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Abstract: Word sense disambiguation (WSD) is one of the core problems in natural language processing
(NLP), which is to map an ambiguous word to its correct meaning in a specific context. There has
been a lively interest in incorporating sense definition (gloss) into neural networks in recent studies,
which makes great contribution to improving the performance of WSD. However, disambiguating
polysemes of rare senses is still hard. In this paper, while taking gloss into consideration, we further
improve the performance of the WSD system from the perspective of semantic representation. We
encode the context and sense glosses of the target polysemy independently using encoders with the
same structure. To obtain a better presentation in each encoder, we leverage the capsule network to
capture different important information contained in multi-head attention. We finally choose the
gloss representation closest to the context representation of the target word as its correct sense. We
do experiments on English all-words WSD task. Experimental results show that our method achieves
good performance, especially having an inspiring effect on disambiguating words of rare senses.

Keywords: word sense disambiguation; multi-head attention; capsule network; capsule routing

1. Introduction

Word sense disambiguation (WSD) with the ability to select the correct meaning of
polysemous words depending on its language surroundings, has been considered one
of the most difficult tasks in artificial intelligence [1]. As an “intermediate task”, the
inefficiency of WSD stalls some related natural language processing (NLP) tasks to some
extent. Some scholars have revealed its positive impact on improving the performance of
downstream NLP tasks, i.e., information retrieval [2], machine translation [3,4], sentiment
analysis [5], etc.

There are generally three approaches of WSD: knowledge-based methods, supervised
methods, and unsupervised methods. Various lexical sources like WordNet and BabelNet
are used as the knowledge bases for knowledge-based methods to determine the word
meaning. Lesk [6] and its extended algorithms based on context-gloss overlap such as
adapted Lesk [7] and enhanced Lesk [8] are typical of this method. Unsupervised methods
usually use clustering method for disambiguation without any manual annotation of
corpus. Graph-based algorithms [9] are applied to cluster features from texts. Supervised
methods rely on manually labeled datasets. Research of the method focuses on extracting
features. Researchers train a dedicated classifier for every target word exploiting support
vector machine (SVM) models or other machine learning algorithms [10,11] in this method.

Recently, pre-trained models e.g., Context2Vec [12], ELMo [13], and BERT [14], have
shown effectiveness on improving downstream NLP tasks. In this way, NLP task is to
some extent divided into two parts: pretrain model to generate contextualized word rep-
resentations and fine-tune model on downstream specific NLP task or directly use the
pretrained word embedding. This motivates studies on WSD. In [15], authors explore
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different strategies to incorporate the contextualized word presentation for WSD. Work
in [16] fine-tunes the pretrained BERT model to do the WSD task. A great number of
other neural-based methods using a neural network encoder to extract features are pro-
posed [17–21]. These methods bring further improvements. Among them, some studies
incorporate the sense definitions information into their systems, proving glosses are helpful
to improve performance of less frequent senses (LFS) words during training [16,18–20].
Even so, poor performance on rare or unseen senses remains a major obstacle in WSD.

This paper dedicates to improve WSD performance especially on LFS words. Our work
follows closely prior works. We encode each polysemy and its senses independently using
the same architecture and then optimize the two part jointly in the same embedding space,
which turns out to be promising [20]. On this basis, we expect to obtain more valuable
embeddings through encoding words and senses. To capture more decontextualized
information, we enrich the multi-head attention with capsule network which was originally
proposed to solve some defects in Convolutional Neural Networks (CNN) architecture [22].
It is found that routing parameters can imply the importance of capsules. Inspired by this
idea, we consider attention of different heads as low layer capsules and aggregate them
into high layer ones to obtain important information from perspectives of different heads.

Consequently, our contributions are listed as follows: (1) We construct a new model
composed of context module and sense glosses module, called BiCapAtt, in which each
module consists of multi-head attention that is improved by capsule network. (2) We
evaluate the model on five standardized English benchmark datasets and get almost all
results improved. (3) We also do extensive evaluations on rare words and rare senses and
we get 29.0% F1-score improvement on the less frequent senses compared with previous
state-of-the-art work.

The rest part of this paper is organized as follows. Section 2 introduces related work.
Section 3 describes our proposed method in detail. Section 4 describes our experiments
and Section 5 presents our discussion. Finally, we make conclusions in Section 6.

