
applied  
sciences

Article

A Hybrid Approach Combining R*-Tree and k-d Trees to
Improve Linked Open Data Query Performance

Yuxiang Sun, Tianyi Zhao , Seulgi Yoon and Yongju Lee *

����������
�������

Citation: Sun, Y.; Zhao, T.; Yoon, S.;

Lee, Y. A Hybrid Approach

Combining R*-Tree and k-d Trees to

Improve Linked Open Data Query

Performance. Appl. Sci. 2021, 11,

2405. https://doi.org/10.3390/

app11052405

Academic Editors: Dariusz Mrozek

and Vaidy Sunderam

Received: 17 January 2021

Accepted: 23 February 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea;
syx921120@gmail.com (Y.S.); zty950731@gmail.com (T.Z.); tmffml123@naver.com (S.Y.)
* Correspondence: yongju@knu.ac.kr; Tel.: +82-10-3532-5295

Abstract: Semantic Web has recently gained traction with the use of Linked Open Data (LOD) on the
Web. Although numerous state-of-the-art methodologies, standards, and technologies are applicable
to the LOD cloud, many issues persist. Because the LOD cloud is based on graph-based resource
description framework (RDF) triples and the SPARQL query language, we cannot directly adopt
traditional techniques employed for database management systems or distributed computing systems.
This paper addresses how the LOD cloud can be efficiently organized, retrieved, and evaluated.
We propose a novel hybrid approach that combines the index and live exploration approaches for
improved LOD join query performance. Using a two-step index structure combining a disk-based
3D R*-tree with the extended multidimensional histogram and flash memory-based k-d trees, we
can efficiently discover interlinked data distributed across multiple resources. Because this method
rapidly prunes numerous false hits, the performance of join query processing is remarkably improved.
We also propose a hot-cold segment identification algorithm to identify regions of high interest. The
proposed method is compared with existing popular methods on real RDF datasets. Results indicate
that our method outperforms the existing methods because it can quickly obtain target results by
reducing unnecessary data scanning and reduce the amount of main memory required to load
filtering results.

Keywords: LOD cloud; Big Data; multidimensional histogram; index structure; join query; RDF

1. Introduction

The evolution of the Linked Open Data (LOD) cloud has made a strong wave of
research approaches in Big Data [1]. The LOD cloud consists of 1269 machine-readable
datasets with 16,201 links (as of May 2020). LOD refers to a set of best practices for
publishing and interlinking structured data for access by both humans and machines. The
core concept of LOD is that the general Web architecture can be used to share structured
data on a global scale. Technically, the LOD cloud employs the resource description
framework (RDF) for data interchange and SPARQL for querying. The uniform resource
identification (URI) is used to link related data across multiple resources. Vocabularies
and ontologies define concepts and relationships to organize knowledge bases. In the
RDF dataset, data items are expressed in the form of subject, predicate, and object triples.
Because RDF triples are modeled as graphs, we cannot directly adopt existing solutions
from relational databases and XML technologies [2]. Therefore, new storage and searching
techniques are required to improve LOD query performance.

To achieve the best storage and searching strategy for the LOD cloud, it is necessary
to consider existing approaches. Currently, four alternative approaches are available. First,
we can store independent data copies in a local repository, benefiting from convenient
conditions for efficient query processing; we call this the local approach. Local approaches
gather data from all known resources in advance, preprocess the combined data, and store
the results in a local repository [3]. Using such a repository, this approach can provide

Appl. Sci. 2021, 11, 2405. https://doi.org/10.3390/app11052405 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7680-3964
https://orcid.org/0000-0002-1705-4967
https://doi.org/10.3390/app11052405
https://doi.org/10.3390/app11052405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052405
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2405?type=check_update&version=4


Appl. Sci. 2021, 11, 2405 2 of 18

excellent query response time owing to a lack of network traffic. However, this approach
has many shortcomings. First, retrieved results may not reflect the most recent data.
Second, copying all data can be expensive, and the performance penalty may become
excessively high as the dataset volume increases. There is a large amount of unnecessary
data collection, processing, and storage. Third, clients can only use a fragment of the Web
of data copied into the repository.

The second approach is based on accessing distributed data on the fly using a recursive
URI lookup process; we call this the live exploration approach. This approach performs
queries over multiple SPARQL endpoints offed by publishers for their LOD datasets [4].
This approach has several advantages, such as synchronizing copied data is not required,
searching is more dynamic with up-to-date data, and new resources can be easily added
without a time lag for indexing and integrating data. Moreover, this approach requires
less storage. However, this approach may not guarantee that all publishers offer reliable
SPARQL endpoints for their LOD datasets [4].

The third technique is the index approach. LOD index structures are quite similar
to traditional database query processing techniques. Existing data summaries and ap-
proximation techniques can be adapted to develop an index structure for LOD queries.
For instance, Umbrich et al. [5] considered multidimensional histograms (MDHs) as a
summarizing index for LOD query processing. Harth et al. [3] proposed an approximate
multidimensional index structure (i.e., QTree), which combines the MDH and R-trees [6].
In contrast to MDHs, where regions have a fixed size, QTree is a tree-based data structure
where variable-size regions more accurately cover the content of resources [5]. Although
MDHs provide an easy method for constructing and maintaining the index, it is considered
a rather rough approximation. QTree presents a more accurate approximation than MDHs;
however, QTree requires a high cost for building and maintaining the trees.

