
applied  
sciences

Article

Time-Dependent Performance of a Multi-Hop Software
Defined Network

Tadeusz Czachórski 1,* , Erol Gelenbe 1 , Godlove Suila Kuaban 1 and Dariusz Marek 2

����������
�������

Citation: Czachórski, T.; Gelenbe, E.;

Kuaban, G.S.; Marek, D.

Time-Dependent Performance of a

Multi-Hop Software Defined

Network. Appl. Sci. 2021, 11, 2469.

https://doi.org/10.3390/app11062469

Academic Editor: Norbert Herencsar

Received: 4 December 2020

Accepted: 28 February 2021

Published: 10 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5,
44-100 Gliwice, Poland; seg@iitis.pl (E.G.); gskuaban@iitis.pl (G.S.K.)

2 Department of Distributed Systems and Informatic Devices, Faculty of Automatic Control, Electronics and
Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
Dariusz.Marek@polsl.pl

* Correspondence: tadek@iitis.pl

Abstract: It has been recently observed that Software Defined Networks (SDN) can change the
paths of different connections in the network at a relatively frequent pace to improve the overall
network performance, including delay and packet loss, or to respond to other needs such as security.
These changes mean that a network that SDN controls will seldom operate in steady state; rather,
the network may often be in transient mode, especially when the network is heavily loaded and
path changes are critically important. Hence, we propose a transient analysis of such networks to
better understand how frequent changes in paths and the switches’ workloads may affect multi-hop
networks’ performance. Since conventional queueing models are difficult to solve for transient
behaviour and simulations take excessive computation time due to the need for statistical accuracy,
we use a diffusion approximation to study a multi-hop network controlled by SDN. The results show
that network optimization should consider the transient effects of SDN and that transients need to be
included in the design of algorithms for SDN controllers that optimize network performance.

Keywords: SDN switch; internet traffic; quality of service (QoS); diffusion approximation

1. Introduction

Software defined networking (SDN) is a dynamic, adaptable, and manageable paradigm
that facilitates innovations in computer networks [1], together with the prototyping and
deployment of flexible routing mechanisms [2,3]. Traditional networking is based on
manual configurations of distributed proprietary network devices, a cumbersome and error-
prone process that can underutilize network resources [4]. SDN offers a programmable
architecture where routing decisions are moved to centralized controllers. SDN data
plane switches are simple forwarding devices that forward the data traffic depending
on the controller’s flow forwarding rules. Routing algorithms are implemented and
communicated by each SDN controller to the SDN switches, which follow its instructions.
Metrics such as hub count, delay, packet loss, bandwidth, jitter, and power consumption
can be measured by SDN switches and sent to the controllers, which may use these metrics
to determine the best routing paths and then install the flow forwarding rules in the data
plane SDN switches. Indeed, the IoT [5] interacting Cloud Services [6] for the decision and
control of the cyber-physical world create challenges for networks that achieve a better
quality of service (QoS) and security and less energy consumption, and can exploit the
opportunities offered by machine learning [7–9]. These challenges can be met by SDN
networks [9,10], which offer greater flexibility and ease of implementation [2,11].

These developments suggest that SDN is likely to become the preferred networking
approach not only in core networks because of the centralized network intelligence and
management that it enables but also for sub-networks of IoT devices and edge devices
with specific QoS needs that can benefit from SDN programmability and flexibility. Thus,
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in [12], conventional routing protocols such as RIP, OSPF, EIGRP, and BGP, are compared
with SDN with respect to convergence times after link failures, showing that SDN routing
is better than conventional IP networks. Considerable work has also shown that SDN
can select routing paths based on criteria such as quality of service (QoS) [13–16], while
energy-aware SDN routing has also been discussed in several papers [17–19].

The scalability of SDN routers that conduct QoS routing has been studied in [20], where
the authors propose an SDN-based scalable QoS routing scheme between autonomous
systems. In [21], a survey of the scalability issues that arise when SDN’s centralized scheme
deals with relatively frequent path updates is conducted. Both hierarchical and concurrent
(distributed) approaches are investigated to alleviate SDN controllers’ additional workload.
In recent work, [22] SDN is discussed as a means to choose the best paths based on a
function of time-varying traffic in order to optimize the QoS metrics of interest. Other
work [23] examines a broad class of QoS-based algorithms to assign paths to flows in
SDN and analyzes the resulting performance. In addition, the work in [24] discusses the
implementation of SDN based real-time QoS in industrial settings with mobile robots or
palets, where motion and reliability requirements impose changes in paths to constantly
meet real-time requirements. In [25], the use of AI-driven dynamic QoS routing in SDN
is used to optimize QoS, reduce energy consumption, and improve security based on
Autonomic Communications [7] and the Cognitive Packet Network algorithm [26].