2. Related Work

The upsurge of neural networks has promoted the research on WSD. The key point of
WSD based on a language model is that the model can predict a word embedding with
consideration for the surrounding words. So, WSD is accomplished by assigning the sense
which is closest to the predicted sense embedding to the ambiguous word such as [23].
Other neural-based systems use a probability distribution usually computed by a softmax
function to directly classify and assign a sense to the target word [11,24,25].

Contextual representations of words [12–14] have contributed to the task of WSD.
Method in [12] employ bidirectional Long Short-Term Memory (BiLSTM) to effectively
learn general sentence context representation from a large corpus and then use a k-nearest-
neighbor algorithm to tag the sense. Work in [15] uses nearest neighbor matching and
linear projection of hidden layers to exploit BERT to do the WSD task. The GAS model
proposed by [19] is the first to incorporate the glosses knowledge into a neural WSD model,
overcoming the scarcity of sense-annotated data. EWISE (Extended WSD Incorporating
Sense Embeddings) [20] overcomes the bottleneck that existing supervised WSD systems
have weak capability of learning low-frequency senses of words by learning continuous
sense embedding. GlossBert [16] also takes glosses knowledge into consideration and
constructs context-gloss pairs as the more suitable input to BERT. A robust method for
generating sense embeddings with full coverage of all WordNet senses is introduced in [21].
The method leverages contextual embeddings, glosses, and semantic networks to achieve
the full coverage. A more recent system [26] uses BERT to learn context embedding and
the capsule network to decompose word embedding into multiple morpheme-like vectors.

Works in [19,20] are similar to our work. In general, the three models all have a context
module that converts the context of the target word into context embeddings, and a gloss
module that leverages the gloss knowledge in WordNet to generate sense embeddings.
However, we construct the modules and train the model in different ways. The GAS
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model [19] simply uses BiLSTM to generate the context embedding and sense embedding,
then uses a memory module to calculate the inner relationship between context and each
gloss. The EWISE model [20] uses a BiLSTM and a self-attention layer to generate the
context embedding. As for the sense embedding, it learns to embed gloss text relying on
knowledge graph embeddings supervising. They train the models in a pipelined manner.
In our model, we initialize input sentence sequence as BERT embeddings, and then use
the same architecture of incorporating the capsule routing to the multi-head attention to
obtain more robust context embeddings and sense embeddings than the above two models.
We briefly introduce the capsule network and multi-head attention in Sections 2.1 and 2.2,
respectively. In addition, we train the model in an end-to-end manner.

To address the issue of lacking a unified framework, a reliable unified evaluation
framework is proposed [25]. The framework standardizes training corpora and the datasets,
annotating all the datasets with the sense inventory in WordNet 3.0 [27] and develops a
java scorer which uses the metric of F1 score to measure the performance of WSD systems.
The experiment results reported in this paper are based on this framework to make a
fair comparison.

2.1. Capsule Network

The capsule network [22] replaces the single neuron node of the traditional neural
network with neuron vectors, and uses dynamic routing to train this network. One capsule
consists of a group of neurons. Dynamic routing is used between two capsules to find
which high-level capsule the output of each low-level capsule is most likely to contribute
to. Besides, a novel non-linear function called squash is used to produce the output
vectors. The max pooling operation in CNN only retains the most active neurons and
passes them to the next layer, resulting in loss of valuable spatial information. While in the
capsule network, the spatial information and object existence probability are encoded in
the capsule vector: the length of the vector represents the probability of feature existence
and the direction of the vector represents the posture information of the feature. When
modeling spatial information, the traditional CNN needs to copy feature detectors, which
reduces the efficiency of the model. Space-insensitive methods inevitably limited to rich
text structures (such as storing word location information, semantic information, etc.) are
difficult to encode text effectively. The capsule network improves the above two defects.
Some researchers have applied the capsule network to NLP tasks like text classification [28]
and relation extraction [29] and they achieve competitive results.

2.2. Multi-Head Attention

The essence of the attention mechanism [30] is to imitate the human visual attention
mechanism, learn a weight distribution of image features, and then apply this weight
distribution to the original features to provide different feature effects for subsequent tasks
such as image classification and image recognition. Multi-head attention [31] divides the
model into multiple heads to form multiple subspaces, allowing the model to pay attention
to information in different directions. Some researchers try to improve the multi-head
attention mechanism. Some methods leverage the routing algorithm in the capsule network
to improve the information aggregation for multi-head attention and achieve good results
on machine translation [32–34].