Finally, the fourth technique is the hybrid approach. This approach combines two
storage and searching approaches. Consequently, the hybrid approach can conceivably
obtain the advantages of both approaches without their respective drawbacks. For instance,
Umbrich [7] proposed a hybrid query framework that offers fresh and fast query results
by combining the local and live exploration approaches. This method employs a query
planner that decides the parts of the query delegated to the local and remote engines.
Lyden et al. [8] proposed a hybrid approach that combines link traversal and distributed
query processing on the fly to retrieve relevant data within a fixed timeframe. The local
approach offers the best query performance; however, the retrieved data might not be up-
to-date. The live exploration approach provides recent data; however, the query execution
is slower than the local approach because data must be transmitted via a network. The
hybrid approach can address these problems. However, to the best of our knowledge, this
approach cannot yet provide optimal solutions for complex join query processing. Table 1
briefly describes these four approaches.

Table 1. Storage and searching approaches.

Local Approach Live Exploration
Approach Index Approach Hybrid Approach

Feature Store collected data into a
local repository

Query multiple SPARQL
endpoints

Use summary and
approximation indexes

Combine two storage and
searching approaches

Advantage Excellent response time Dynamic with up-to-date
data Efficient query processing Trade-off between two

approaches

Disadvantage Cannot reflect recent data Slow response time High maintenance cost Bad join query
performance

Related work

QUAD [9],
RDF-3X [10],

Hexastore [11],
Matrix [12],

TripleBit [13]

DARQ [14],
SemWIQ [15],

LiveExplorer [4],
Lusail [16],

IRISelection [17]

MDH [5],
QTree [3],

MIDAS-RDF [18],
SameAsPrefixIndex [19]

HybridEngine [7],
HybridQuery [8],

H-Grid [20],
MapReduce+RDF-3X [21]



Appl. Sci. 2021, 11, 2405 3 of 18

We propose a novel hybrid approach that combines the index and live exploration
approach. We develop a two-step index structure comprising an approximate disk-based
index structure (i.e., 3D R*-tree) and flash memory-based k-d trees. Using this index
structure, our approach can efficiently store and search the LOD cloud distributed across
multiple resources. Furthermore, we propose a hot-cold segment identification algorithm
to determine ways for relocating data to disk and flash memory. The contributions of this
study are summarized:

• We present a new hybrid index structure, the two-step index structure, designed for
efficient LOD join queries. In particular, we consider flash-based solid-state drives
(SSDs) as excellent memory-based k-d trees.

• We propose an efficient join query algorithm based on the two-step index structure
for various SPARQL query types and a hot-cold segment identification algorithm that
determines regions of high interest.

• We evaluate our index structure through extensive experiments using benchmark
LOD datasets. Experimental results show that our hybrid approach exhibits better
retrieval performance than existing approaches.

The rest of this paper is organized as follows. In Section 2, we describe the research
background. In Section 3, the new two-step hybrid index structure and hot-cold segment
identification algorithm for efficient SPARQL query processing are proposed. In Section 4,
the experimental evaluation is described. In Section 5, conclusions are drawn.

2. Background and Related Work
2.1. Overview of Linked Open Data

Spurred by efforts such as the LOD project [22], large amounts of semantic data are
published in the RDF format in several diverse fields such as publishing, life sciences,
social networking, internet of things (IOT), and healthcare. The LOD cloud now covers
1269 datasets from diverse domains. Especially, the emergence of LOD has been making
an excellent revolution in the healthcare sector. For example, corona virus disease 19
(COVID-19) is an infectious disease caused by a newly discovered coronavirus. In the
midst of a global pandemic, Big Data such as LOD are showing an outstanding capability
to analyze complex interactions among groups of people and locations. Through the work
such as sharing and analyzing available LOD in the world, a cure for COVID-19 will be
discovered. Efficient use of the large-scale LOD could find to a way to divine how the virus
is spreading and how the number of infections can be reduced. The processing of such Big
RDF Data requires a scalable data management system that can efficiently store, index, and
query RDF data.

RDF is a graph-based data model for the LOD cloud, and SPARQL is a standard
query language for this data model. Assume U, B, and L are a set of all URIs, blank nodes,
and literals, respectively. An RDF triple is a tuple t = (s, p, o) ∈ (U ∪ B) × U × (U ∪ B
∪ L), where s, p, and o are the subject, predicate, and object, respectively. For instance,
the triple (<http://dbpedia.org/person/Smith>, <http://xmlns.com/foaf/0.1/knows>,
<http://university.edu/students/Lucy>, accessed on 17 January 2021) indicates “Smith
knows Lucy.” SPARQL is a graph-matching query language, and a SPARQL query is
typically a combination of graph patterns. A basic graph pattern is a set of triple patterns,
where a triple pattern is an RDF triple that can contain query variables (prefixed with ‘?’)
at the subject, predicate, and object positions. The main operation of SPARQL is matching
these basic graph patterns.

