitude of the different terms is analyzed, and further reduced models are proposed. A sample
system, taken from the literature, is considered, for which generalized displacement and stress fields
are evaluated. Both a Fourier solution for the coupled problem and a closed-form solution for the
uncoupled problem are carried out, and the results are compared. Finally, the model is validated
against finite element analyses.

Keywords: rectangular box-girder; nonuniform torsion; cross-section distortion; Generalized Beam
Theory; simple analytical model

1. Introduction

It is well-known that, when a mono-cellular box-girder undergoes torsion, induced by
eccentric loads with respect to its longitudinal axis, its cross section suffers a distortion in
its own plane, which modifies the original shape [1]. Such a phenomenon is often referred
to, in the technical literature devoted to bridges, as differential flexure, since a quota of the
external torsional moment not equilibrated by the internal torsional moment is instead
bared by internal forces triggered by equal and opposite flexures of the two webs. Here,
however, the word distortion is preferred. The phenomenon is dangerous, since flexure
of the webs entails longitudinal normal stress, which adds to the tangential stresses of
the Bredt theory of uniform torsion and to the normal stresses of the Vlasov theory of
nonuniform torsion. Moreover, flanges and webs all suffer transverse bending, which
would not be present if the cross section could maintain its shape. To limit such effects,
diaphragms or bracings are occasionally introduced into the box-girder, but more often,
these devices are omitted for construction simplicity. In these latter cases, a more refined
analysis is required, in which the simple model of a beam must be abandoned and the
box-girder must be modeled as a plate assembly.

The most popular approach to this problem is based on the so-called Beam on Elastic
Foundation (BEF) analogy, attributed to Wright [2], after the pioneristic work by Vlasov.
According to the BEF analogy, the effects of distortion are uncoupled from those of torsion
and are governed by the classical differential equation of the beam on Winkler soil. The
model was derived on a physical rather than a mathematical ground by substituting the
continuous model of a beam with an assembly of elastic thin slices of the box-girder,
rigidly connected among them. Among old papers, in Reference [3], an alternative physical
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model was proposed, leading to the same equation, and an example of reinforced concrete
monocellular box-girder bridge was worked out; in Reference [4], parametric analyses
were carried out and the results were given in different load conditions. The BEF analogy,
in spite of its simplistic idea of uncoupling, is still used nowadays. As a few examples, in
Reference [5], the analogy was exploited, aimed at supplying a useful tool for designers and
accounting for the presence of diaphragms. In Reference [6], the approach is compared with
finite element simulations, concluding that the simplified method provides a safe estimation
of the response. In Reference [7], an extended version of the equation of BEF, including the
second derivative, is used to analyze the influence of shear-deformable diaphragms.

In spite of using BEF, since 1990, it was clearly stated, in Reference [8], torsion and
distortion cannot be separated since they are intrinsically coupled. The model presented
there concerns a rectangular box-girder undergoing torsion–distorsion. It is based on
simplified kinematics, in which three generalized configuration variables, depending on
the longitudinal abscissa, are a priori introduced: one for twist, two (not independent) for
bending of webs/flanges in their own planes, and one for distortion. The relevant strains
are of membrane type, piece-wise linear, or constant along the directrix, while flexural and
torsional plate contributions are ignored. By following an energy approach, a differential
system of sixth-order in the configuration variable is derived and solved. In a successive
paper [9], the author extended his theory to trapezoidal cross sections by introducing
twelve configuration variables.

To analyze coupling effects, we need to resort to more refined models. Recently,
higher-order theories of one-dimensional beams have been used, in which some added
kinematic descriptors account for warping and distortion of the beam. An overview of
different models in the literature is provided in Reference [10]. In this class of papers
falls, e.g., References [11,12], in which warping and ovalization of a multi-layered beam is
analyzed, and References [13–15], where nonlinear effects are accounted for.

The Finite Element Method (FEM) is the most popular tools today to solve problems. In
the last decades, however, alternative numerical instruments have also been used, tailored
to Thin-Walled Beam (TWB) structures, namely (i) the Finite Strip Method (FSM) [16–18]
and (ii) the Generalized Beam Theory (GBT) [19]. The latter is a numerical version of the
well-known Kantarovitch semi-variational method, in which the displacement field is taken
as a linear combination of known functions defined on the cross-sectional domain (usually
said modes) and unknown modulating amplitudes defined on the beam axis. The original
two-dimensional plate problem is thus brought to a simpler one-dimensional problem
in amplitude functions, for which Fourier series expansions, or 1D-FEM, can be applied.
The idea had Vlasov himself as a forerunner, who used it to analyze closed TWB; some
numerical applications of the Vlasov procedure have been recently illustrated in [20] by
never mentioning GBT. The modern version of the method was implemented by many
authors, following an original idea by Schardt, successively disseminated in English by
References [19,21,22]. It had in Camotim and its school [23–25] a huge impulse in the
last two decades, through a series of papers in which the choice of modes (cross-section
analysis) and various algorithmic aspects were progressively refined. Luongo, Ranzi, and
coworkers [26–30] launched the idea to combine GBT with a dynamic boundary value
problem to automatize the cross-sectional analysis. De Miranda et al. [31,32] analyzed, in
particular, the shear effects. More recently, in References [33,34], GBT was combined with
FEM to solve problems in which localized strains and stresses occur. Moreover, the use of
the Boundary Element Method (BEM) has also been proposed [35] to analyze beams with
general (not necessarily thin-walled) beams.

All such philosophies, based on purely numerical approaches, are more oriented
towards describing how a phenomenon manifests itself rather than towards explaining why
it occurs, which are the essential parameters that govern them. Therefore, it is believed by
the authors of this paper that ancient analytical methods, oriented towards hand-solving a
problem, should be rethought in the light of the new knowledge and instruments available.
In this view, a simplified model of the box-girder in torsion–distortion is proposed here. It is
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developed by reconsidering the approach of Reference [8] by framing it in the modern GBT.
Accordingly, just two modes (and therefore two configuration variables) describing torsion
and distortion, respectively, are shown to be accurate enough to capture the mechanical
behavior based on an orthogonal decomposition of the planar cross-sectional displacement
field. Strong differences from Reference [8], however, exist, namely (a) generalized configu-
ration variables are not a priori assumed but, in the spirit of GBT, they naturally appear as
the amplitude of the deformation modes; (b) distortion involves warping on a kinematic
ground, entailing active normal stresses and passive tangential stresses (the reverse occurs
in Reference [8]); (c) the plate behavior of the single elements is accounted for, allowing
evaluation of the stresses within the thickness; (d) shear strains are not simply piece-wise
constant on the directrix, allowing for satisfaction of the equilibrium at joints; and (e) an
eighth-order (instead of sixth-order) differential system is derived, as a consequence of the
accounted plate behavior and the different treatment of warping.

The main contributions of the paper are the following: (a) to provide a semi-analytical
solution, oriented towards hand calculations, able to give reasonably accurate answers
to a complex problem, which would otherwise require refined numerical models; (b) to
perform an order of magnitude analysis of the different terms in the model, to formulate
the simplest possible, and to gain insight into the relative importance of the distortion
against the torsion in terms of geometrical parameters; (c) to explain that the effects of
distortion can be described by just one mode, for which the in-plane component is taken
orthogonal to that of torsion; (d) to clarify that coupling, in contrast, exists due to warping;
and (e) to highlight that in an internally kinematically constrained model, the reactive
stresses can play an important role. Overall, the paper is inspired by a methodological
approach rather than by a computational philosophy. However, the ready-for-use formulas
obtained here are believed to be of technical interest.

The paper is organized as follows. In Section 2, some background is supplied. In
Section 3, the model is developed, and the governing equations are derived. In Section 4,
some algorithmic aspects are addressed. In Section 5, a sample system is studied and
the numerical results are discussed. In Section 6, some conclusions are drawn. A few
Appendixes are devoted to illustrating details.

2. Background

Existing theories, necessary to formulate the model, are shortly summarized. They
concern (i) the Vlasov theory [1], extended to closed TWB by Umanski (see, e.g., Refer-
ence [36]), and (ii) the Generalized Beam Theory [23,27], holding for plate assemblies. The
box-girder refers to the longitudinal abscissa z ∈ (0, `), running along the straight axis, and
to the transverse abscissa s, running along the middle-line cross section Γ; the thickness
t(s), is assumed to be much smaller than the medium radius of the cross section.