3. Methodology
3.1. All-Words Task Definition

Our model aims to solve the English all-words WSD task, where all the ambigu-
ous words in a given sentence require to be disambiguated. We formally propose the
definition of the task in this part. In the sentence sequence L [w1, w2, . . . , wl ], polysemes
[wt1 , wt2 , . . . , wtn ] are the tn target words, each of which has k candidate senses [s1, s2, . . . , sk].
Additionally, each sense is a gloss sequence [g1, g2, . . . , gm]. The purpose of the task is
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matching the most suitable sense for the target word according to its current context. We
use the predefined sense inventory provided by WordNet 3.0 [27].

3.2. Model Details

In this subsection, we present the details of our model. An overview architecture is
depicted in Figure 1. The model encodes the context and sense glosses of an ambiguous
word separately, then scores each sense for the target word. The score is calculated by the
dot product of contextual embedding from the context module and sense embedding from
the sense glosses module. In fact, the encoders of the two modules are exactly the same. In
other words, we generate the context embedding and sense embedding in the same way.

Appl. Sci. 2021, 11, x FOR PEER REVIEW  4 of 14 
 

3. Methodology 

3.1. All‐Words Task Definition 

Our model aims to solve the English all‐words WSD task, where all the ambiguous 

words in a given sentence require to be disambiguated. We formally propose the defini‐

tion  of  the  task  in  this  part.  In  the  sentence  sequence  L  𝑤 , 𝑤 , … , 𝑤 ,  polysemes 

𝑤 , 𝑤 , … , 𝑤   are  the  𝑡   target  words,  each  of  which  has  𝑘   candidate  senses 
𝑠 , 𝑠 , … , 𝑠 . Additionally, each sense is a gloss sequence  𝑔 , 𝑔 , … , 𝑔 . The purpose of 

the task is matching the most suitable sense for the target word according to its current 

context. We use the predefined sense inventory provided by WordNet 3.0 [27]. 

3.2. Model Details 

In this subsection, we present the details of our model. An overview architecture is 

depicted in Figure 1. The model encodes the context and sense glosses of an ambiguous 

word separately, then scores each sense for the target word. The score is calculated by the 

dot product of contextual embedding from the context module and sense embedding from 

the sense glosses module. In fact, the encoders of the two modules are exactly the same. 

In other words, we generate  the context embedding and sense embedding  in  the same 

way. 

Context 
Module

Sense Glosses 
Module

scores
...

...

.

.

.

.
 

Figure 1. Overview architecture of BiCapAtt. 

Inspired by [33,34], we employ multi‐head attention with the capsule network as our 

encoders. As  illustrated  in Figure 2,  for an  input sentence sequence, we  initialize each 

word with BERT word  embeddings  𝐸 𝑒 , 𝑒 , … , 𝑒 ∈ ℝ   as  inputs  of our model, 

where  𝐿  represents the length of the sequence and 𝐷  denotes the word embedding di‐

mension. 

Figure 1. Overview architecture of BiCapAtt.

Inspired by [33,34], we employ multi-head attention with the capsule network as our
encoders. As illustrated in Figure 2, for an input sentence sequence, we initialize each word
with BERT word embeddings E = (e1, e2, . . . , eL) ∈ RL×D as inputs of our model, where L
represents the length of the sequence and D denotes the word embedding dimension.
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Multi-head attention used in transformer [29] focuses on information from various
perspectives through splitting the model into multiple subspaces. The attention mechanism
first projects the query Q, key K, and value V to H different subspaces with linear matrices
as shown in Equation (1), where initially Q = K = V = E. Then, scaled dot-product for
each head is calculated by Equation (2):

Qh, Kh, Vh = QWQ
h , KWK

h , VWV
h ; h ∈ [1, H], (1)

QhKT
h√

dk
=

 e1h
. . .
eLh

; h ∈ [1, H]. (2)

In the original capsule network, the input vector ui is multiplied by a pose matrix Wij,
which represents the spatial relationship between low-level features and high-level features.
The result of multiplication is uj|i which indicates the high-level features derived from
low-level features. The dynamic routing then is used to better determine the information
added to the high-level capsules in the low-level capsules. In multi-head attention, the
multiple attention heads can represent different partial information of the input sequence.
We therefore treat them as low-level capsules, namely I × J uj|i that already contain the
spatial relationship. Figure 3 depicts the architecture of the capsule network. The dynamic
routing algorithm (DR) we used is described in Algorithm 1.