However, in addition to scalability issues, QoS-driven SDN routing can create traffic
and time-dependent changes in network topology and in the load and paths that are
serviced by SDN switches. SDN network performance has been analyzed using queueing
theory [27–30] and network calculus [31–33], but these performance evaluations are based
on the assumption that the network is in steady state—i.e., after a sufficiently long time—so
that network metrics such as queueing delays, the length of packet queue buffers of SDN
switches, and packet losses become stable (or time-independent). On the other hand, it
is important to understand the time-dependent behaviour of SDN switches affected by
changes in paths notified by the SDN controller. The controller can suddenly change the
flows that an SDN switch receives, changing its input traffic. Furthermore, for a given
switch some flows may be moved from one output port to another to comply with the new
path that they must follow. These sudden changes will have performance consequences,
including queueing delays and packet losses, which can only be understood via time-
dependent transient analysis.

Unfortunately, conventional queueing network models are difficult to use in the
transient regime because of the computational burden associated with their analysis;
indeed, analyzing transients even in a simple single-server system with Poisson arrivals and
exponential service times leads to the use of Bessel function expansions, and interconnected
systems are quite hard to analyze in the transient case [34–36]. The analytical solution
is known only in the case of single queues with Poisson input stream and exponentially
distributed service times; see [37] for infinite and [38,39] for finite queues. The models use
Markov chains and solve Chapman–Kolmogorov equations (first-order linear differential
equations), defining the state probabilities of n customers present in the system at time t.
The equations are solved analytically in the Laplace domain, and then the original functions
in the time domain are found. Even in these relatively simple models, the solutions are
quite complex—e.g., in the case of the infinite queue, the state probabilities are given in
the form of the infinite series of modified Bessel functions of the first type and various
order; the Bessel functions are themselves the infinite series. Some simplifications were
proposed—e.g., the generating function of the distribution in the Laplace domain may be
replaced by expressions with simpler original functions in the time domain [40], or Bessel
functions may be replaced by easier-to-compute functions [41].

These analytical results do not fit well with the problem of modelling computer net-
works, where the streams incoming to switches are not Poisson and the sizes of packets—
and therefore also the service times—are not exponentially distributed. We may introduce
to Markov models interarrival and service times distributions composed of exponentially
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distributed phases—e.g., Cox distributions or hyper-Erlang distributions; the state defini-
tion is extended to include the current phase. There are numerous tools—e.g., [42]—that
can match a phase-type distribution to any empirical histogram. However, the initial
number of states should be multiplied—in this case, by the number of phases. This substan-
tially increases the number of equations to be solved numerically. The solution is usually
obtained using an existing tool—e.g., [43,44]. We have applied this approach in modelling
the transient states of an IP router, ref. [45]; to represent the service time distribution, we
needed a hyper-Erlang distribution with three parallel Erlang distributions with 21, 1387,
and 2 phases. This could be conducted in the case of a single queue, as we are able to
solve systems of millions of equations numerically, but it is hard to use this approach in
modelling a network of switches. The typical method is to use either fluid flow approxima-
tion [46] or diffusion approximation. The fluid flow approximation is much simpler, as it
considers only the time-dependent mean values of flows, queues, and delays. However, its
errors are much larger than those of diffusion approximation; see a comparison in [47]. On
the other hand, discrete event simulations of transients require many hundreds of indepen-
dent repetitions of simulation runs to achieve a sufficient statistical accuracy, making the
computation times of such simulations prohibitive [48].

Thus, in this paper we extend the approach we developed in [49] to the time-dependent
analysis of multiple SDN switches using diffusion approximations [50,51], which are very
convenient to analyze in a time-dependent regime. The accuracy of diffusion approxima-
tions has been validated in industry-based research over many decades [52–55], including
for patented techniques [26], and also validated in many academic papers [56–58]. Their
advantage includes a more accurate representation of interarrival and service processes,
the ease of obtaining delay predictions from traffic measurements, and much faster numer-
ics for transients than discrete queueing models [59] or simulations. Thus, we compute
the transient behaviour of each SDN switch after changes occur in its input traffic rate.
Packet loss probabilities can also be computed even when they are “tiny” and impossible
to estimate by conventional means. The analysis we undertake considers both single SDN
switch and multiple interconnected SDN switches controlled by an SDN controller.

The rest of the article is organized as follows. Section 2 presents the queueing model
of an SDN switch, justifies its simplifications, and introduces the diffusion approach’s
principles. In Section 2.1, we give a detailed steady-state diffusion model of a single
queueing station representing the SDN switch, and in Section 2.2 we extend this to the
transient-state model. Section 3 presents a numerical analysis of the model from Section 2.2.
We choose various parameters of the traffic and determine a scenario for the traffic changes.
The obtained results include queue distributions, mean queues, and loss probabilities at
the switch as a function of time. Section 4 presents the network model; the network may
have any number of switches and any topology. Section 5 studies the transient behaviour
of a chosen network of several nodes. It also gives a simple example of how the model may
predict queue evolution and minimize the total backlog at nodes during a time interval.
Conclusions are given in Section 6.