2.1. Beam Theory

When a thin-walled box-girder is subject to nonuniform torsion, one can apply the
extended Vlasov theory [36] for closed TWB. The theory assumes (i) that the cross section
is undeformable in its own plane but warps out-of-plane and (ii) that the shear strains
γzs on the middle surface of the beam do not vanish, as for open TWB, but they satisfy
the condition γzs(z, s)t(s) =: φ(z), i.e., the flow of the strains across the thickness, at a
given z, is constant along Γ, as suggested by the Bredt theory. The combination of the
two geometric constraints yields the warping w(z, s) = −θ′(z)ω(s), with θ′(z) being the
genearally nonuniform torsional curvature and ω(s) being the warping function:

ω(s) = 2

Ω(s)−Ω0

´ s
0

ds
t(s)

u ds
t(s)

 (1)

where Ω0 is the area enclosed by Γ and Ω(s) is the sector area function. Equation (1)
generalizes the more familiar ω(s) = 2Ω(s), which holds for open TWB.
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When the equilibrium is expressed in terms of the twist angle θ(z), the following field
equation and boundary conditions are found:

EIωθ′′′′ − GJθ′′ = cz(z)[(
GJθ′ − EIωθ′′′

)
δθ
]`

0 = 0[
EIωθ′′δθ′

]`
0 = 0

(2)

where E, G are elastic moduli; Iω :=
u

Γ ω2(s)t(s)ds is the warping inertia moment,
J := 4Ω2

u ds
t(s)

is the De Saint Venant torsion inertia moment; cz(z) are distributed external

torsional couples, δ indicates a virtual displacement, and a prime denotes z-differentiation.
The second equation in Equation (2) shows that the external torsional moment M̄t is equili-
brated by two internal forces: the De Saint Venant torsional moment Mt = GJθ′ and the
complementary torsional moment M∗t = −EIωθ′′′, i.e., M̄t = Mt + M∗t .

Once Equation (2) is solved and θ(z) is determined, the normal stresses are evalu-
ated via σz(z, s) = − B(z)

Iω
ω(s), where B(z) = EIωθ′′ is the bimoment. Evaluation of the

tangential stresses is more complicated. Indeed, they consist of an active and a reactive
component, τzs = τa

zs + τr
zs, with the former being associated with the uniform flow of the

shear strains and the latter being associated with the geometric constraint that enforces the
uniformity. This circumstance differs from that occurring in open TWB, where tangential
stresses are only of reactive nature. The active stress components are evaluated by the
Bredt formula, τa

zs =
Mt

2Ω0 t . The reactive stress components are determined by integrating
the indefinite equilibrium equation averaged on the thickness, (τr

zst),s + (σzt),z = 0, where
a comma denotes partial differentiation with respect the following variable. This supplies
τr

zs(z, s)t(s) = −M∗t (z)Sω(s)
Iω

+ q0(z), where Sω(s) :=
u

Γ ω(s)t(s)ds and q0(z) is an arbitrary
function; the latter is determined by enforcing the static equivalence between τr

zs and M∗t .
Details on these calculations are given in Appendix A for rectangular box-girders.

2.2. GBT Theory

When the hypothesis of undeformability of the cross section is removed, the box-girder
behaves as a plate assembly. According to the classic version of the GBT theory [23,37] (in
which only the so-called conventional modes are taken into account), the displacement field
is expressed as follows:

u(z, s) =
K

∑
k=1

Uk(s) ak(z) = UTa

v(z, s) =
K

∑
k=1

Vk(s) ak(z) = V Ta

w(z, s) =
K

∑
k=1

Wk(s) a′k(z) = W Ta′

(3)

where u, v, w are tangential (along the directrix), normal (along the thickness), and axial
(along the axis) components, respectively. Here, Uk(s), Vk(s), Wk(s) are assumed to be
modal shapes and ak(z) are unknown amplitude functions. When the Kirchhoff hypothesis

is invoked, the relevant strains ε =
(

εm
s , εm

z , γm
zs, ε

f
s , ε

f
z , γ

f
zs

)T
are derived:

εm
s = U ′Ta, εm

z = W Ta′′, γm
zs =

(
UT + W ′T

)
a′

ε
f
s = −yV ′′Ta, ε

f
z = −yV Ta′′, γ

f
zs = −2yV ′Ta′

(4)

where apexes m, f denote membrane and flexural contributions, respectively; y is the
distance from the middle plane; and a prime indicates differentiation with respect the
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independent variable. From linear Hooke’s law for isotropic material, the planar stresses

σ =
(

σm
s , σm

z , τm
zs , σ

f
s , σ

f
z , τ

f
zs

)T
are found as follows:

σm
s = EU ′Ta, σm

z = EW Ta′′, τm
zs = G

(
UT + W ′T

)
a′

σ
f
s = −y

E
1− ν2

(
V ′′Ta + νV Ta′′

)
, σ

f
z = −y

E
1− ν2

(
νV ′′Ta + V Ta′′

)
τ

f
zs = −2yGV ′Ta′

(5)

where ν is the Poisson ratio.
Finally, by making use of the Virtual Work Principle,

`ˆ

0

dz

t(s)
2ˆ

− t(s)
2

dy
z

Γ

σTδεds =

`ˆ

0

dz
z

Γ

fTδuds (6)

in which f =
(

fs(z, s), fy(z, s), fz(z, s)
)T are surface external forces and u = (u(z, s), v(z, s),

w(z, s))T , the following ordinary differential equations and relevant boundary conditions
are obtained:

(Ce + C f )a′′′′ + (D f + D f T −Ds −Dt)a′′ + (B f + Bd)a = p[
δa′T

((
C f + Ce

)
a′′ + D f a

)]`
0
= 0[

δaT
((

C f + Ce
)

a′′′ +
(

D f −Ds −Dt
)

a′
)]

0
` = 0

(7)

where
Ce =

z

Γ

EtWW Tds, C f =
z

Γ

DVV Tds

D f =
z

Γ

νDVV ′′Tds, Dt =
z

Γ

Gt3

3
V ′V ′Tds,

Ds =
z

Γ

Gt
(

W ′T + UT
)T(

W ′T + UT
)

ds

B f =
z

Γ

DV ′′V ′′Tds, Bd =
z

Γ

EtUU ′Tds

(8)

are known symmetric matrices, with D(s) := Et3(s)
12(1−ν2)

; moreover,

p =
z

Γ

fsUds +
z

Γ

fyVds−
z

Γ

∂ fz

∂z
Wds (9)

are generalized (modal) loads. Equation (7) is referred to as GBT equations. In them,
matrices C, D, B have been labeled as (f) flexural, (e) extensional, (s) shear, (t) torsional,
and (d) in-plane dilatation, to remember their energy origin. In particular, C f accounts for
flexure of the plates in the longitudinal plane, D f represents the transverse Poisson-induced
flexure, and B f is thefor (direct) flexure in the transverse plane.

Once the GBT equations are solved and the amplitude functions a(z) are evaluated,
the active stresses are computed from Equation (5). Reactive stresses, often ignored in the
literature, must be determined by equilibrium arguments, as discussed below.
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3. A Minimal GBT Model

A rectangular, b× h, double-symmetric box-girder is considered (Figure 1). Its cross
section is made of four thin elements: the bottom/upper flanges i = 1, 3, of thickness
t1 = t3, and the right/left webs i = 2, 4, of thickness t2 = t4. A simple model is formulated,
aimed at capturing the main mechanical behavior of the twist-distortional behavior. The
task is accomplished by following the GBT approach, in which just two modes are consid-
ered: (i) the torsional mode, in which the cross section keeps its shape unaltered, and (ii) the
distortional mode, in which the cross section is deformed. According to Equation (3), the
local displacement field is expressed as follows: u(z, s)

v(z, s)
w(z, s)

 = θ(z)

 Ut(s)
Vt(s)
Wt(s)

+ ϕ(z)

 Ud(s)
Vd(s)
Wd(s)

 (10)

where the s-functions are the components of the two modes, to be properly chosen, and
a = (θ(z), ϕ(z))T are the unknown amplitude functions, measuring the magnitude of twist
θ and distortion ϕ.

y
xz

b

h

t1

t1
t2t2

l

3

2

1

4

y1

s1

y3

s3

y2

s2y4

s4

A B

CD

(a) (b)

Figure 1. Box-girder: (a) geometry; (b) element numbering and local systems of coordinates.