Algorithm 1 Dynamic Routing (DR).

Input: I × J vectors uj|i, iteration times t
Process:
1. ∀ i, j : bij ← 0
2. for t do
3. ∀i : ci ← so f tmax(bi) softmax computes Equation (3)
4. ∀j : sj ← ∑i cijuj|i
5. ∀j : vj ← squash(sj) squash computes Equation (4)
6. ∀i, j : bij ← bij + uj|i·vj
7. end for
Output: J output vectors vj, weights bij
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There are I input capsules and J output capsules in Algorithm 1. Each input capsule
will generate J vectors and each vector will be assigned a weight value bij. First, the input
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vectors uj|i as the shallow capsules are weighted and added to get s (Algorithm 1, Line 4).
The weight cij is computed by:

cij = so f tmax(bi) =
exp

(
bij
)

∑k exp(bik)
, (3)

where bij is initialized to zero and is updated as Algorithm 1, Lines 6. The softmax function
can map multiple scalars into a probability distribution. Therefore, for each low-level
capsule, its weight cij defines the probability distribution of the output belonging to each
high-level capsule. Then, the non-linear function called squash is used to obtain the deep
capsule vector, which is formulated as Equation (4). The squash function is mainly to make
the length of v not exceed 1, and keep v and s in the same direction. In this way, the length
of the output vector v is a number between 0 and 1, so the length can be interpreted as the
probability that v has a specific feature.

v =
||s||2

1 + ||s||2
s
||s|| . (4)

Taking advantage of the ability to recognize overlapping features of the capsule
network, we incorporate the capsule routing into the multi-head attention to measure
importance of information contained by various heads. Based on Equation (2), we see e
computed by Equation (5) as low layer capsules input to high layer capsules in the capsule
network.

e =

 e1
. . .
eH

; h ∈ [1, H], (5)

eh =
[

e1h . . . eLh
]
. (6)

To attain deeper contextualized information, we consider the attention weight from
two aspects: the sentence itself and the multiple heads. We call them sequence routing (SR)
and head routing (HR), respectively. In the sequence routing, the capsules are as much
as the heads and each capsule has L vectors, where L is the length of the sequence. The
process of sequence routing is shown in Figure 4. We view e as the H× L input vectors. The
input vectors generate output vectors u1l , u2l , . . . , uHl and weights b1l , b2l , . . . , bHl , l ∈ [1, L]
(indicated by the circle groups in Figure 4.) after the dynamic routing. The concat in figures
means the concatenate operation. Considering H heads have different effects on the output,
softmax function is applied to the weights of each head for the sequence:

u = so f tmax(∇)uL, (7)

∇ =

[
L

∑
l=1

b1l , . . . ,
L

∑
l=1

bHl

]
, (8)

uL =

 u1l
. . .
uHl

; l ∈ [1, L]. (9)
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The head routing is shown in Figure 5. There are L capsules, and each capsule
generates H vectors in the head routing. We view e as the L× H input vectors. Taking
measures to capture positional information among input tokens in the head routing is
necessary because of its order dependence. Here, each capsule has a partial routing so that
the sequential information is involved into the output capsules. Specifically speaking, the
number of the head capsules is equal to the length of the sequence. For the lth capsule, its
routing output is vl after the dynamic routing algorithm (Algorithm 1), which is computed
by routing the top l capsules. Then, we have the last head routing result v computed
as follows:

v = [v1, v2, . . . , vL]. (10)
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At last, similar to a residual connection, we add e to the sum of u and v. The sum of
the three vectors is followed by a softmax function, which is multiplied by value VH to get
the final output representations as follows:

r = so f tmax(e + u + v)VH , (11)

VH = [V1, V2, . . . , Vh], h ∈ [1, H]. (12)