Example 1: The following SPARQL query asks for the projects in which Smith’s friends participated.
This query comprises two triple patterns joined by variable ?f:

PREFIX foaf:http://xmlns.com/foaf/0.1/ (accessed on 17 January 2021)
PREFIX user:http://dbpedia.org/person/ (accessed on 17 January 2021)
SELECT ?n WHERE {

user:Smith foaf:knows ?f .
?f foaf:project ?n }

http://dbpedia.org/person/Smith
http://xmlns.com/foaf/0.1/knows
http://university.edu/students/Lucy
foaf:http://xmlns.com/foaf/0.1/
user:http://dbpedia.org/person/


Appl. Sci. 2021, 11, 2405 4 of 18

Because SPARQL statements can be represented as graphs, we can transform SPARQL
into a query graph to perform query processing. Based on the query graph structure,
SPARQL queries can be divided into five different join types [23]—star, chain, directed
cycle, complex, and tree—as shown in Figure 1. Our experiments include all join query
types based on the real benchmark dataset.

• Star queries are a set of triples formed using the same subject or object variable (subject
= subject or object = object). Usually, we consider only subject-subject joins (i.e., all
triples have the same subject).

• Chain and directed cycle queries are triple patterns in which the subject and object
variables are the same (subject = object) (i.e., the object of the triple is the subject of the
next triple).

• Complex queries are a combination of star and chain queries.
• Tree queries contain subject-subject and subject-object joins and some more complex

queries.

Figure 1. SPARQL query types.

Critical problems in the LOD cloud are the massive number of LOD datasets and
potentially very large numbers of joins required to answer the queries. Thus, careful consid-
eration must be provided to the system design to implement an efficient physical structure
with suitable indexes and support join queries. Typically, LOD index structures only need
to consider the found relevant resources. However, there is no guarantee that the resources
actually provide the RDF triple that we were originally looking for (i.e., false positives
can occur) [5]. This is because the minimum bounding box (MBB) container is considered
a rather inaccurate approximation. Because of the rough approximation, the candidates
may contain a number of false hits not fulfilling the query condition. Furthermore, all
candidates must be transmitted into the refinement phase, even if they contain false hits.
In case of large numbers of resources, searching a desired result can be very expensive
because exact calculations are required for accessing several unreliable resources over the
LOD cloud.

2.2. Hybrid Storage Structure

The traditional high-performance database system is mainly based on hard disk drives
(HDDs). Currently, HDD is still the main device used in storage systems. Although its
capacity can be rapidly increased by increasing the number of disk slices and disk partitions,
it still rapidly develops according to Moore’s Law. Affected by this, the random-access
performance of HDDs has not been significantly improved, which is a bottleneck. SSD is
a new type of storage device that uses integrated circuits as a memory for the persistent
storage of data. Compared with HDD, SSD yields outstanding read and write performance.
However, SSD also has shortcomings, such as low capacity and high cost. Currently, no
storage system comprising a single storage medium can meet the requirements of low cost
and high query performance. Capacity, cost, sequential performance, random performance,
and device life can together be considered as the primary indicators of the comprehensive
level of the storage system. As shown in Figure 2, the range of requirements covered
by a single storage medium is limited. If two storage media are integrated to form a
hybrid storage system, such a system could conceivably utilize the strengths and avoid the
weaknesses of each medium.



Appl. Sci. 2021, 11, 2405 5 of 18

Figure 2. Comparison between solid-state drive (SSD) and hard disk drive (HDD).

To improve the storage and query efficiency, in addition to considering the storage
device, it is essential to effectively access data. Therefore, an efficient storage system must
guarantee excellent retrieval performance. Indexes are special-purpose data structures
designed to accelerate data retrieval. Many researchers have conducted extensive research
on indexes with respect to HDDs. Moreover, numerous methods have been suggested, most
of which are based on popular B-trees [24], R-trees [6], linear [25], and scalable hashing [26].
These data structures can be directly used with SSDs. However, their performance is
unsatisfactory because of several significant differences between integrated circuits and
magnetic disks, such as asymmetric read-write latencies, out-of-place updates that must be
erased before writing, and limited cell lifetime.

2.3. Related Work

The goal of this subsection is to briefly present a set of RDF storage engines designed
for large-scale Semantic Web applications. It should be stressed that the related work
presented here is not exhaustive, but we make a detailed quantitative analysis of system
performance with these engines in Section 4.

QUAD [9] uses quads in the form of <subject, predicate, object, context>. It stores
RDF data persistently by using six B+ tree indices. The indices cover all the 16 possible
access patterns of quads. This representation allows the fast retrieval of all triple access
patterns. To speed up keyword queries, the lexicon keeps an inverted index on string
literals to allow fast full-text searches. To retrieve any access pattern with a single index
lookup, QUAD sacrifices storage space and insertion speed for query performance since
each triple is encoded in the dictionary six times. Thus, it seems to be primarily geared
for simple lookup operations with limited support for joins; it lacks DBMS-style query
optimization (e.g., do not consider any join-order optimizations).