To define the amplitudes, a general inextensional transformation of the box-girder is
considered (by ignoring, at this stage, compatibility at corners), in which the x-axis rotates
of an angle ψx and the y-axis of an angle ψy, both positive counterclockwise (Figure 2a).
By decomposing the transformation in its skew-symmetric (Figure 2b) and symmetric
(Figure 2c) parts, the twist θ and the distortion ϕ are uniquely determined as follows:

θ =
1
2
(
ψx + ψy

)
, ϕ =

1
2
(
ψx − ψy

)
(11)

together with their inverse ψx = θ + ϕ, ψy = θ − ϕ.
To define the modes, a suitable in-plane field U(s), V(s) is chosen, as illustrated

ahead. From this, the warping component W(s) is derived by exploiting the internal
constraint condition γzs(z, s)t(s) = φ(z), borrowed by the Bredt theory. Since, in a generic
mode, γzs = u,z + w,s = (U(s) + W ′(s))a′(z), the constraint entails (U(s) + W ′(s))t(s) =
const=: Q. This equation can be integrated to furnish

W = −
sˆ

0

U(s)ds + Q

sˆ

0

ds
t(s)

+ C (12)

where C is a further integration constant. The previous result is particularized to the
two modes.
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ψx
θ

θ
ψy

φ
φ

(a) (b) (c)

Figure 2. Decomposition of the cross-sectional transformation: (a) current configuration, (b) skew-symmetric part (twist),
and (c) symmetric part (distortion). Compatibility at corners to be accounted for later.

3.1. Torsional Mode

The in-plane displacement field is expressed as a rotation θ = 1 around the centroid,
entailing (Figure 3a,b)

Uti =

{
h
2 i = 1, 3
b
2 i = 2, 4

, Vti = si i = 1, . . . 4 (13)

where si (i = 1, . . . , 4) are local abscissas with origins at the midpoint of each element i.
The associated warping is evaluated by Equation (12), applied to each element, which leads
to the following:

Wti =


(
− h

2 + Qt
ti

)
si + Ci i = 1, 3(

− b
2 + Qt

ti

)
si + Ci i = 2, 4

(14)

where Ci are integration constants. By enforcing continuity at the four corners and the
condition

u
Γ W(s)t(s)ds = 0 (for equilibrium along z), the five unknown are determined

as Ci = 0 and Qt =
bht1t2

bt2+ht1
. Therefore,

Wti =

{
2wt

b si i = 1, 3
− 2wt

h si i = 2, 4
(15)

where wt := bh
4

(
bt2−ht1
bt2+ht1

)
is the modulus of warping at the corners (Figure 3c). This

expression coincides with that in Equation (A1) of Appendix A, obtained by the Vlasov
theory; therefore, Wti ≡ ω(s). It should be noticed that the torsional warping vanishes
when b

h = t1
t2

.
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h/2

b/2

h/2

b/2

+ h/2

h/2

b/2

b/2

b/2
b/2

h/2

h/2

+wt

+wt
-wt

-wt

y1 s1

y3
s3

y2

s2y4

s4 y1 s1

y3
s3

y2

s2y4

s4

++

+

-

-

-

-

+

+

+

+

V t(s) W t(s)U t(s)

(a) (b) (c)

Figure 3. Torsional mode: (a) tangential displacements, (b) normal displacements, and (c) warping.

3.2. Distortional Mode

The in-plane displacement field is found as that experienced by a planar frame,
undergoing displacements at joints, namely (i) prescribed translation of joints, caused by a
distortion ϕ = 1, with no rotations, (Figure 4a); (ii) unknown rotations of joints of equal
amplitude α with no translations (Figure 4b). After having determined the moments at
any of the the four joints, equilibrium is enforced, from which the unknown is evaluated
as follows:

α := −
bt3

2 − ht3
1

bt3
2 + ht3

1
(16)

referred to below as the distortional joint rotation (which can be positive, nil, or negative ac-
cording to the geometric parameters. After that, the transverse displacements are computed
by integrating the elastic line equation under now-known translations and rotations at the
ends (see Appendix B for details). The tangential displacements are instead immediately
evaluated from the kinematics illustrated in Figure 4a. By summarizing (Figure 5a,b),

Udi
=

{
− h

2 i = 1, 3
b
2 i = 2, 4

, Vdi
=


1
2 si

(
3 + 4s2

i (α−1)
b2 − α

)
i = 1, 3

1
2 si

(
−3 + 4s2

i (α+1)
h2 − α

)
i = 2, 4

(17)

to obtain the warping component, the procedure already described for the torsional mode
is followed, leading to the following:

Wdi
=


(

h
2 + Qd

ti

)
si + Ci i = 1, 3(

− b
2 + Qd

ti

)
si + Ci i = 2, 4

(18)

Due to the skew-symmetric nature of Udi
, continuity at joints and the zero-average

condition require Ci = Qd = 0. Therefore,

Wdi
=

{
2wd

b si i = 1, 3
− 2wd

h si i = 2, 4
(19)

where wd := bh
4 is the modulus of the warping at joints (Figure 5c).

It is worth noticing that, differently from torsion, the distortional warping never
vanishes. The two warping components are proportional (Figures 3c and 5c), i.e., Wt(s) =
βWd(s), with

β :=
bt2 − ht1

bt2 + ht1
(20)
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defined as the warping ratio. The plot of β vs. the aspect ratio b
h , for different thickness

ratios t1
t2

, is represented in Figure 6. In the range examined, β spans the interval (−1, 1), so
that the two warpings (for unitary twist and distortion) are of the same order of magnitude,
except close to a critical combination of the parameters, for which torsional warping is zero.

φ
φ

α

α

φ
φ

(a) (b) (c)

Figure 4. Distortional deflection: (a) translating joints, (b) rotating joints, and (c) superposition of displacements.

b/2
b/2

b/2
b/2

h/2

h/2

h/2

h/2

+wd

+wd

-wd

-wd

h/2

h/2

b/2b/2
y1 s1

y3
s3

y2

s2y4

s4 y1 s1

y3
s3

y2
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3.3. GBT Equations

By using the torsional mode (Equations (13) and (15)) and the distortional mode
(Equations (17) and (19)), the 2× 2 matrices (Equation (8) appearing in the GBT equations
(Equation (7)) are evaluated, for which the components are as follows:
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Ce
αβ = E

z

Γ

tWαWβ ds, C f
αβ =

z

Γ

DVαVβ ds

D f
αβ = ν

z

Γ

VαV′′β ds, Dt
αβ =

G
3

z

Γ

t3V′αV′β ds

Ds
αβ = G

z

Γ

t(W ′α + Uα)(W ′β + Uβ) ds

B f
αβ =

E
12

z

Γ

t3V′′α V′′β ds, Bd
αβ = E

z

Γ

tUαU′β ds

α, β = t, d

(21)

together with a = (θ, ϕ)T , p = (ct, cd)
T , in which cα is the couples per unit length. A

careful check of these matrices reveals the following:

• since Ut(s) and Ud(s) are step-wise constant, U′t = U′d = 0, and therefore Bd = 0 (i.e.,
no in-plane dilatation occurs);

• since Vt(s) is step-wise linear and Vd(s) quadratic, then B f
11 = B f

12 = B f
21 = 0, so that

only B f
22 6= 0 in matrix B f ;

• since W ′t + Ut = Qt 6= 0 (torsional shear different from zero) and W ′d + Ud = Qd = 0
(distortional shear zero), then Ds

12 = Ds
21 = Ds

22 = 0, so that only Ds
11 6= 0 in matrix

Ds; the implications on stresses of Qd = 0 will be discussed ahead.

Moreover, aimed at obtaining the simplest model, the Poisson ratio is taken as zero, so
that D f = 0. Concerning Dt, it accounts for linear distribution of the tangential stresses in
the thickness. When TWBs are considered, these terms are usually negligible with respect
to the Bredt stresses; however, in the case of reinforced concrete box-girder bridges, where
thicknesses are not so small, they can give significant contributions, as it will be shown by
numerical simulations. Therefore, matrix Dt is retained in the analysis.