Appl. Sci. 2021, 11, 2488 8 of 14

In the context module, the encoder generates rw =
[
rw1 , rw2 , . . . , rwl

]
for input se-

quence, where l is the length of context sequence. Because target words may be segmented
into word pieces, we assume that target word wt corresponds to word list wm, . . . , wm+k−1.
We average representation to present the contextualized target word:

rwt =
1
k

k−1

∑
i=0

rwi . (13)

For each sense of the target word, the sense glosses module generates rs =
[
rg1 , rg2 , . . . , rgp

]
,

where p is the length of the current sense gloss. To identify the correct meaning, we score
each sense simply by the dot product of word and its sense:

score(wt, si) = rwt ·rsi ; i ∈ [0, n], (14)

where n denotes the sense inventory number of target word listed in WordNet. We choose
the one who has the highest score as the most suitable sense of the polyseme. In the training
process, parameters are updated by minimizing the cross-entropy loss on the scores:

L = −score(w, s) + log
n

∑
i=0

exp(score(wt, si)). (15)

4. Experiments
4.1. Datasets

Following previous work, we use SemCor 3.0 [35], the largest corpus to our knowledge
manually annotated with WordNet sense, as training corpus. We exploit benchmark
datasets proposed by [25] as evaluation datasets which include five standard all-words
fine-grained WSD datasets and a concatenation of five datasets:

1. Senseval-2 (SE2) [36];
2. Senseval-3 (SE3) [37];
3. SemEval-2007 (SE07) [38];
4. SemEval-2013 (SE13) [39];
5. SemEval-2015 (SE15) [40];
6. ALL (the concatenation of above five datasets) [25].

We also choose the SE07 as our development set as most researchers do. Table 1
displays statistics about these datasets. The ambiguity reflects how difficult a dataset
may be.

Table 1. Statistics include the number of documents (Docs) and sentences (Sents) as well as the
number of the sense annotations of noun (Noun), verb (Verb), adjective (Adj), adverb (Adv, and total
of above four parts-of-speech (Total). The last column shows the ambiguity level of each dataset.

Dataset Docs Sents Noun Verb Adj Adv Total Ambiguity

SemCor 352 37,176 87,002 88,334 31,753 18,947 226,036 6.8
SE2 3 242 1066 517 445 254 2282 5.4
SE3 3 352 900 588 350 12 1850 6.8

SE07 3 135 159 296 0 0 455 8.5
SE13 13 306 1644 0 0 0 1644 4.9
SE15 4 138 531 251 160 80 1022 5.5

4.2. Experimental Setup

Our model is implemented in PyTorch. We use BERT (specifically, the model is
bert-base-uncased) to get initial embeddings. The embedding dimension is 768. We set
the number of attention heads to 8. The number of iterations in dynamic routing is 3
following original capsule network. The dropout probability is 0.1. The optimizer we
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used is Adam [41]. We explore a few learning rates, including 10−4, 10−5, 10−6, 2× 10−5,
3× 10−5, and 5× 10−5, among which 10−4 achieves the best. We set the batch size in the
context module to 4, the batch size in sense glosses module to 256, the maximum length of
the context is 128, and the maximum length gloss is 32. We train the model for 30 epochs
and choose the model which has the best F1-score on the develop set during training.
The total number of parameters of model reaches 853M. We use graphic processing unit
(GPU) to accelerate computing. We do all the experiments on two Tesla V100-PCIE GPUs
(NVIDIA, Santa Clara, CA, USA).

4.3. Results
4.3.1. Overall Results

Table 2 reports the F1 scores of our model and compares against previous different
types of methods.

Table 2. Reports of F1-score (%) on all-words word sense disambiguation (WSD) task, including SE07 (Dev), SE2, SE3,
SE13, SE15, and ALL (concatenation of four test datasets) as well as every part-of-speech type (Noun, Verb, Adj, and Adv).
Knowledge-based, traditional supervised, and neural-based methods and at last our method are listed. The best results are
marked in bold and underlined numbers denotes previous state-of-the-art results.