2. Diffusion Model of an SDN Switch

Figure 1 describes the basic system architecture of an SDN switch proposed in [1].
Arriving packets are temporarily queued at the input buffers and are then removed by
the Arbiter and placed scheduled into the Packet Buffer. A copy of the packet header is
forwarded to the Parser. The Parser parses the packet header to extract the header fields
and then creates a tuple with the extracted information and forwards it to the Flow Match
Unit. In the Flow Match Unit, the tuple is matched against existing flow rules stored in
Flow Tables’ flow entries. The flow entries in the Flow Tables are maintained under the
controller’s guidance and are updated when the controller installs new flow rules. The
Flow Match Unit determines whether the packet is associated with a known flow and
hence a known path. In case of success, the packet is then forwarded via the backplane. In
case of failure (no flow table entry matches the packet header), a packet-in message will be
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sent by the SDN switch to the corresponding SDN controller [60] to notify the controller
about the absence of a flow rule for the packet. The packet-in message contains either the
packet or the packet’s ID. The controller decides the correct action for the packet and then
installs appropriate data in the flow table of the switch so that packets belonging to that
particular flow can be forwarded subsequently. If there is no corresponding response from
the controller, the packet will be dropped.

Figure 1. The architecture of an SDNswitch [1].

The delay that can be experienced by packets consists of the queueing delay in the
input buffer, the service delay in the input buffer, and the delay at the output buffers. When
the output ports’ processing and line speeds are significantly greater than the Openflow
processing time, which includes the time required to parse the packet, check the flow tables
to find matching entries, and execute the flow rule actions, the switch can be represented
by a single server queueing as in several recent papers [27–30,61–63]. Since the size of the
input buffer is limited, we represent the SDN switch as a single server queueing model
with finite capacity N. The packet interarrival times depend on the type of traffic, which
the switch carries so that we allow for a generally distributed interarrival time distribution.
The service time distribution will also be general to represent the manner in which the
packets are handled in the entry buffer.

The flow table matching process involves searching the flow tables to find the entries
containing corresponding action sets—i.e., flow rules that match the header of the packets
of the input flows that pass through the Parser. If there is more than one flow table, the
flow match process starts from the first flow table, searches all of its entries, and jumps
to the next flow table. The search process continues till an entry that matches the packet
header is found. Otherwise, a “packet-in” message is generated. For hardware switches
whose flow tables are implemented using Ternary Content Addressable Memory (TCAM)
modules, the flow match process can be performed within one clock cycle, with parallel
access to all the entries of the flow table, resulting in a constant access time. Because of the
limited TCAM flow table size and the power-hungry nature of TCAM in hardware switches,
software-based switches are an attractive alternative. However, they are limited by a slow
processing speed when flow tables are searched sequentially. A majority of previous papers
model the matching time as an exponentially distributed random variable [27–29,61–63].
The use of a diffusion process allows us to model the flow matching process with a service
time distribution that includes the flow tables’ sequential search.

Denote by p the probability that the flow rule of the arriving packet is not installed.
The switch knows it after the examination of all K entries stored in the Flow Match Unit—
i.e., time KT—where the examination of each entry requires time T. As a consequence,
p is the probability that the service time is a constant KT, representing the case when all
the flow entries in the table are examined without success, while with probability (1− p)
the packet’s flow match is found in a time that is uniformly distributed in [T, KT]—i.e., on
average in time (K + 1)T/2 and variance (K2 − 1)T2/12. Sophisticated hardware means
may also be designed to improve this performance but are not considered in this paper.
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To analyze this system, we use a continuous state space and continuous time diffusion
process {X(t), t ≥ 0} to replace the discrete state-space buffer queue, where the increments
dX(t) = X(t + dt)−X(t) are normally distributed, with mean βdt and variance αdt, which
appear in the diffusion Equation (1).

Assuming an arrival rate λ and average service time µ−1, the changes in a small time
interval ∆T tend to a normal distribution with mean (λ − µ)∆T and variance (λ3σ2

A +
µ3σ2

B)∆T = (λC2
A + µC2

B)∆T, where σ2
A and σ2

B are the variances of the interarrival and
service times, and C2

A and C2
B are the corresponding squared coefficients of variation.