As a result, the field GBT equations reduce to the following:(
C11 C12
C21 C22

)(
θ′′′′

ϕ′′′′

)
+

(
D11 D12
D21 D22

)(
θ′′

ϕ′′

)
+

(
0 0
0 B f

22

)(
θ
ϕ

)
=

(
ct
cd

)
(22)

where Cij := Ce
ij + C f

ij and Dij := Ds
ij + Dt

ij, together with the following boundary conditions:

[(
δθ′ δϕ′

)T
(

C11 C12
C21 C22

)(
θ′′

ϕ′′

)]`
0
=

(
0
0

)
[(

δθ δϕ
)T
((

C11 C12
C21 C22

)(
θ′′′

ϕ′′′

)
−
(

D11 D12
D21 D22

)(
θ′

ϕ′

))]`
0
=

(
0
0

) (23)

The explicit expressions of the matrices appearing in Equation (22) are reported in
Appendix C. It is worth noticing that, when the distortion ϕ is ignored and the flex-
ure of plates is neglected with respect to the membrane strains (i.e., C f

11 ' 0, Dt
11 ' 0),

the GBT equations reduce to Equation (2) of the Vlasov theory, with Ce
11 = EIω , Ds

11 = GJ.

When torsion is ignored (together with C f
22 ' 0, Dt

22 ' 0) and distortion is artificially
uncoupled, the GBT equations reduce to the classic equation of the beam on elastic soil, on
which the BEF analogy is founded.

3.4. Stresses

Once the GBT equations are solved and the amplitudes θ(z), ϕ(z) are evaluated, the
active stresses can be computed by coming back to Equation (5). Reactive stresses, instead,
must be determined from equilibrium. By separating the effects of the two modes, the
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following results are drawn (with the Poisson ratio taken zero). Moreover, from now on,
τ := τzs is used to simplify the notation.

In the torsional mode, the active stresses are as follows:

σm
s (z, s) = 0

σm
z (z, s) =

{
E
2 hβsiθ

′′(z) i = 1, 3
− E

2 bβsiθ
′′(z) i = 2, 4

τm(z, s) =

{
G bht2

ht1+bt2
θ′(z) i = 1, 3

G bht1
ht1+bt2

θ′(z) i = 2, 4

σ
f
s (z, s) = 0

σ
f
z (z, s) = −Eyisiθ

′′(z) i = 1, . . . 4

τ f (z, s) = −2Gyiθ
′(z) i = 1, . . . 4

(24)

and the reactive stresses (see the Appendix A) are as follows:

τmr(z, s) =


−Eθ′′′(z)h

(ht1−bt2)(3h(b2−4s2
i )t1+b(b2+2(h2−6s2

i ))t2)
48(ht1+bt2)

2 i = 1, 3

Eθ′′′(z)b
(ht1−bt2)(h(2b2+h2−12s2

i )t1+3b(h2−4s2
i )t2)

48(ht1+bt2)
2 i = 2, 4

(25)

The normal stresses σm
z (z, s) coincide with those predicted by the Vlasov theory (see

Equation (A3) in Appendix A), while the tangential stresses τm(z, s) coincide with those of
the Bredt theory (see Equation (A4) in Appendix A). The reactive tangential stresses τmr

cannot be captured by the constitutive law of the GBT model (which is based on the same
Vlasov kinematic constraint on the flow).

The relevant stress-fields are qualitatively depicted in Figure 7 at a generic cross-
section; there, the index max denotes evaluation at the top/bottom face of the plates (i.e.,
at yi = ± ti

2 ). The diagrams repeat themselves at any abscissas z, being altered by a factor
proportional to θ′(z), θ′′(z), θ′′′(z), as stated by Equations (24) and (25). The membrane
normal stresses σm

z (Figure 7a) are caused by nonuniform warping; they are proportional
to Wt(s) (Equation (15)) and vary on z as θ′′(z). The flexural normal stresses σ

f
z (maximum

value in Figure 7b) are caused by the flexure of plates in the longitudinal direction; they
are proportional to Vt(s) (Equation (13)) and depend on z via θ′′(z). The membrane active
tangential stresses τm (Figure 7c) are consistent with the Bredt behavior of the box; they
are step-wise constant on the cross section and vary with θ′(z). The reactive component
τmr (Figure 7d) must be added to them; they are step-wise parabolic on the cross section
and vary with θ′′′(z). The flexural tangential stresses τ f (maximum value in Figure 7e) are
related to the torsion of the plates; being proportional to V′t (s), they are step-wise constant
on the cross section and vary with θ′(z).



Appl. Sci. 2021, 11, 2501 12 of 30

In the distortional mode, the active stresses are as follows:

σm
s (s, z) = 0

σm
z (s, z) =

{
E
2 hsi ϕ

′′(z) i = 1, 3
− E

2 bsi ϕ
′′(z) i = 2, 4

τm(s, z) = 0

σ
f
s (s, z) =

{
−Eyi

12(α−1)
b2 si ϕ(z) i = 1, 3

−Eyi
12(α+1)

h2 si ϕ(z) i = 2, 4

σ
f
z (s, z) =


− E

2 yisi

(
3 + 4(α− 1) s2

i
b2 − α

)
ϕ′′(z) i = 1, 3

− E
2 yisi

(
−3 + 4(α + 1) s2

i
h2 − α

)
ϕ′′(z) i = 2, 4

τ f (s, z) =

{
G yi

b2

(
b2(α− 3)− 12(α− 1)s2

i
)

ϕ′(z) i = 1, 3
G yi

h2

(
h2(α + 3)− 12s2

i (α + 1)
)

ϕ′(z) i = 2, 4

(26)

with α defined in Equation (16). For the torsional mode as well, the membrane reactive
tangential stresses must be determined from equilibrium, leading to the following (see the
Appendix D):

τmr(z, s) =


(

bh
48

2bt1+ht2
t1

− 1
4 hs2

i

)
Eϕ′′′(z) i = 1, 3(

− bh
48

(bt1+2ht2)
t2

+ 1
4 bs2

i

)
Eϕ′′′(z) i = 2, 4

(27)

The relevant stress-fields (with max denoting evaluation at yi = ± ti
2 ) are qualitatively

depicted in Figure 8. The diagrams repeat themselves at any abscissas z, being altered
by a factor proportional to ϕ(z), ϕ′(z), ϕ′′(z), as stated by Equations (26) and (27). The
membrane normal stresses σm

z (Figure 8a) are caused by nonuniform warping; they are
proportional to Wd(s) (Equation (19)) and vary on z as ϕ′′(z). The flexural normal stresses
σ

f
z (maximum value in Figure 8b) are due to the longitudinal flexure of plates; they, being

proportional to Vd(s) (Equation (17)), are cubic on the cross section and depend on z via
ϕ′′(z). The transverse flexural normal stresses σ

f
s (maximum value in Figure 8c) are gener-

ated by the flexure of the plates in the transverse direction; being proportional to V′′d (s),
they are step-wise linear on the cross section and are modulated by ϕ(z). The membrane
reactive tangential stresses τmr (Figure 8d) are step-wise parabolic and proportional to
ϕ′′′(z). The flexural tangential stresses τ f (maximum value in Figure 8e) are related to the
torsion of the plates; they depend on V′d(s), are step-wise parabolic on the cross section,
and are modulated by ϕ′(z).

It is worth noticing that, according to the model presented here, the distortional
tangential stresses are purely reactive, since no shear strains occur in the distortional
mode; in contrast, longitudinal normal stresses are of the active type, directly related to
distortional warping. The model, therefore, is different from that adopted in Reference [8],
where due to the assumed step-wise constant shear with no warping, the tangential stress
is active while the normal stress is reactive. As an advantage of the method followed here,
the continuity of the flow of tangential stresses is assured at the joints, a condition that
cannot be satisfied in the alternative approach.
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σmz σ f
z,max

(a) (b)

τm τ f
maxτmr

(c) (d) (e)

Figure 7. Stresses in the torsional mode: (a) membrane longitudinal normal stress, (b) flexural longitudinal normal stress,
(c) active membrane tangential stress, (d) reactive membrane tangential stress, and (e) flexural tangential stress. (b,e) the
index max denotes evaluation at the top/bottom face of the plates (i.e., at yi = ± ti

2 ).

σ f
z,max σ f

s,maxσmz

(a) (b) (c)

τ f
maxτmr

(d) (e)

Figure 8. Stresses in the distortional mode: (a) membrane longitudinal normal stress, (b) flexural longitudinal normal stress,
(c) flexural transverse normal stress, (d) membrane reactive tangential stresses, and (e) flexural tangential stress. (b,c,e) the
index max denotes evaluation at the top/bottom face of the plates (i.e., at yi = ± ti

2 ).