DARQ [14] is a query engine for federated SPARQL queries. It supports transparent
query access to multiple, distributed SPARQL endpoints as if querying a single RDF graph.
In DARQ, the original SPARQL query is decomposed into several subqueries, where each
subquery is sent to its relevant SPARQL endpoints. The results of subqueries are then
joined together to answer the original SPARQL query. A service description language
enables the query engine to decompose a query into subqueries. Furthermore, DARQ
discusses the use of semi-joins to compute a join between intermediate results at the
control site and SPARQL endpoints. The disadvantages are the latency of query execution
since live exploration algorithms seek SPARQL endpoints, and repeated data retrieval
from each endpoint introduces significant latency. They also have limited possibility
for parallelization.

MIDAS-RDF [18] is a distributed RDF store that is built on top of a distributed
multidimensional index structure. Through the multidimensional index, it is able to
support an efficient range search over the overlay network. It features the fast retrieval of
RDF triples satisfying various pattern queries by translating them into multidimensional
range queries, which can be processed by the underlying index in hops logarithmic to the



Appl. Sci. 2021, 11, 2405 6 of 18

number of peers. MIDAS-RDF achieves better performance by using a labeling scheme to
handle expensive transitive closure computations efficiently. It also implements reasoning
services for the RDFS entailment regime. However, MIDAS-RDF is limited to sharing,
querying, and synchronizing distributed RDF repositories.

3. Hybrid Index System

In this section, we propose an extended multidimensional histogram and a two-
step index structure for improving LOD query performance. Algorithms of the hot-cold
segment identification and two-step join query processing based on our index structure
are discussed.

3.1. Extended Multidimensional Histogram

We adapt the MDH technique for LOD storage and searching. Our histogram, called
MDH*, aims to support efficient join query processing without significant storage demand.
To achieve scalable query processing, we design a compact storage structure and minimize
the number of indexes used in the query execution. As a running example, we extract
sample data from a small portion of the RDF file. Figure 3 shows these sample data.

Figure 3. Sample data used for the running example.

In MDH*, we adopt a dictionary compression method [13] to reduce the redundancy
of long common URI prefixes. This method divides a URI into prefix and suffix parts
using the last separator “/”. Moreover, instead of storing the prefix and suffix parts as a
string, all strings are replaced with unique numerical codes. For instance, Smith would
be represented by a URL such as “http://dbpedia.org/person/Smith” (accessed on 17
January 2021) in a real-world RDF graph; storing compressed numbers instead of this
string can save large spaces. Here, we provide a brief introduction of the MDH concept [5].
The first step in building the MDH involves transforming the RDF triples into points in
a three-dimensional space by applying hash functions (e.g., hashCode() function in Java)
to the individual components of the RDF triples. Next, the three-dimensional space is
partitioned into disjoint regions, each defining a so-called bucket. Each bucket contains
entries of all URIs whose data include RDF triples in the corresponding region. Given a
triple pattern for an RDF query, a lookup entails computing the corresponding triple points
by applying the same hash function and retrieving buckets responsible for the obtained
triple points. Any URI relevant to the triple pattern can only be contained in buckets.

Similarly, the first step of building the MDH* involves transforming the RDF triples
into compressed numbers using Java’s hashCode() function. In this case, these numbers are
points in the n-dimensional data space, whose coordinates correspond to three-dimensional
cubes for (s, p, o). The coordinates are inserted sequentially and aggregated into regions.
Each region contains a list of these compressed triple numbers. The triple numbers in the
list are added with two special count frequencies, rather than ordinary triple numbers,
to improve the join query performance. The count frequencies specify α and β, where α
indicates the number of subjects in which o occurs as subjects in the LOD cloud; similarly,
β indicates the number of objects in which s occurs as objects. We observe that a number
of triples in the LOD cloud are used as subjects of one triple and objects of another triple.
Yuan et al. [13] demonstrated that more than 57% of LOD subjects are also objects.

http://dbpedia.org/person/Smith


Appl. Sci. 2021, 11, 2405 7 of 18

Definition 1: Let (t, f) be an extended RDF tuple with frequency f, where t is the compressed triple
numbers (x, y, z) and f is the count frequency (α, β). Then, the extended RDF tuple ((x, y, z), (α,
β)) equals the quintuple (x, y, z, α, β).

Considering the running example presented in Figure 3, the converted compression
numbers are represented in Figure 4a. We can then obtain the compressed triple numbers
for each RDF triple (e.g., (Smith, knows, Lucy)→ (11, 12, 13)). The count frequencies are
initialized (0, 0) if o and s have not appeared in s and o, respectively. Otherwise, when o
or s appears in s or o, respectively, the values are incremented by 1. Figure 4b shows the
completed extended RDF tuples in our running example after adding the count frequencies.

Figure 4. Converted compression numbers and extended resource description framework (RDF) tu-
ples.

Because calculating the count frequencies would be expensive, counting and inserting
the frequencies can be performed as batch processing after compressed triple numbers are
established. Figure 5 schematically depicts the extended RDF tuples stored in a multidi-
mensional histogram, i.e., MDH*. When a triple pattern for the RDF query is given, the
main operation is to determine relevant extended RDF tuples that satisfy the query. By
looking up these tuples in MDH*, we can obtain a set of candidate results that potentially
provide relevant resources. In Section 3.4, we explain how SPARQL join queries can be
efficiently performed using MDH*.

Figure 5. Extended RDF tuples in the three-dimensional MDH*.