Therefore, for the diffusion process we have β = λ− µ and α = λC2
A + µC2

B [64].
The buffer’s size is limited to N packets, therefore the diffusion process resides in the

interval [0, N], and we use a diffusion process with returns from the barriers at x = 0 and
x = N to represent the jumps that occur when the buffer queue is empty and a packet
arrives, and when the queue is full and a service occurs as in [65], leading to the equations:

∂ f (x,t;x0)
∂t = α

2
∂2 f (x,t;x0)

∂x2 − β
∂ f (x,t;x0)

∂x + λp0(t)δ(x− 1) + µpN(t)δ(x− N + 1),
dp0(t)

dt = limx→0[
α
2

∂ f (x,t;x0)
∂x − β f (x, t; x0)]− λp0(t)

dpN(t)
dt = limx→N [

α
2

∂ f (x,t;x0)
∂x − β f (x, t; x0)]− µpN(t),

(1)

where f (x, t; x0) is the probability density function (pdf) of the diffusion process; p0(t) and
pN(t) are, respectively, the probabilities that the process is at the barrier at x = 0 or x = N
at time t, corresponding to probabilities that the system is empty or saturated; and δ(x) is
the Dirac delta function.

The first of the above equations defines the pdf of the diffusion process with jumps
from x = 0 to x = 1 (arrival of the first customer after the idle period) with intensity λ
and from x = N to x = N − 1 (departure of a customer ending the saturation period) with
intensity µ. The next two equations represent the probability balance of the barriers.

2.1. Steady-State Diffusion Model with General Interarrival and Service Processes

In steady state, when limt→∞ p0(t) = p0, limt→∞ pN(t) = pN , limt→∞ f (x, t; x0) =
f (x), Equation (1) becomes an ordinary differential one and its solution, for $ = λ/µ, ρ < 1,
can be expressed as [64]:

f (x) =



λp0

−β
(1− ezx) for 0 < x ≤ 1 ,

λp0

−β
(e−z − 1)ezx for 1 ≤ x ≤ N − 1 ,

µpN
−β

(ez(x−N) − 1) for N − 1 ≤ x < N ,

(2)

where z = 2β
α , and due to normalization:

p0 = {1 + $ez(N−1) +
$

1− $
[1− ez(N−1)]}−1 , (3)

pN = $p0ez(N−1) .

In this way, f (n), given by Equations (2) and (4), approximates the steady-state
distribution p(n) in the Packet Buffer queue. A few examples of the curve f (x) depending
on $ = λ/µ—i.e., the utilization of the system—are presented in Figure 2. The next figure
presents pN($), which is the loss probability due to the buffer overflow.
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Figure 2. Steady-state pdf f (x) of the diffusion process as an approximation of the queue distribution:
illustration of the solution in Equation (2).

The steady-state queueing delay can be modelled by the time it takes the diffusion
process to drift from the point x = x0, corresponding to the queue length at the moment
of the packet arrival, to x = 0 when the packet is already on the head of the queue (its
distance to the transmitter is equal to zero), and is removed to be forwarded. The density
of the diffusion process f (x) given by Equation (2) determines the queue distribution and,
at the same time, the density of the initial point x0 at Equation (8).

The density φ(x, t; x0) of the diffusion process starting at x0 and ending at the absorb-
ing barrier at the origin is given in [66]. The method of images, usually applied to heat
conduction problems, is used. We may imagine the barrier as a mirror with an image
source placed at x = 2x0, and the solution is a superposition of a source of unit strength,
placed at the origin and a source of strength − exp( 2µx0

α2 ) placed at x = 2x0:

φ(x, t; x0) =
e

β
α (x−x0)−

β2
2α t√

2ßαt

[
e−

(x−x0)
2

2αt − e−
(x+x0)

2

2αt

]
. (4)

The density function γx0,0(t) of the first passage time from x = x0 to x = 0, i.e.,
probability density that the process enters the barrier at time t, is equal to the probability
density that the process is leaving the diffusion interval (x > 0):

γx0,0(t) =
∂

∂t

∫ ∞

0+
φ(s, t; x0)dx = lim

x→0
[
α

2
∂

∂x
φ(x, t; x0)− βφ(x, t; x0)] =

x0√
2Παt3

e−
(x0+βt)2

2αt . (5)

This density should be normalized to include only the cases when the process ends at
the barrier, which is certain for β < 0. Therefore:∫ ∞

0
γx0,0(t)dt = e

2x0β
α . (6)

The first passage time of the diffusion process from the point x = x0 to the barrier at
x = 0 becomes:

γx0,0(t) =
x0√

2Παt3
e
−
[

2x0β
α +

(x0−β)2

2αt

]
. (7)

Suppose that a newly arrived packet joins the queue when the switch already contains
x packets. Assuming the first-in-first-out service, the packet will be forwarded out from the
switch after all the packets that arrived earlier have been forwarded, so that if the queue
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length probability density function is f (x), the probability density function of the packet’s
queueing delay is:

fR(t) =
∫ ∞

0

 x√
2Παt3

e
−
[

2xβ
α +

(x−β)2
2αt

] f (x)dx. (8)

Figure 3 illustrates this result with a few curves of fR(t) for different values of the
traffic intensity ρ, and with the parameters; C2

A = C2
B = 1, which have been used in all the

examples of Figures 2–4.