4. Algorithmic Aspects

Aimed at further simplifying the reduced GBT equations (Equation (22)), an analysis of
the relative magnitude of different terms is carried out. Moreover, qualitative information
on the relative importance between distortion and twist are sought. Then, some methods
of solution are discussed.
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4.1. Order of Magnitude of the Coefficients and Unknowns

The possibility to neglect some terms in GBT equations depending on the geometric
quantities involved is detected.

4.1.1. Flexural vs. Extensional Higher-Order Derivatives

First, the coefficients of the higher-order derivatives, Cij = Ce
ij + C f

ij, are considered.

In them, it is expected that the C f
ijs, which account for longitudinal flexure of the thin

plates, are much smaller than the Ce
ijs, which account for extension of the longitudinal

fibers induced by nonuniform warping (at least in the distortional mode, where warping
never disappears). To investigate this aspect, the ratios Ce

ij/C f
ij are plotted in Figure 9 vs.

the h
t ratio for different b

h ratios and for a fixed t2
t1

. It is seen that, for realistic values of h
t ,

e.g., ranging between 5 and 10, the flexural coefficients are, as expected, a small fraction
(few percents) of the extensional ones. It is concluded that the C f

ij are generally negligible,

especially for large h
t . An exception, of course, occurs when Ce

11 = Ce
12 = 0.
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4
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f
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e
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4
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C22
f
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e

(c)

Figure 9. Flexural-to-extensional coefficient ratios vs. the height-to-thickness ratio for different b
h aspect ratios: (a) C f

11
Ce

11
,

(b) C f
12

Ce
12

, (c) C f
22

Ce
22

vs. h
t ; t2

t1
= 1.

4.1.2. Extensional vs. Shear Torsional Effects

A second, and more important, topic concerns coupling existing between the GBT
equations. They are a set of two fourth-order differential equations, where coupling is
mainly due to higher-order terms (the larger ones being produced by warping, as seen
before). It is interesting to investigate if, and under which conditions, such a coupling
can be neglected. To this end, the box-girder is assumed to be loaded by sinusoidal loads
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p = (ĉt, ĉd)
T sin

( nπz
`

)
, which trigger sinusoidal deflections a =

(
θ̂, ϕ̂
)T

sin
( nπz

`

)
. The

amplitudes must satisfy the following algebraic equations:[(
Ce

11 Ce
12

Ce
21 Ce

22

)(nπ

`

)4
+

(
Ds

11 0
0 0

)(nπ

`

)2
+

(
0 0
0 B f

22

)](
θ̂
ϕ̂

)
= ĉ
(

1
1

)
(28)

where ĉt = ĉd = ĉ has been taken and C f
ij is neglected together with Dt

ij (small thickness).
The task is understanding if the Ce

ijs bring a significant contribution to the equilibrium

when, e.g., they are compared to Ds
11 = GJ or B f

22. Referring to a rectangular box-girder

with uniform thickness t1 = t2 =: t, the nondimensional ratios rs
ij :=

Ce
ij

Ds
11

( nπ
`

)2 and

r f
ij :=

Ce
ij

B f
22

( nπ
`

)4 among the coefficients are plotted in Figure 10 vs. the squatness ratio nh
`

for different b
h . It is seen that the rs

ij are less than 0.1 if nh
` < 0.2 (e.g., n < 4 if ` = 20 h).

Moreover, rs
ij is much smaller as b

h decreases, tending towards a square shape. Concerning

r f
ij, similar consideration hold.

The investigation therefore leads to the following conclusions:

1. Warping, as expected, plays a minor but not negligible role in torsion of closed TWB.
In particular, it is fundamental in describing boundary layers close the constraints
(or lumped forces), which, in a Fourier perspective, call for higher-order harmonics
(n large), which make the fourth-order derivatives comparable with second- or zero-
order derivatives.

2. Due to the small but not negligible coupling terms due to warping, the torsion–
distortion mechanical problem cannot, in principle, be uncoupled, as already ob-
served, e.g., in Reference [8]. A measure of the error made in splitting the problem
will be discussed with reference to the numerical results.
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Figure 10. Influence of the fourth-order terms on the sinusoidal solution: (a–c) extensional-to-shear ratios rs
ij :=

Ce
ij

GJ
( nπ

`

)2;

(d–f) extensional-to-flexural ratios r f
ij :=

Ce
ij

B f
22

( nπ
`

)4 vs. the squatness ratio nh
` for different aspect ratios b

h ; h
t1

= 6 (black

dashed lines), and h
t1
= 8 (gray continuous lines); t2 = 1.4 t1.
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4.1.3. Distortional vs. Twist Amplitude

If, in a first attempt, the warping effects are completely neglected (i.e., Ce
ij = 0 is

taken) together with the torsional curvatures (i.e., Dt
ij = 0), the two Equation (28) uncouple.

Their solution gives a rough estimation of the relative importance of the distortion on
twist, namely

ϕ̂

θ̂
=
(π

`

)2 Ds
11

B f
22

(29)

This ratio is plotted in Figure 11 vs. t
h for squared (Figure 11a) and rectangular

(Figure 11b) boxed cross sections having uniform thickness t1 = t2 =: t and for different
slenderness ratios `

nh . It appears that distortion is of the same order as twist or even larger:

• for a fixed slenderness ratio `
nh , distortion is larger for smaller thicknesses;

• for a fixed thickness ratio t
h , distortion is larger for shorter lengths.

The results corroborate and quantify the common idea that the girder behaves as a
beam (i.e., with no distortion) when it is long and its cross section is thick.

ℓ
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= 20
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0.0
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ℓ
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
/θ


(a) (b)

Figure 11. Distortion-to-twist ratio vs. the thickness-to-height ratio for different slenderness ratios `
nh : (a) squared box

b = h; (b) rectangular box b
h = 4; t1 = t2 =: t.

4.2. Solution Methods

The exact integration of the complete GBT equations, although not difficult in principle,
is quite laborious. As a matter of fact, when boundary layers exist, even exact closed-form
solution are not well-conditioned and numerical problems arise. To confine the analysis to
a minimum level, two approaches are proposed here: (a) an exact Fourier analysis, holding
for simply supported box-girder with free warping at the ends; (b) an exact closed-form
solution for simplified equations, heuristically obtained by neglecting coupling.

4.2.1. Fourier Analysis

The modal loads ct, cd are expanded in Fourier sinus series as cα = ∑N
n=1 cαn sin

( nπ
` z
)

with α = t, d. Accordingly, generalized displacements are expanded as well as(
θ
ϕ

)
=

N

∑
n=1

(
θn
ϕn

)
sin
(nπ

`
z
)

(30)

with θn, ϕn unknowns. By substituting the series in the GBT equations (Equation (22)) and
by separating the harmonics, we obtain the following (apex omitted on B22):(

D11π2n2

`2 + C11π4n4

`4
D12π2n2

`2 + C12π4n4

`4
D21π2n2

`2 + C21π4n4

`4 B22 +
D22π2n2

`2 + C22π4n4

`4

)(
θn
ϕn

)
=

(
ctn

cdn

)
(31)

From these equations, the unknowns are evaluated.
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4.2.2. A Simplified Approach: The Uncoupled Equations

A heuristic approach is attempted here, consistent with the literature, in which all
out-of-diagonal terms are (arbitrarily) neglected. In this case, the differential equations and
boundary conditions read as follows:

EIωθ′′′′ − GJθ′′ = pt

θ(0) = θ′′(0) = θ(`) = θ′′(`) = 0
(32)

together with

C22 ϕ′′′′ + B22 ϕ = pd

ϕ(0) = ϕ′′(0) = ϕ(`) = ϕ′′(`) = 0
(33)

The first equation coincides with Equation (2) of the Vlasov theory, while the second
one is the classic equation of a beam on Winkler soil. It should be noticed that, according to
this simplified approach, distortional stresses simply add themselves to Vlasov stresses
without any feedback effect.