Dev Test Concatenation

System SE07 SE2 SE3 SE13 SE15 Noun Verb Adj Adv All

Knowledge-based
MFS baseline 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
WordNet S1 55.2 66.8 66.2 63.0 67.8 67.6 50.3 74.3 80.9 65.2

Lesk+ext,emb 56.7 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
Babelfy 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 80.5 65.5

WSD-TM 55.6 69.0 66.9 65.3 69.6 69.7 51.2 76.0 80.9 66.9

Traditional
Supervised

IMS 61.3 70.9 69.3 65.3 69.5 70.5 55.8 75.6 82.9 68.9
IMS+emb 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1

Neural-based
Bi-

LSTM+att,LEX,POS
64.8 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9

GASext(concatenation) - 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6
EWISE 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8

LMMS2348(BERT) 68.1 76.3 75.6 75.1 77.0 - - - - 75.4
GlossBERT 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0

CapsDecE2Slarge 68.7 78.9 77.4 75.6 77.1 - - - - 76.9
CapsDecE2Slarge+LMMS 73.8 78.8 80.7 76.6 79.4 - - - - 78.6

Ours 75.2 79.6 78.4 79.9 81.9 81.7 69.5 83.7 88.2 79.5

We group systems by method type.

• Knowledge-based systems: The first four systems are knowledge-based methods,
among which, MFS and WordNet S1 are two strong knowledge-based baselines. They
select the most frequent sense (MFS) in the training dataset and in WordNet, respec-
tively. Lesk+ext,emb [8] is an extended version of Lesk algorithm, which calculates
the definition-context overlap to measure semantic similarity. Babelfy [42] builds
a unified graph-based architecture that exploits BabelNet as the semantic network.
WSD-TM [43] leverage the formalism of topic model to design a WSD system.

• Traditional supervised systems: IMS [10] and IMS+emb [11] are two traditional word
expert supervised methods training an SVM classifier for WSD. The latter explores
different approaches to incorporate word embeddings as features on the basis of
the former using local features. The results show that word embeddings provide
significant improvement.
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• Neural-based systems: We list several recent neural-based methods. Bi-LSTM+att,LEX,POS [17]
converts WSD to a sequence learning task. GASext (concatenation) [19] jointly encodes
the context and glosses of the target word and extending gloss knowledge. EWISE [20]
uses BiLSTM to train the context encoder and knowledge graph embedding to train
the definition encoder. LMMS2348 (BERT) [21] focuses on making full use of WordNet
knowledge to create sense-level embeddings. GlossBERT [16] constructs context-gloss
pairs, thus treating WSD task as a sentence-pair classification problem to fine-tune the
pre-trained BERT model. All the neural-based systems perform better than the tradi-
tional supervised and knowledge-based systems. It shows the ability of contextual
representation and effectiveness of incorporating gloss knowledge. CapsDecE2S [26]
utilizes capsule network to decompose the unsupervised word embedding into mul-
tiple morpheme-like vectors and merges them by contextual attention to generate
context specific sense embedding. The CapsDecE2S and GlossBERT enable two strong
baselines hard to beat.

Finally, we present the results of our system. To observe the results more intuitively,
best score in each dataset is shown in bold and previous state-of-the-art results are un-
derlined. As we can see in Table 2, our method shows promising results. Although the
sources of the four datasets are extremely different which belongs to different domains,
BiCapAtt achieves the best F1 score almost on every test dataset compared to other meth-
ods, outperforming the previous state-of-the-tart with 0.7% improvement on SE2, 3.3%
on SE13, 1.5% on SE15, and 0.9% on ALL. Only the result on SE3 is 2.3% lower than that
of CapsDecE2Slarge+LMMS. Besides, results on different part-of-speech (POS) type all
achieve new state-of-the-art. Verbs and nouns usually have more senses than the other
two parts-of-speech. The verbs show the worst performance in every system listed in
Table 2 than other parts-of-speech because of its complexity of senses. From Table 1, we
can see that SE07 holds the highest ambiguity level which has only verbs and nouns to
be disambiguated. As a result, it shows worse performance than any other datasets in
every system. Therefore, sense disambiguation for words with a great many of different
meanings remains to be studied.

4.3.2. WSD on Rare Words and Rare Senses

We further compare the performance of several models on words with different
frequency in the training dataset and on different frequency senses. For the former, we
evaluate words that appear 0, 1 to 10, 11 to 50, and more than 50 occurrences during
training. For the latter, we divide the ALL set into two subsets: the set of words labeled
with most frequent sense (MFS), and the set of remaining words labeled with less frequent
senses (LFS).