3.2. Two-Step Index Structure

The success of the MDH* method depends on its ability to rapidly narrow down
a set of relevant resources that are affected by the SPARQL queries. To decide which
resources are relevant for a particular query, we need an efficient index structure that can
organize the set of resources. A number of index structures for LOD have been proposed,
including QTree, R-tree, k-d tree, and SameAsPrefixIndex. However, these structures are
deemed unsuitable for organizing LOD datasets. Because of rough approximation, the
candidate results contain large numbers of false hits that do not fulfill the query condition.
All candidates must be transmitted into the refinement processing, even if they contain
false hits. The refinement processing in the main memory is expensive, particularly if the



Appl. Sci. 2021, 11, 2405 8 of 18

number of candidates is large, because time-consuming internet access is required for many
unreliable resources.

In this section, we do not aim to discuss in detail which index structure is most suitable
for organizing LOD datasets. Instead, we propose an extension of the existing index
structure. Because the cost of developing a new index structure can be more expensive
than the cost of simply extending an existing one, adding new features to the existing
index structure is an excellent alternative. We select 3D R*-tree [27] for our index structure.
R*-tree, the most popular variant of R-tree, is originally a multidimensional index structure
for spatial data. Figure 6 depicts our two-step index structure. This figure is distinguished
into two parts. The first level indicates the multidimensional index structure for organizing
MDH*, which is a straightforward modification of the 3D R*-tree. The second level shows a
set of k-d trees, which are used for refinement processing. Using this two-phase mechanism,
we can completely filter irrelevant data.

Figure 6. Two-step index structure based on minimum bounding box (MBB) approximation and
MDH*.

The 3D R*-tree comprises leaf and nonleaf nodes. A leaf node contains entries of
the form (id, region), where id refers to a k-d tree in the database and region is the MBB
of that tree. A nonleaf node is built by grouping MBBs at the lower level. Each k-d tree
node maintains a list of (uri, tuple) pairs, where uri is a pointer to the address where
the object actually resides and tuple is an extended RDF tuple. In our case, the extended
RDF tuples comprise points in the n-dimensional data space, which are represented by
compressed hash values and count frequencies. We can significantly reduce the memory
pressure by replacing long string literals with hash values. The hash values are inserted
sequentially and aggregated into the k-d trees. The 3D R*-tree is well suited for disk use
because it is a broad shallow tree and requires few node accesses to retrieve a value. From
our experiments in Section 4.2, we find that the 3D R*-tree stored in SSD does not have
much performance effect. Thus, all R*-tree nodes are stored in HDD because the cost of
SSD is higher than that of HDD.

Each list of (uri, tuple) pairs is maintained on a designated k-d tree, which is com-
pletely transferred into the main memory when the refinement processing requires the
corresponding list. The k-d tree is suitable for memory usage owing to its excellent stor-
age utilization capacity (the pointer to data ratio is small and leaf nodes hold only data
items), rapid searching (few nodes are retrieved using a binary search), and fast updating.
However, existing Big Data systems either suffer from large memory space requirements
or incur huge computational overhead. To improve the overall performance of the storage
system, we divide the data into hot and cold. The frequently accessed data (i.e., hot data)
are stored in SSDs, and the less frequently accessed data (i.e., cold data) are stored in
HDDs. To distinguish hot and cold data more effectively, we use access history to train
the decision tree model [28]. The trained model is used to flag the data and balance the
hot/cold data ratio in SSD and HDD. Compared with MBF (Multiple Bloom Filter) [29]
and HotDataTrap [30], our decision tree method is more intelligent and flexible.



Appl. Sci. 2021, 11, 2405 9 of 18

3.3. Hot-Cold Segment Identification Algorithm

We propose a hot-cold segment identification algorithm to determine ways for reallo-
cating data in SSD and HDD. We use the decision tree to identify data. The training data
collection process for the decision tree is explained. When users access the data, RDF triples
are stored in the decision table (see Figure 7). S, P, and O attributes are the hash values of
the RDF triple elements. The RECENT attribute is a bit for determining whether the data
have recently been accessed. Our algorithm applies the aging mechanism of HotDataTrap
and its recency capturing mechanism sets the corresponding RECENT bit to 1 if any data
are accessed. The COUNT attribute refers to the number of times the data have been
accessed. Finally, the TYPE attribute is a bit for storing data based on whether they are hot
or cold. If the RECENT value is 1 and the COUNT value is more than the threshold, the
data are identified as hot data.

Figure 7. Decision table for training data.

To identify our training data, the decision tree uses an information gain approach for
determining a suitable property. We select the attribute with the highest information gain
as the test attribute. If TYPE is selected as the property for test, the required information
entropy is expressed as

E(Type) =
Hot(#)
All(#)

log2
1

Hot(#)
All(#)

+
Cold(#)
All(#)

log2
1

Cold(#)
All(#)

(1)

where Hot(#), All(#), and Cold(#) denote the number of hot data, all data, and cold data in
the decision table, respectively. The TYPE information entropy for RECENT is expressed as

E(Type|Recent) = Prob(1)∗E(Type|1) + Prob(0)∗E(Type|0) (2)

where Prob(1) and Prob(0) indicate the probabilities of one and zero. Thus, the information
gain of RECENT can be obtained using Equation (1) minus Equation (2). In this way, the
order of the attributes is determined. The decision tree then identifies the test data not
accessed by the user and determines the accuracy to prove that the result is reliable. The
data identified by the decision tree are relocated to the appropriate storage. The R*-tree
buckets comprising hot data are classified as hot segments, and the remaining buckets are
classified as cold segments. The hot segments are indexed into k-d trees in SSD, and cold
segments are indexed into k-d trees in HDD. Algorithm 1 shows the proposed hot-cold
segment identification algorithm.