Figure 3. Density fR(t) of the queueing time; see Equation (8).

Figure 4. Probability pN of the buffer overflow; illustration of the solution given by Equation (4).

The mean delay experienced by a packet whose flow rule is contained in the flow
table will be the sum of the queueing delay and processing time. If the mean queueing
delay is Dq and the processing time is tp, then the mean packet delay at the switch Ds is:

Ds = Dq + tp =
∫ ∞

0
t fR(t)dt +

1
µ

. (9)

However, if a flow entry for an arriving packet is not found, then the packet is
encapsulated and sent to the controller, which determines the flow rules, installs the flow
entry for the packet, and sends back the packet in the packet-out message. In that case, the
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delay experienced by the packet, D is the sum of the delay in the switch and the delay at
the controller Dc [27–29,61–63]:

D = Ds + Dc. (10)

The modelling of the controller’s working mechanism to determine Dc is beyond the scope
of this work and will be considered in future works, and in our numerical examples all the
flows are known, i.e., p = 0.

2.2. Transient Diffusion Model with General Interarrival and Service Processes

We express the time-dependent solution f (x, t; x0) of Equation (1) for the diffusion
process having barriers with jumps with the use of the pdf φ(x, t; x0) of another diffusion
process which has absorbing barriers at x = 0 and x = N. There is no jumps, the process
ends once it reaches any of the barriers. The density of such a process is known [66]:

φ(x, t; x0) =


δ(x− x0) for t = 0 ,

1√
2Παt

∞

∑
n=−∞

{a(t) + b(t)} for t > 0 , (11)

where:

a(t) = exp
[

βx′n
α
− (x− x0 − x′n − βt)2

2αt

]
,

b(t) = exp
[

βx′′n
α
− (x− x0 − x′′n − βt)2

2αt

]
,

and x′n = 2nN, x′′n = −2x0 − x′n .
If the initial condition is not given by a single point x0 but by a density ψ(ξ), ξ ∈ (0, N),

limξ→0 ψ(ξ) = limξ→N ψ(ξ) = 0, then the pdf of the process with absorbing barriers has
the form:

φ(x, t; ψ) =
∫ N

0
φ(x, t; ξ)ψ(ξ)dξ. (12)

The Laplace transform of φ(x, t; x0) is

φ̄(x, s; x0) =
exp[ β(x−x0)

α ]

A(s)

∞

∑
n=−∞

{
exp

[
−|x− x0 − x′n|

α
A(s)

]
− exp

[
−|x− x0 − x′′n |

α
A(s)

]}
, (13)

with A(s) =
√

β2 + 2αs.
The process with jumps from barriers is a sequence of processes started by jumps at

x = 1 and x = N − 1, ending at the barriers, and then after a time spent there starting
again due to jumps, therefore the pdf f (x, t; ψ) of the diffusion processs with jumps may
be represented by functions φ(x, t; ψ) as follows: [51,67]:

f (x, t; ψ) = φ(x, t; ψ) +
∫ t

0
g1(τ)φ(x, t− τ; 1)dτ +

∫ t

0
gN−1(τ)φ(x, t− τ; N − 1)dτ . (14)

where g1(t) and gN(t) are the densities of jumps and are related to the pdfs l0(x), lN(x),
the densities of sojourn times at x = 0 and x = N respectively, and to γ0(t) and γN(t), the
probability densities that at time t the process enters x = 0 or x = N, in the following way:

g1(τ) =
∫ τ

0
γ0(t)l0(τ − t)dt ,

gN−1(τ) =
∫ τ

0
γN(t)lN(τ − t)dt , (15)
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where:

γ0(t) = p0(0)δ(t) + [1− p0(0)− pN(0)]γψ,0(t)

+
∫ t

0
g1(τ)γ1,0(t− τ)dτ +

∫ t

0
gN−1(τ)γN−1,0(t− τ)dτ ,

γN(t) = pN(0)δ(t) + [1− p0(0)− pN(0)]γψ,N(t)

+
∫ t

0
g1(τ)γ1,N(t− τ)dτ +

∫ t

0
gN−1(τ)γN−1,N(t− τ)dτ , (16)

and γ1,0(t), γ1,N(t), γN−1,0(t), γN−1,N(t) are the densities of the first passage time between
corresponding points—e.g.,:

γ1,0(t) = lim
x→0

[
α

2
∂φ(x, t; 1)

∂x
− βφ(x, t; 1)] . (17)