Integration usually calls for dividing the (0, `) interval in subintervals in which the
loads are continuous; in the generic subinterval i, the general solution reads as follows:

θ(zi) = c1i e
λ(zi−li) + c2i e

−λzi + c3i zi + c4i + θ̄i(zi)

ϕ(zi) = e−µz(c1i sin(µz) + c2i cos(µz)
)
+ eµz(c3i sin(µz) + c4i cos(µz)

)
+ ϕ̄i(zi)

(34)

where li is the lengths of the subintervals, zi is the local abscissas spanning them, with the
origin at the left end; and cki

is an arbitrary constant. Moreover, θ̄i(zi), ϕ̄i(zi) are particular
solutions. Finally,

λ :=

√
GJ
EIω

, µ := 4

√
B22

4 C22
(35)

are wave numbers.
The arbitrary constants c(i)j appearing in each problem are determined by enforcing

two boundary conditions at each z = 0, ` end and four conditions at each of the internal
boundaries, as supplied by Equation (23). If no lumped couples are present, these read
as follows:

• for the twist problem, (i) continuity of θ, (ii) continuity of θ′, (iii) equilibrium of forces
dual of δθ (entailing continuity of the bimoment B = EIωθ′′), and (iv) equilibrium
of forces dual of δθ′ (entailing continuity of the total torsional moment M̄t = GJθ′ −
EIωθ′′′);

• for the distortional problem, (i) continuity of ϕ, (ii) continuity of ϕ′, (iii) equilibrium
of forces dual of δϕ (entailing continuity of ϕ′′), and (iv) equilibrium of forces dual of
δϕ′ (entailing continuity of ϕ′′′).

By numerically solving two sets of linear algebraic problems, the arbitrary constants
are evaluated and the solution (Equation (34)) is analytically obtained in step-wise form.

5. Numerical Results

A case study is considered, consisting of a reinforced concrete, rectangular box-girder
bridge, taken from the literature [3]. The box-girder has the following geometric charac-
teristics: length ` = 30 m, width b = 6 m, height h = 1.5 m, flange thickness t1 = 0.25 m,
web thickness t2 = 0.35 m; elastic moduli E = 35654× 103 kN/m2,and G = E/2. The
GBT constants consequently assume the values in Table 1. Moreover, the joint distortional
rotation is α = −0.83 and the warping ratio β = 0.70.
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Table 1. Coefficients of the Generalized Beam Theory (GBT) equations.

(i,j) (1,1) (1,2) (2,2)

Ce
ij 1.18× 108 1.70× 108 2.44× 108

C f
ij

1.74× 106 2.21× 106 3.29× 106

Ds
ij 1.02× 108 0 0

Dt
ij 1.88× 106 3.50× 105 2.63× 106

B f
ij

0 0 6.80× 105

The girder is assumed to be simply supported at the end, where it is free to warp. It is
loaded at the two webs by equal and opposite forces P = ±750 kN, uniformly distributed
on a length ∆ = `

4 , as p0 := ± P
∆ = 100 kN/m, and centered at the abscissa: ξ = `

4
(Figure 12). The relevant modal loads ct(z), cd(z) are evaluated by Equation (9), as the
virtual work spent at the abscissa z by the external forces in the displacements caused
by θ = 1 and ϕ = 1, respectively. Since, at the application points of the loads (i.e., at the
corners C, D of the box, see Figure 1), it is V = ± b

2 in both modes, it follows that

cα(x) =

p0b z ∈
(

ξ − ∆
2 , ξ + ∆

2

)
0 z /∈

(
ξ − ∆

2 , ξ + ∆
2

) α = t, d (36)

The elastic problem was tackled in different ways: (a) by solving the GBT Equation (22)
(with no terms neglected) via Fourier series; (b) by exactly integrating the differential
Equations (32) and (33) after having neglected the coupling terms; and (c) via a FEM
analysis. The latter was carried out by using a commercial software by implementing a
model made of 40 × 60 = 2400 shell elements (along the directrix and the axis, respectively)
for an overall number of 2440 degrees of freedom. The results were then compared.

Δ

z

p0

l

ξ
G

y

x

y

1.50

0.25

0.35

6.00

p0p0

(a) (b)

Figure 12. Segment of distributed load, p0 = ± P
∆ , centered at z = ξ: (a) longitudinal view; (b) cross section at z = ξ,

dimensions in meters.

5.1. Deflection Analysis

First, Fourier analysis was carried out for the GBT equations. By expanding the modal
loads in sinus Fourier series, the coefficients ctn = cdn =: cn were found, as reported in
Figure 13a, together with the truncated series with N = 20, 50, 100 terms. The Fourier
spectra for deflections, as furnished by Equation (31), together with the reconstructed
series (for N = 50, value used from now on) are represented in Figure 13b,c. As a general
comment, distortion of the box girder is remarkable, larger than twist, and it propagates to
a large distance from the loaded region.
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Figure 13. Fourier coefficients and truncated series for (a) loads, (b) twist angle, and (c) distortion.

The simplified method was successively applied by uncoupling the GBT equations.
The integration domain was broken in three subintervals, i.e., I1 :=

(
0, ξ − ∆

2

)
, I2 :=(

ξ − ∆
2 , ξ + ∆

2

)
, I3 :=

(
ξ + ∆

2 , `
)

, and the general solution (Equation (34)) was written in

each of them. There, θ̄i(zi) = ϕ̄i(zi) = 0 (i = 1, 3) and θ̄2(z2) = − bp0
2GJ z2

2, ϕ̄2(z2) =
bp0
B22

are
the particular solutions. The twelve arbitrary constants cki

appearing in each problem were
determined by enforcing two boundary conditions at each z = 0, ` end and four conditions
at each of the internal boundaries, as discussed before. The responses θ(z), ϕ(z) thus
obtained, Equation (34), are plotted in Figure 14 and compared with those of the complete
Fourier analysis. Here, the exact numerical results, as provided by the FEM analysis are
also reported. It appears that FEM and Fourier analysis are in excellent agreement, in
spite of the stronger simplifications introduced in the analytical model. The simplified
analysis also supplies satisfactory results (maximum error of about +11% on twist and
about +10% on distortion), especially far from the loads. Differences with the exact results
put into light the contribution of coupling, which should not be ignored, if more accurate
results are desired. It is concluded that the error provided by the simplified approach is
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reasonable and that, at least in this case study, this method is conservative since it magnifies
the deflection (in agreement with the conclusions of Reference [6]).

0 5 10 15 20 25 30
0
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2*10-4

z

(m)

θ

0 5 10 15 20 25 30
0

2*10-4

4*10-4

z

(m)

φ

(a) (b)

Figure 14. Comparison among deflections: (a) twist angle, (b) distortion; Fourier (N = 50 terms, thick red lines), Finite
Element Method (FEM) (bullets), and uncoupled differential equations (thin gray lines).

The first, second, and third derivatives of both θ(z) and ϕ(z) amplitudes, needed for
stresses evaluation according to Equations (24)–(27), were then computed. In Figure 15, the
Fourier (coupled) solution is compared with that of the simplified (uncoupled) method
(comparison with FEM being not straightforward). It appears that, although small spurious
oscillations persist with N = 50, the Fourier solution is quite smooth. Concerning the
third derivatives θ′′′, ϕ′′′, two peaks are noticed at the end-points of the loaded interval,
denoting the occurrence of a strongly varying complementary torsional moment and its
correspondent distortional quantity, which are almost zero anywhere else. The simplified
method gives a good approximation of all the derivatives, except a large error on the
second derivative of θ(z), magnified at the loaded region, consistently with what is noticed
in Figure 14.
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Figure 15. Cont.
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Figure 15. Derivatives of deflections: (a,c,e) twist angle derivatives, (b,d,f) distortion derivatives; comparison between
Fourier (N = 50 terms, thick red lines) and uncoupled solutions to the differential equations (thin gray lines).

5.1.1. Stress Analysis in Pure Torsion

A stress analysis was carried out by referring to the Fourier solution with N = 50
terms. The stresses were evaluated by referring to the uncracked cross section. In order
to separate the causes of discrepancies between analytical and FEM analyses, the pure
torsion case (θ 6= 0, ϕ ≡ 0) was considered first, for which the Vlasov beam model is
usually assumed to be accurate. Thus, the stresses provided by the analytical model via
Equations (24) and (25) were compared with those furnished by a FEM model, in which
indeformability of the cross section was enforced via “body constraints”, simulating thin
diaphrams at any cross sections of the mesh. It should be remembered, that the analytical
model proposed here reproduces the Vlasov model by further encopassing for variation in
the stresses within the thickness.

The pattern of stresses on a tipical cross section was examined first. Figure 16 reports,
by continuous/dashed lines, the analytical longitudinal normal stresses σ

m+ f
z,max := σm

z +

σ
f
z,max and the tangential stresses τ

m+ f
max := τm + τ

f
max evaluated at the middle abscissa of

the load (z = 7.5 m) and at bottom/top edges of the cross section. The bullets represent
numerical FEM results. It appears that the “enriched Vlasov model” captures very well the
state of stress sufficiently far from the corners of the cross section. Close to them, indeed,
and probably exhalted from the abrupt change in thickness, the tangential stresses violate
the Bredt law; this occurrence, in turn, entails a local disturbance on the longitudinal stresses
for equilibrium reasons. The maximum differences between analytical and numerical
results are of the order of 10–15%.