The disadvantages of SSD include erase-before-write and limited life cycle. Because
SSD uses the out-of-place update structure, it must first erase the old data to write new
data. Unnecessary erase and write operations lead to wear-off of the cells of SSD, thereby
reducing SSD lifetime. To reduce unnecessary write operations, we collect data until they
reach the SSD page size and then execute the write operations. This technique removes
redundant write operations and reduces the occurrence of problems related to SSD.



Appl. Sci. 2021, 11, 2405 10 of 18

Algorithm 1. Hot-cold segment identification.

1: // Collecting training data for the decision tree
2: While (iterate time < predetermined time)
3: If user accesses data Then
4: RECENT = 1
5: COUNT += 1
6: End If
7: End While
8: While (there exist data in the decision table)
9: If RECENT == 1 and COUNT >= threshold Then
10: TYPE = 1 // Data are identified as hot data
11: End If
12: End While
13: // Training decision tree
14: dTree = DecisionTreeClassifier(max_depth = 3) // Create decision tree
15: dTree.fit(train_data, train_label) // Train decision tree
16: result = dTree.predict(test_data) // Identify test data not accessed by the user.
17: Identified data are relocated to HDD and SSD.

3.4. Two-Step SPARQL Query Processing

Two types of queries that we concentrate on are the single and join triple query
patterns. Because the processing of the single triple query pattern is straightforward, we
focus on the join triple query pattern, which is expressed as a conjunction of multiple triple
patterns. There are eight triple patterns in the SPARQL queries: (s, p, o), (s, p, ?o), (?s, p, o),
(s, ?p, o), (s, ?p, ?o), (?s, ?p, o), (?s, p, ?o), and (?s, ?p, ?o) [13]. Because (?s, ?p, ?o) requires a
full scan and the matching number of (s, p, o) is either 0 or 1, only the execution procedures
regarding the other six triple patterns need to be evaluated.

Due to page length limitations, we only explain the evaluation of (s, p, ?o) here. The
processing of this pattern comprises two steps: the filtering and refinement phases. The
filtering phase prunes the search space using the 3D R*-tree. Using this tree, we determine
all candidate MBBs that possibly provide the result. The triple pattern (s, p, ?o) is first
transformed into coordinates in the three-dimensional space by applying the same hash
function used for building the MDH*. Because the triple pattern includes a query variable
(prefixed with ?) at the object position, this processing is treated as a line rather than a
point (note that (?s, p, ?o) is treated as a plane). Using this query line, we can locate all
MBBs overlapping the line in the 3D R*-tree. After identifying all candidate MBBs, we can
refine the immediate result using the k-d trees.

For the immediate result obtained in the filtering phase, the refinement phase precisely
evaluates the query condition. Using our 3D R*-tree, we can quickly select MBBs that
contain all possible extended RDF tuples matching the join triple query pattern. Con-
sidering Example 1 of the (s, p, ?o) 1 (?s, p, ?o) chain query type, the join triple query
pattern combines extended RDF tuples using two or more candidate results. Although
join processing has been extensively studied in the literature, algorithms designed for
traditional join processing can hardly be used for the SPARQL join without modifications.
Only the nested-loop join algorithm can be used without any modification. Thus, the
nested-loop join algorithm serves as the starting point.

Algorithm 2 shows a detailed illustration of our MDH*-based join processing algo-
rithm for the chain query type. It is a revised version of the traditional nested-loop join
algorithm. In line 1, we determine whether a query is a possible SPARQL triple pattern. In
line 4, we obtain a filtering result by joining the previous and current results using MBB.
The input of our refinement phase is a set of pairs of relevant extended RDF tuples in the
k-d trees. In the join procedure of line 13, two input sets (X and Y) are compared in the
inner loop using equijoin techniques to determine the matching between the sets. If α 6= 0,
lines 17–20 are performed. This process first checks whether the two input sets satisfy the
join condition. If so, these two tuples are appended to the final result and α is decremented
by 1. This procedure is repeated until α becomes 0. Therefore, our algorithm can skip
unnecessary operations that clearly do not fulfill the join condition. After eliminating these



Appl. Sci. 2021, 11, 2405 11 of 18

false hits, a recursive URI lookup process [4] is performed using link traversal techniques.
A similar algorithm is applied to β for the (?s, p, o) 1 (?s, p, ?o) query pattern (e.g., select
?n where {?f foaf:lastName Lucy. ?n foaf:knows ?f}).

Algorithm 2. MDH*-based join processing.