For absorbing barriers:

lim
x→0

φ(x, t; x0) = lim
x→N

φ(x, t; x0) = 0 ,

Hence: γ1,0(t) = limx→0
α
2

∂φ(x,t;1)
∂x . The functions γψ,0(t), γψ,N(t) are the pdfs of first

passage time when the initial condition is given by the density ψ(ξ).
The delay introduced by the queue length distribution with density f (ξ, t; ψ) is

: fR(x, t) =
∫ N

0
γξ,0(x) f (ξ, t; ψ)dξ. (18)

The convolutions of functions present in Equations (14)–(16) are more tractable when
we consider the equations and solve them in the Laplace domain, receiving:

f̄ (x, s; ψ) = φ̄(x, s; ψ) + ḡ1(s)φ̄(x, s; 1) + ḡN−1(s)φ̄(x, s; N − 1). (19)

The process is in the barriers with probabilities

p̄0(s) =
1
s
[γ̄0(s)− ḡ1(s)], p̄N(s) =

1
s
[γ̄N(s)− ḡN−1(s)]. (20)

The original of f̄ (x, s; ψ) is obtained via the numerical inversion of the solution (19);
in the examples, below Stehfest’s algorithm [68] was used.

Note that the above transient solution assumes constant diffusion parameters. In the
case of time-dependent traffic, and therefore time-dependent diffusion parameters, we
should apply it in short consecutive intervals of time where we may treat the parameters
as constant.

3. Single SDN Switch Model

We use the above model to examine the behaviour of a single SDN switch. Assume
the length of the packet buffer N = 100, T = 8 · 10−7 s, K = 950, and p = 0—i.e., all
connections have their entries in the Flow Match Unit; in consequence, the service time
is uniformly distributed with the mean 1/µ = 0.038 msec and the squared coefficient of
variation is C2

B = 0.33.
Figure 5 presents an example of the distribution of interarrival times between IP

packets taken from CAIDA measurements; on this basis, we determined C2
A = 1.02 for

the input flow. Additionally, we considered the greater variability of interarrival times
expressed by C2

A = 4.08 and C2
A = 8.16 to investigate its influence on the performance of

the switch.
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Figure 5. Packet interarrival times of IP traffic and CAIDAmeasurements versus Poisson distribution.

The changes in the input rate λ during the considered interval of 1 s are plotted
in Figures 6 and 7. Figure 8 displays an example of the probability density function in
Equation (14) for a chosen moment t = 0.750 s. when the empty queue is empty at the
beginning of the interval under consideration, i.e., x0 = 0 at t = 0; it shows the impact of
the interarrival time variability on the density function. It is worth to note the logarithmic
scale of the plot and the possibility to determine by the model very small numerical values
of the function.

Figure 6 shows the changes in pN(t)—i.e., probability of packet loss due to the buffer
congestion—following the input traffic pattern, and also as a function of the variability of
interarrival times, defined by the squared coefficient of variation C2

A. Again, even very small
numerical values are given by the model, and the computations are stable. Figure 7 presents
the time-dependent mean queue. When traffic intensity λ is small, transient periods are
short, and the changes in the mean queue follow the changes of λ closely. However, for
greater values of λ, i.e., for higher utilization $, the transient states are visibly longer than
the time between the traffic changes, and the queue is permanently in a transient state. The
increase in C2

A also increases the duration of transient states and the size of the queue.
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Figure 6. pN(t) for different C2
A.
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Figure 8. f (x, t; 0), t = 0.750 s.

4. Transient Analysis of Multiple SDN Switches

Consider a network of M stations with an arbitrary topology with routing probabilities
rij(t). We follow the approach of [69] developed for the steady-state network model then
adapted to transient analysis in [70]. Additionally, we introduce time-dependent routing to
model an SDN network.

The first step to solve the network model is to decompose the network—i.e., to
determine the input traffic parameters λi, C2

Ai at every station i and then apply the single
server model of the previous section to each station separately.

In the transient state, we should distinguish at any station i the input traffic λi−in(t)
and the output traffic intensities λi−out(t):

λi−out(t) = [1− p0i(t)]µi

which are different; p0i(t) denotes the probability that the station i is idle at time t, i.e.,
the diffusion process related to this station is inside the barrier at x = 0. The term
1− p0i(t) = $i(t) presents probability that the station i is busy and customers are leaving
it with the rate µi.
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The traffic equations balancing the flows of stations are:

λi−in(t) = λ0i(t) +
M

∑
j=1

λj−out(t)rji(t) , i = 1, . . . , M, (21)

where the first term λ0i represents the traffic flows coming from the outside of the network
directly to station i.

The routing probabilities rji(t) change each interval ∆ following the decisions of the
controler, remaining constant inside the interval, and the flow parameters may change
every interval δ < ∆; we assume ∆ = nδ, in numerical examples below n = 10. This way
all model parameters are constant witin intervals δ when the solution (14) is computed.