The dependence of the stresses on the longitudinal abscissa was then investigated.
Figure 17 shows how the normal stresses at the corners and the tangential stresses at the
half side si = 0 depend on z. It appears that the differences between the analytical and
numerical models disappear at large distance from the load, thus confirming the local
nature of the disturbance.

Concerning the tangential reactive stresses, which are related to the complementary
torsional moment, they are negligibly small at z = 7.5 m (not shown here). However, as
Figure 18 shows, they are significant at z = 11.25 m (i.e., where the load has a discontinuity
point) according to the diagram of θ′′′(z) in Figure 15e.
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Figure 16. Torsion without distortion: longitudinal normal stresses and tangential stresses at the cross section z = 7.5 m
vs. si; bottom edge (continuous line), top edge (dashed lines); (a,b) σ

m+ f
z,max := σm

z + σ
f
z,max; (c,d) τ

m+ f
max := τm + τ

f
max;

(a,b) element 1, (c,d) element 2. Fourier analysis with N = 50 terms, FEM analysis (bullets).
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max stresses,

at corners (si =
b
2 , h

2 ) and top face (dashed lines) and bottom face (continuous lines ) vs. z, ; (a,b) element 1, (c,d) element 2;
Fourier analysis with N = 50 terms; FEM analysis (bullets).
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Figure 18. Torsion without distortion: Reactive tangential stresses τmr at z = 11.25 m vs. si: (a) element 1, (b) element 2.

5.1.2. Stress Analysis in Torsion–Distortion

The complete analytical solution (θ 6= 0, ϕ 6= 0) is now considered, and relevant
stresses (Equations (26) and (27)) are compared with those furnished by the unconstrained
FE model. The membrane longitudinal normal stresses at the corners, σm

z

(
z, b

2

)
, σm

z

(
z, h

2

)
,

are plotted in Figure 19a,b; they are found to be in excellent agreement with FEM analysis.
Moreover, they are about three times larger that the normal stresses induced by torsion
alone (Figure 17), thus highlighting the role of warping by distortion. The membrane
tangential stresses at half side, τm(z, s1 = 0), τm(z, s2 = 0), are plotted in Figure 19c,d.
Here, the contributions of active and reactive parts, together with their sum, are displayed.
It is seen that the reactive component associated with distortion is essential, as discussed
before, to achieve a good agreement with the numerical results. Finally, the maximum
flexural tangential stresses at half side τ f

(
z, s1 = 0, y1 = t1

2

)
and τ f

(
z, s2 = 0, y2 = t2

2

)
are plotted in Figure 19e,f, showing, again, an excellent accordance between analytical
and numerical results. The flexural component of the tangential stress is found to be
comparable or even larger than the membrane component, thus revealing the importance
to consider the variation in stresses inside the thickness of the cross section of reinforced
concrete bridges.

The transverse normal stresses, mainly related to the distortion, are reported in
Figure 20. Stresses acting at the cross section z = 7.5 m are displayed in Figure 20a,b. The
linear law predicted by the analytical model is confirmed by FEM to within an error of
about 10% at corners. When the variation with z of the stresses at corners was analyzed
(Figure 20c,d), a 10% error is confirmed just in the region loaded, while the error almost
vanishes far from this zone. As a curiosity, while the analytical model predicts the same
absolute values for the stresses at the two faces, the FEM analysis reveals slight differences,
more significant on one of the two faces. The reactive transverse normal stresses, which are
associated with the normal forces induced by the bending moments, were checked as an
attempt to explain this discrepancy, but they were found to be negligibly small. Therefore,
such a phenomenon cannot be captured by the unique distortion mode considered here.
Moreover, further investigation would be needed to unfold the effects of the way the
external loads are applied to the box-girder, which, according to the De Saint Venant
principle, are not negligible close to the loaded region.

As a final comment, it is important to notice that the distortional stresses in Figures 19
and 20 are of the same order of magnitude or larger than the stresses due to pure torsion in
Figures 16 and 17. Therefore, distortion plays an important role in this sample system.
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Figure 19. Torsion coupled to distortion: (a,b) membrane longitudinal normal stresses evaluated at the corners (si =
b
2 , h

2 );
(c,d) active (dashed black line), reactive (blue line), and total (red line) membrane tangential stresses evaluated at half
side (si = 0); (e,f) flexural tangential stresses evaluated at half side (si = 0) bottom/top edge (yi =
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2 ); (a,c,e) element 1,

(b,d,f) element 2; Fourier analysis with N = 50 terms, FEM analysis (bullets).
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Figure 20. Torsion coupled to distortion: (a,b) Transverse normal stresses at bottom edges (continuous lines) and top edges
(dashed lines): (a,b) stresses at z = 7.5 m vs. si, (c,d) stresses at the corners vs. z ; (a,c) element 1, (b,d) element 2. Fourier
analysis with N = 50 terms, FEM analysis (bullets).

6. Conclusions

A minimal linear and elastic model of rectangular box-girder, undergoing twist and
distortion, was formulated in the framework of GBT. The model is useful for bridge
analysis in skew-symmetric loading conditions caused by the eccentricity of live loads. The
displacement field was approximated as the superposition of two cross-sectional modes,
one describing twist and the other describing distortion, all given in closed form. Modes
are modulated by two amplitude functions, defined on the beam axis, governed by a set
of two coupled fourth-order ordinary differential equations, which generalize the well-
known uncoupled equations by Vlasov for torsion and of beam on elastic soil for distortion.
The method, being analytic, is able to supply closed-form expressions for stresses in the
whole domain.

Algorithmic aspects related to these equations were tackled, leading to the follow-
ing conclusions.

1. The coefficients of the derivatives of fourth-order are mainly generated by nonuniform
warping both in twist and distortion. Therefore, among them, the contribution of the
flexural nature of the plates are negligible. In contrast, warping terms, although small,
cannot be neglected when the displacement wavelength is short. It is argued that
they could be relevant in describing boundary layers, e.g., produced by constraints
preventing free warping.

2. The distortion-to-twist ratio was proven to be of order 1 for thin and short girders.
3. The Fourier analysis is a convenient and efficient tool to analyze simply supported

girders warping free at the ends; for other boundary conditions, exact integration
of the differential equations should be carried out. By following the literature, a
simplified procedure was illustrated, which calls for neglecting all coupling terms,
solving two independent problems and superimposing the effects. The two problems
are (i) the Vlasov beam under torsion and (ii) the Winkler soil equation-like beam
for distortion.

A sample system was considered, for which both Fourier analysis and uncoupled
equation integration were carried out. The following conclusions were drawn.

1. Fourier analysis works well even for non-smooth loading conditions, provided that a
sufficient number of terms is accounted for in the series. The exact integration of the
uncoupled equations gives reasonably good results, with errors of about 10% with
respect to the coupled Fourier representation.

2. Stresses due to torsion mainly consist of (i) normal longitudinal components equili-
brating the bimoment; (ii) active tangential stresses, as given by the Bredt theory; and
(iii) reactive tangential stresses equilibrating the complementary torsional moment
due to warping. All these effects are significant, except for the reactive tangential
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stresses, of which the influence is appreciable only close to the discontinuity points of
the load.

3. Stresses due to distortion consist of (i) membrane normal stress in the longitudinal
direction, triggered by nonuniform warping, kinematically compatible with the loss
of the shape of the cross section; (ii) membrane normal stresses in the transverse
direction, generated by the frame-like behavior of the cross-section; (iii) flexural
normal stresses in the longitudinal direction, generated by the flexure of the plates
associated with the longitudinal modulation of the frame-deflection; and (iv) tangen-
tial stresses, generated by the torsion of the plates, made of an active and a reactive
component. Among these stresses, (i) and (ii) are the most important. However,
among the tangential stresses, the reactive component cannot be neglected.

Finally, all the results have been validated by a Finite Element Analysis. In spite of a
remarkably larger computational effort, the differences between numerical and analytical
results were found to be small. It is therefore confirmed that the simple analytical model
proposed here is able to capture, with acceptable precision, the mechanical behavior of
the girder.