1: If Q is in SPARQL triple patterns // Q: query
2: For each pattern i in Q
3: If FilterPhase(i) != null Then
4: FilterPhase(i) = OVERLAP(FilterPhase(i-1), FilterPhase(i))
5: Else break
6: End For
7: For each pattern i in Q
8: If RefinePhase(i) != null Then
9: RefinePhase(i) = JOIN(RefinePhase(i-1), RefinePhase(i))
10: Else break
11: End For
12: End If
13: Procedure JOIN(X, Y) // X, Y: two k-d tree input sets
14: For each tuple x in k-d tree X
15: For each tuple y in k-d tree Y
16: If α 6= 0 (or β 6= 0) Then
17: If x and y satisfy the join condition, Then
18: x and y tuples are added to the result

19: α (or β) is decremented by 1
20: Else
21: Else break
22: End For
23: End For

Example 1 shows a SPARQL query expressing the join between two triple patterns.
In traditional join techniques, after receiving a SPARQL query, a query engine usually
performs a nested-loop join algorithm without considering the count frequencies. Figure 8
shows two input sets of the nested-loop join algorithm using our running example. The
input sets in this figure are shaded. The join cost will be approximately 3 × 9 = 27 tuple
comparisons. If the query is complex and the dataset is very large, the cost will significantly
increase. The main concept of our method is decreasing the join cost by considering the
count frequencies; if α = 0, tuples need not be compared. Hence, two tuples (11, 12, 13, 2, 0)
and (11, 12, 4, 3, 0) are selected as the input set of the join procedure. Furthermore, our join
algorithm is only repeated within the α count. Thus, the join cost is reduced to 2 + 0 + 5 = 7
tuple comparisons. This method can achieve up to 74% improvement for the join query.

Figure 8. Two input sets of the nested-loop join algorithm.

4. Experimental Evaluation

In this section, our hybrid method is compared with existing popular methods on
benchmark LOD datasets. We also measure the overall performance of the hot-cold segment
identification algorithm using a real LOD dataset.

4.1. Join Query Performance and Storage Amount

In our experiments, we compared our method with other popular existing methods.
Our objective is to show that we can achieve excellent join query performance with a
small amount of storage. In the experiments, our hybrid approach, referred to as HYBRID,
was compared with QUAD [9], DARQ [14], and MIDAS-RDF (referred to as MIDAS) [18].



Appl. Sci. 2021, 11, 2405 12 of 18

QUAD, DARQ, and MIDAS are existing local, live exploration, and index approaches,
respectively. This evaluation is conducted on a server system with a 3.6-GHz Intel i7 CPU
and 32 GB memory. All programs were written in the Java language on a server running
Windows 10. In this work, we performed two sets of experiments; first, we measured the
join query performance, and then we measured the storage amount.

We used the Lehigh University Benchmark (LUBM) dataset [31] to obtain realistic
results of the performance of large-scale RDF storage structures. The LUBM dataset is the
most widely used benchmark dataset in the Semantic Web community. It contains 230,061
triples, 38,334 subjects, 17 predicates, and 29,635 objects. The size of the entire dataset
is 36.7 MB. The original version of the LUBM queries has not been updated since 2009.
With an increase in the query complexity, the older version cannot support all join query
types. To address this issue, we modify the original version to support all join query types.
We first design 15 queries from Q1 to Q15. Then, we enumerate all join query types and
compare their join query performance. The SPARQL join query types are star (Q1, Q3, Q4,
Q5, Q11, Q13), chain (Q6, Q10), directed cycle (Q2), cycle (Q15), tree (Q9), and complex
(Q7, Q8, Q12) types.

Figure 9 presents the three-dimensional points in the 3D R*-tree with respect to the
LUBM dataset. All data are visualized through the interface provided by ELKI (Envi-
ronment for Developing KDD-Applications Supported by Index Structures). This figure
shows that all points are converted into the three-dimensional space. In the LOD cloud,
the volume of data is very large, with some application areas containing a billion or more
points. Such datasets usually far surpass the capabilities of a standard computing system,
particularly if real-time interactions are desired. This may result in significant demand for
memory and disk storage. Thus, the factors primarily influencing the system performance
are the storage space and query performance.

Figure 9. Three-dimensional points in the 3D R*-tree.

To evaluate the join query performance of the HYBRID method, we performed
15 SPARQL join queries that expressed the above join query types. Figure 10 illustrates
the join query performance for various join query types. Experimental results show that
the query performance of HYBRID is always superior to that of other methods. DARQ
and MIDAS perform considerably worse than QUAD and HYBRID because these methods
produce considerably larger intermediate results and require more time for I/O and CPU.
QUAD shows slightly worse performance than HYBRID because QUAD needs to load six
B+-trees to support all access query patterns and decompress intermediate results in a short
time. However, HYBRID considers only a 3D R*-tree with k-d trees without storing all
possible access combinations. It further reduces the intermediate results using the two-step
query processing techniques described in Section 3.4.



Appl. Sci. 2021, 11, 2405 13 of 18

Figure 10. Join query performance for various join types.