Denote by fAj(x, t) and fBj(x, t) the density functions of the interarrival and service
times distributions at station j at time t. The pdf fDj(x, t) of the interdeparture times from
this node at time t may be expressed as:

fDj(x, t) = $j(t) fBj(x, t) + [1− $j(t)] fAj(x, t) ∗ fBj(x, t) , j = 1, . . . , M, (22)

where ∗ denotes the convolution with respect to x. The first term of the right side in (22)
represents the interdepature times of packets when the node j is working, and the second
term gives the interdeparture times when it is idle. The formula (22), known as Burke’s
theorem [71], is exact for Poisson input (the pdf of the idle period distribution that should
be used in the second term of (22) is the same as fAj(x, t)) and approximate in other cases.
From (22), we receive:

C2
Dj(t) = $2

j (t)C
2
Bj(t) + C2

Aj(t)(1− $j(t)) + $j(t)[1− $j(t)] . (23)

where C2
Dj(t), C2

Bj(t), and C2
Aj(t) are time-dependent square coefficients of the variation

in interdeparture, service, and interarrival times, respectively. Packets leaving the node
j according to the distribution fDj(x, t) choose any node i with probability rji(t) and the
times between two packets routed from node j to i has pdf f ji(x, t)

f ji(x, t) = fDj(x, t)rji(t) + fDj(x, t) ∗ fDj(x, t)[1− rji(t)]rji(t) +

fDj(x, t) ∗ fDj(x, t) ∗ fDj(x, t)[1− rji(t)]2rji + · · · (24)

For example, a packet leaving station j goes to station i with probability rji(t) or with
probability 1− rji(t) it goes elswhere but the second packet goes to i with probability rji(t),
hence the gap has has pdf fDj(x, t) ∗ fDj(x, t) with probability [1− rji(t)]rji(t), etc., or, after
Laplace transform:

f̄ ji(s, t) = f̄Dj(s, t)rji(t) + f̄Dj(s, t)2[1− rji(t)]rji + f̄Dj(s, t)3(1− rji(t))2rji + · · ·

=
rji(t) f̄i(s, t)

1− [1− rji(t)] f̄i(s, t)
,

Then we compute the squared coefficient of variation:

C2
ji(t) = rji(t)[C2

Dj(t)− 1] + 1 ,

Hence:

C2
Ai(t) =

1
λi−in(t)

M

∑
j=1

rji(t)λi−out(t)[(C2
Di(t)− 1)rji(t) + 1] +

C2
0i(t)λ0i(t)
λi−in(t)

, (25)

where the parameters λ0i and C2
0i refer to the flows coming to station i from outside of

the network.
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The parameters of the input flow at station i are given by (21) and (25). Equations (23)
and (25) form a system of linear equations yielding C2

Ai(t) and also the diffusion parameters
βi(t), αi(t) for every node i. At each interval δ, the functions fi(x, t; ψi) providing the queue
length distributions at every station i for t ∈ δ are computed. Their values at the end of
the interval yield, among others, the current utilizations $i used to determine the flow
parameters and diffusion parameters for the next interval δ.

The pdf fRi(x, t) of the time-dependant response time (waiting time plus service) is
determined using the first passage time from the end of the queue to zero, as defined by
Equation (18). If fRi(x, t) is the response time pdf at node i, then the response time pdf
fR(x, t) for the path 1, . . . , n of n stations is:

fR(x, t) = fR1(x, t) ∗ fR2(x, t) ∗ fR3(x, t) ∗ · · · ∗ fRn(x, t),

or:

f̄R(x, s) =
n

∏
i=1

f̄Ri(x, s).

The loss probability ploss(t) for same entire path may be computed from:

1− ploss(t) = (1− pN1(t))(1− pN2(t))(1− pN3(t)) . . . (1− pNn(t)) (26)

where pNi(t) is the probability that the queue at station i is saturated at time t—i.e., the
diffusion process for this station is at time t at the barrier x = N.

5. Network Model

Consider a network composed of four SDN switches, S1–S4; see Figure 9. Their
parameters are the same as the switch in Example 1, except for the SDN switch S4, which
is twice as fast. Therefore µ1 = µ2 = µ3 = 2628.8 packets/sec while µ4 = 5257.6 packets/s.
At all the switches, the squared coefficient of variation of service time is identical to the
value C2

Bi = 0.33.

Figure 9. The example network being considered.
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Similarly to Example 1, the network’s performance is investigated during 1 s. Host 1
is sending packet flows of intensity λ01 to Host 2, and the traffic rate is changing in the
range 500–2500 packets/sec, as shown in Figure 10. Host 4 generates traffic at rate λ02, as
shown in Figure 10, which is forwarded to Host 2 via the SDN switches S2 and S4.