The research is susceptible to some extensions. In the static field, (i) the exact solution
of the two coupled equation could be found and more complicated boundary conditions
could be analyzed and (ii) a one-dimensional finite element could be formulated to account
for highly segmented or lumped loads as well for multi-span bridges. In the dynamic field,
(iii) the free and forced vibrations of box-girder in torsion–distortion could be analyzed.
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Appendix A. The Vlasov Stresses in Rectangular Box-Girders under
Nonuniform Torsion

The rectangular box-girder in Figure 1 was considered, and stresses due to nonuniform
torsion were calculated according to the Vlasov theory. The warping function (Equation (1)) is
as follows:

ω(s) =

{
1
2

bt2−ht1
bt2+ht1

hsi i = 1, 3

− 1
2

bt2−ht1
bt2+ht1

bsi i = 2, 4
(A1)

from which the warping inertia Iω =
u

Γ ω2(s)t(s)ds is computed as follows:

Iω =
b2h2

24
(ht1 − bt2)

2(bt1 + ht2)

(ht1 + bt2)
2 (A2)

The normal stresses are evaluated via σz(z, s) = − B(z)
Iω

ω(s), with B(z) = Eθ′′(z), thus
obtaining the following:

σz(z, s) =

{
Eθ′′(z) h

2
bt2−ht1
bt2+ht1

si i = 1, 3

−Eθ′′(z) b
2

bt2−ht1
bt2+ht1

si i = 2, 4
(A3)
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The active tangential stresses (indexes omitted) are given by the Bredt formula τa(z, s) =
Mt(z)

GΩ0t(s) , with Mt(z) = GJθ′(z), Ω0 = bh and J = 4(bh)2

2
(

b
t1
+ h

t2

) , leading to the following:

τa(z, s) =

{
G bht2

ht1+bt2
θ′(z) i = 1, 3

G bht1
ht1+bt2

θ′(z) i = 2, 4
(A4)

The reactive tangential stresses τr(z, s) must be evaluated by integrating the indefinite
equilibrium equation (τrt),s + (σzt),z = 0. By accounting for σz,z = −Eθ′′′(z)ω(s) and
remembering that t(s) is step-wise constant, it follows that
τr(z, si) =

(´ s
0 ω(si)dsi + ci

)
Eθ′′′(z), i.e.,

τr(z, si) =


(
− 1

4
bt2−ht1
bt2+ht1

hs2
i + c1

)
Eθ′′′(z) i = 1, 3(

1
4

bt1−ht2
bt2+ht1

bs2
i + c2

)
Eθ′′′(z) i = 2, 4

(A5)

where c1, c2 are arbitrary constants. By enforcing the continuity of the flow at joints,
i.e., t1τr

(
z, s1 = b

2

)
= t2τr

(
z, s2 = − h

2

)
, and the equivalence of the reactive stresses to

M∗t (x) = −EIωθ′′′, i.e.,

h

b/2ˆ

−b/2

τr(z, s1)t1ds1 + b

h/2ˆ

−h/2

τr(z, s2)t2ds2 = −EIωθ′′′ (A6)

a linear system in the two unknown constants is derived:(
t1 −t2
t1 t2

)(
c1
c2

)
=

1
bh

E
( 1

16 b2h2β(bt1 + ht2)
−Iω + 1

48 b2h2β(bt1 − ht2)

)
(A7)

By solving for c1, c2 and coming back to Equation (A5), Equation (25) is found. It
should be noticed that, if h

b = t2
t1

, it is M∗t = 0, then τr
zs(z, s) ≡ 0.

Appendix B. Planar Frame Deflections

The rectangular planar frame in Figure 4 was considered with prescribed displace-
ments at joints caused by the known distortion ϕ = 1 and with the rotations α unknowns.
For a single beam, the stiffness matrix links shear forces and couples to displacements and
rotations at the A, B ends:


Vi

MA
VB
MB

 = EIi


12
l3
i

6
l2
i
− 12

l3
i

6
l2
i

6
l2
i

4
li

− 6
l2
i

2
li

− 12
l3 − 6

l2
i

12
l3
i
− 6

l2
i

6
l2
i

2
li

− 6
l2
i

4
li




vA
θA
vB
θB

 (A8)

with li = b, h and Ii =
t3
1

12 , t3
2

12 , when i = 1, 3 and i = 2, 4, respectively. It turns out that

• when i = 1, 3, vA = − b
2 vB = b

2 , θA = θB = α , entailing MA = MB = − 6EI1
b + 6EI1

b α;
• when i = 2, 4, vA = h

2 and vB = − h
2 , entailing MA = MB = 6EI2

h + 6EI2
h α.

Enforcing equilibrium at any joint (all the equilibrium conditions being equal for
symmetries), it follows that

6EI1

b
(α− 1) +

6EI2

h
(α + 1) = 0 (A9)
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from which α is derived, as given in Equation (16). To evaluate the deflections of each beam,
the elastic line equation EIiV′′′′i (s) = 0 is integrated under the prescribed displacements at
the end; namely

• when i = 1, 3, V
(
∓ b

2

)
= ∓ b

2 , V′
(
∓ b

2

)
= α , from which Vi =

1
2 si

(
3 + 4s2

i (α−1)
b2 − α

)
• when i = 2, 4, V

(
∓ h

2

)
= ± h

2 , V′
(
∓ b

2

)
= α , from which Vi =

1
2 si

(
−3 + 4s2

i (α+1)
h2 − α

)
Appendix C. Matrices in the GBT Equation (22)

By performing integrations in Equation (21), with the modes given by Equations (13),
(15), (17), and (19), the following expressions are found for the GBT matrices:

• Matrix Ce:

Ce = EIω

(
1 1

β
1
β

1
β2

)
(A10)

where β is the warping ratio (Equation (20)) and Iω = b2h2

24
(ht1−bt2)

2(bt1+ht2)

(ht1+bt2)
2 =

β2 b2h2

24 (bt1 + ht2) is the warping stiffness. As already observed, when h
b = t2

t1
, Ce

11 =
Ce

21 = Ce
12 = 0 while Ce

22 6= 0.
• Matrix C f :

C f
11 =

E
72

(
b3t3

1 + h3t3
2

)
C f

12 = C f
21 = − E

360

(
b3t3

1(−6 + α) + h3t3
2(6 + α)

)
C f

22 =
E

2520

(
b3t3

1(51 + 2α(−9 + α)) + h3t3
2(51 + 2α(9 + α))

) (A11)

where α (Equation (16)) is the joints’ distortional rotation.
• Matrix Ds:

Ds =

(
GJ 0
0 0

)
(A12)

where J = 4(bh)2

2
(

b
t1
+ h

t2

) is the Bredt torsional stiffness.

• Matrix Dt:

Dt
11 =

2
3

G
(

bt3
1 + ht3

2

)
Dt

12 = Dt
21 =

2
3

G
(

bt3
1 − ht3

2

)
Dt

22 =
2

15
G
(

bt3
1(6 + (−2 + α)α) + ht3

2(6 + α(2 + α))
) (A13)

• Matrix B f :

B f =

(
0 0
0 B f

22

)
, B f

22 := 2
E
bh

(
t3
1h(α− 1)2 + t3

2b(α + 1)2
)

(A14)
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Appendix D. Reactive Distortional Tangential Stresses

The membrane reactive tangential stresses τmr(z, s) associated with the distortion of
the cross section must be evaluated by integrating the indefinite equilibrium equation
(τmrt)s + (σzt),z = 0. By using Equation (26) for σz and integrating it, it follows that

τmr(z, si) =


(

ci − 1
4 Ehs2

i

)
ϕ′′′(z) i = 1, 3(

ci +
1
4 Ebs2

i

)
ϕ′′′(z) i = 2, 4

(A15)

where ci is an arbitrary constant. By enforcing equilibrium at the joints, i.e., t1τr
(

z, s1 = b
2

)
=

t2τr
(

z, s2 = − h
2

)
, and by imposing the tangential stresses are self-equilibrated, i.e.,

h

b/2ˆ

−b/2

τr(z, s1)t1ds1 + b

h/2ˆ

−h/2

τr(z, s2)t2ds2 = 0 (A16)

an algebraic linear system for the constant follows:(
t1 −t2
t1 t2

)(
c1
c2

)
=

Ebh
16

(
bt1 + ht2

bt1−ht2
3

)
By solving it and coming back to Equation (A15), Equation (27) is found.
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