The F1 scores for different frequencies words in the training corpus are presented in
Table 3. The high-frequency words usually have more senses, which leads to the worse
performance. The previous methods show good performance on low-frequency words, but
perform poorly on high-frequency words. Our model outperforms all the listed systems on
unseen, rare, and frequent words.

Table 3. F1-score (%) on words with different frequencies in the training corpus.

Word Frequency 0 1–10 11–50 >50

WordNet S1 84.9 70.6 65.4 58.0
Lesk+ext,emb 88.2 68.6 64.6 55.2

Babelfy 89 71.4 67.3 56.0
EWISE 91.0 73.4 72.5 66.3

ours 93.0 80.8 76.9 70.3

Table 4 shows the ability of our model to disambiguate words on LFS. We can find that
the two knowledge-based methods have poor ability to recognize LFS. Compared to the
EWISE, which predicts over sense embeddings enabling generalization to rare senses, our
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model improves the LFS subset by 29% F1-score with slightly improving the MFS subset.
It proves the effectiveness of generating better presentation of contextual words and its
sense definitions.

Table 4. F1-score (%) on words labeled with most frequent sense (MFS) and words labeled with less
frequent senses (LFS) of the ALL set.

System MFS LFS

WordNet S1 100.0 0.0
Lesk+ext,emb 92.7 9.4

Babelfy 93.9 12.2
EWISE 93.5 31.2

ours 94.0 60.2

4.4. Abaltion Study

To investigate the effects of the components of our model, we use the ALL set to
perform an ablation study. As shown in Table 5, we first fine-tune the BERT-base by
training a classifier, following by adding gloss module, multi-head attention mechanism
(respectively with SR, HR, and both) based on the BERT-base baseline.

Table 5. Ablation study on the ALL set.

Model Ablation Total MFS LFS

BERT-base 68.4 94.7 36.9
BERT-base+gloss 78.9 94.1 51.7

BERT-base+gloss,SR 79.2 93.5 57.2
BERT-base+gloss,HR 79.1 93.4 57.3

BiCapAtt 79.5 94.0 60.2

It can be easily found that the improvement of LFS benefits from gloss knowledge a
lot. Previous work [20] has also revealed this point. The gloss module allows the model to
predict senses that do not occur in the train dataset by generating sense embeddings. In
this way, it improves the performance of LFS.

We verify the effectiveness of SR and HR separately. Both routing parts work. The
SR and HR alone can improve LFS performance with F1-score on MFS subtly decreased.
Combining two routing achieves better results. It demonstrates that aggregation informa-
tion from two separate perspectives is helpful. Our model is able to capture more useful
information and thus obtain well representations.

5. Discussion

Our results are exciting for three main reasons. First, the BERT model shows its
amazing power in many downstream NLP tasks. As an excellent pretrained model, it can
provide deep contextual embedding. Recent works using BERT [11,19,38] have obtained
very good results, and it is difficult to beat the method without BERT. We further extract
deep features using capsule routing improved multi-head attention based on BERT em-
beddings. We regard the multiple groups of attention weights calculated by multi-head
attention as capsules of different perspectives or capsules of subspaces. We then aggregate
partial information carried by capsules through head routing and sequence routing. At
last, we obtain a better sense representation. Even the infrequent senses can be well repre-
sented in our model. The last reason is the incorporation of glosses. We learn the sense
embeddings independently, which improves the capability of zero-shot learning and thus
helps disambiguating rare senses a lot.

6. Conclusions

This paper has introduced a supervised neural-based WSD method. Previous works
have noticed the bottleneck of poor performance on rare and unseen senses and achieved
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inspiring results through making use of gloss knowledge. We manage to obtain better
presentations while encoding context and sense glosses of target ambiguous word in
the same space to improve LFS from a novel perspective. We leverage the advantage of
capsule network to improve multi-head attention, thus obtain deeper contextual presenta-
tion. The experimental results on benchmark datasets prove that our method is effective
and encouraging.

In this paper, we use the neural network architecture to encode the context and sense
definition, which has room for improvement. In the future, we consider incorporating more
relation such as hypernym and hyponym to enrich sense embeddings. Multilingual re-
sources for improving sense embeddings will be another way taken into consideration. We
also plan to apply our WSD model to downstream NLP tasks such as machine translation.
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