As in Example 1, the squared coefficient of variation of interarrival times in the flows
λ01 is C2

A1 = C2
01 = 1.02, or C2

A1 = 4.08 or C2
A1 = 8.16. The second input traffic λ02 at S2

has only one parameter C2
A2 = C2

02 = 1.02.
The SDN controller alters—if needed—the routing to balance the load of nodes every

100 msec; in this example, it refers to the routing probabilities r12 and r13; see Figure 11.
Figures 12 and 13 illustrate the decomposition of the network model. They present the

flows λi(t) given by Equation (21) and the squared coefficients of variation C2
Ai(t) received

from Equations (23) and (25). The service times at the stations have relatively small squared
coefficients of variation C2

Bi = 0.33. Therefore, the important variability of the first flow
entering the network is reduced at the network interior, as defined by Equation (23); see
Figure 13.

The transient solution of diffusion equations is computed in intervals of the length
δ = 10 msec—i.e., we have 100 intervals with fixed diffusion parameters; at the end of each
δ, the Equations (21) and (25) are solved to determine the new parameters of flow for the
single-station models in the next interval. The diffusion density function obtained for any
station i at the end of an interval gives the initial conditions for the diffusion equation at
the next one.

The curves in Figure 14 compare the loss probability (note here the minimal values
computed by the model), and, in Figure 15, the mean queues for all four stations, in case
of C2

A1 = 1.04. We may observe the changes in mean queues in S2 and S3 due to load
balancing after the second flow becomes active. Observing the mean queues at S1 and S2,
we can see that the transient periods may be longer than the time between the controller’s
decisions. As noted earlier, the length of the transient time increases with a load of a station
and the variability of the input flow. For greater variabilities of the first flow, the path
S1− S3− S4 becomes saturated; see Figure 16. This happens due to saturation in S4, as
shown in Figure 17.
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Figure 10. Input flows λ01(t), λ02(t), time in seconds.
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Figure 11. Routing probabilities r12(t), r13(t), r14(t).
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Figure 12. Input flows λi(t) for stations S1 . . . S4.
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Figure 14. Stations S1, S2, S3, S4: pN(t), C2
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Figure 15. Stations S1, S2, S3, S4: mean queue, C2
A1 = 1.02.
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Figure 17. Station S4: pN(t) for different C2
A1.

Let us also consider a simple example of optimization. Suppose, as previously, that
station S1 is forwarding a flow λ01 packets to nodes S2 and S3. Station S2 is additionally
receiving from Host 4 a flow of λ

(loc)
02 packets. The controller is changing routing every

∆ = 100 msec and needs to determine the routing probabilities for the nearest ∆, knowing
the current parameters of flows at the beginning of the interval, as well as the current
queue distributions at S1, S2, and S3 representing previous behaviour of the network. The
goal is to minimize the mean backlog Ψ at S2 and S3 during ∆:

min
r12,r13

{
Ψ =

1
∆

∫ ∆

0
[E[N2(t)] + E[N3(t)]]dt

}
.

We compute E[N2(t)], E[N3(t)] for t ∈ ∆ and minimize Ψ by the choice of r12, r13 =
1− r12; see Figure 18.
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Figure 18. Mean backlog Ψ during ∆ as a function of routing probabilities r12, r13 = 1− r12, each
curve corresponds to a different flow coming from Host 4 to S2.

6. Conclusions

The advent of SDN allows the implementation of smart adaptive routing, which
changes network paths so that new connections may be established and inactive may be
removed, as well as to deal with changes in traffic loads and incidents that affect network
security. This leads to an interesting paradigm shift in network modelling, which has
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traditionally addressed “long term” behaviours and computational methods which are
appropriate for steady-state analysis. However, when SDN intervenes dynamically to
change paths and traffic levels, the network is seldom at a steady state, and optimization
must take transients into account.

Therefore in this paper we have used diffusion approximation modelling for the
performance evaluation of a network of SDN switches, that considers both steady-state
and transient analysis. We have shown how changes in routing or forwarding decisions
by the SDN controller can influence performance parameters such as delay, queue size,
and packet loss probability in the transient state. Our results indicate that this method is
computationally operational and can provide useful quantitative results for models with
realistic parameter values.

Our analysis captures the interactions among the main parameters of the network,
and numerical examples display the dependence of the queue lengths, queueing delays
and their dynamics as a function of the changing flow intensity and variance of interarrival
times. Our approach also confirms that transient periods play a significant role in the
performance of SDN networks, and that they will be useful to analyze much larger networks
in future work.

While the performance evaluations performed in this paper are purely numerical, and
based on diffusion approximations models that have been widely validated by simula-
tions [47,67,72], in future work we intend to use network emulation tools such as Mininet
with real traffic, as well as experiments on a SDN test-bed, to study the influence of time
dependent forwarding decisions on the main performance metrics of large SDN networks.
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