The second set of experiments involves the storage amount. In Figure 11, the storage
amounts are presented for HYBRID, QUAD, DARQ, and MIDAS. In terms of storage space,
HYBRID is superior to QUAD for all datasets because QUAD maintains six indexes for all
access patterns on the RDF triples with the context. DARQ requires the least amount of
storage space because DARQ queries are processed at the SPARQL endpoints provided
by remote publishers; hence, in DARQ, data need not be stored in a local server. HYBRID
and MIDAS require almost the same amount of storage space. Although both attempt to
save storage space by not loading all the data into a single repository, HYBRID and MIDAS
perform slightly worse than DARQ because HYBRID has a 3D R*-tree with k-d trees,
whereas MIDAS only has a k-d tree and requires additional space for service descriptions.
QUAD performs significantly worse than the other three methods.



Appl. Sci. 2021, 11, 2405 14 of 18

Figure 11. Storage amount.

During the join query processing, memory is allocated for retaining the filtering results.
Thus, the memory size allocated for the join query processing is highly correlated with the
filtering result size. Compared with QUAD, DARQ, and MIDAS, HYBRID requires the
least amount of main memory because it can significantly reduce the filtering result size.
Although DARQ requires the smallest storage space, it uses large memory to compute the
join of intermediate results at the control site. The major motivation behind developing
the HYBRID method is the desire to reduce the amount of main memory required to load
the filtering results into the memory. Because the k-d trees are completely transferred into
the main memory when the filtering results are required for the refinement phase, we
assume that the main memory is sufficiently large to process these trees. If the k-d trees
are excessively large to entirely fit in the main memory, a memory allocation problem
arises. When the main memory becomes full and a new bucket must be inserted, any other
bucket must be replaced. Several approaches have been proposed to determine the bucket
that must be removed from the memory, including FIFO (First In First Out), LRU (Least
Recently Used), and LFU (Least Frequently Used). Owing to memory space limitations,
we should like to keep often-used data in the memory. Consequently, we use the LFU
algorithm to manage the k-d trees, in which the least frequently used bucket is removed
whenever the memory overflows.

The storage amount of the filtering results can be considerably large if the dataset is
large. Copying such a large quantity of data into the memory is obviously time- and space-
consuming. Therefore, it is essential to reduce the storage amount of the filtering results,
particularly in a multiuser environment. The proposed HYBRID method can significantly
decrease the amount of required memory space. Moreover, the two-step query processing
achieves better CPU performance than that of the other methods. The experimental results
show that the storage and index structures in HYBRID are compact and efficient; hence,
only data relevant to the queries are mostly accessed. The benefits provided by the compact
storage and two-step index structure lead to efficient memory utilization and reduced
I/O cost.

From the above observations, we conclude that better performance is expected using
HYBRID, even though it does not exhibit the best value in each criterion compared with
other methods. This is because HYBRID achieves good join query performance with a
small amount of storage. Therefore, we can reasonably predict that HYBRID will achieve a
better overall performance than QUAD, DARQ, and MIDAS.

4.2. Performance of Hot-Cold Segment Identification Method

We measure the overall performance of our hot-cold segment identification algorithm
using a currently available real LOD dataset. We used various data to obtain realistic results
on the performance of large-scale RDF storage structures. To be as general as possible,
this dataset was chosen from several RDF data used in the LOD cloud. Table 2 lists the
characteristics of the collected dataset. To describe the characteristics of the dataset, we
provide the size and the number of triples, subjects, predicates, and objects. DBpedia con-
tains RDF information extracted from Wikipedia. DrugBank contains RDF information on



Appl. Sci. 2021, 11, 2405 15 of 18

drugs. It is widely used by the drug industry, medicinal chemists, pharmacists, physicians,
students, and public institutions. LinkedGeoData is a large spatial knowledge base which
has been derived from OpenStreetMap for Semantic Web. These three data are widely used
for developing Semantic Web applications.

Table 2. Characteristics of the Linked Open Data (LOD) dataset.

Size (MB) Number of
Triples

Number of
Subjects

Number of
Predicates

Number of
Objects

DBpedia 3.94 31,050 4008 23 16,644
DrugBank 144 766,920 19,693 119 274,864

LinkedGeoData 327 2,207,295 552,541 1320 1,308,214

The hot-cold segment identification algorithm determines how to allocate data be-
tween SSD and HDD. The storage system composed of a single storage medium cannot
meet the demand of high capacity, low cost, and high-performance at the same time.
Therefore, if multiple storage media are integrated to form a hybrid storage structure,
using their respective advantages, the requirements for large capacity, low cost, and high-
performance can be met. Figure 12 shows the join query performance of the real LOD
dataset listed in Table 2, when the 3D R*-tree is kept in SSD and HDD, respectively. We
find that the performance difference of the 3D R*-tree on SSD and HDD is not apparent
through this experimental result. Hence, we put the 3D R*-tree in HDD since the cost of
SSD is higher than that of the HDD. Figure 13 shows the results of relocating each datum
to an appropriate storage device using hot-cold data identified by the decision tree. For
different benchmark complexities, DBpedia, DrugBank, and LinkedGeoData in Table 2
are considered. The results show that an average of 42% of the SSD is used to store hot
segments, and an average of 58% of the HDD is used to store cold segments. Thus, SSD is
used to the minimum.

Figure 12. Three-dimensional R*-tree performance on SSD and HDD.

Figure 13. Results of relocating data in SSD and HDD.

Figure 14 illustrates the search performance of storage structures obtained from our
experimental dataset. The experiments perform comparing response times using SSD only,



Appl. Sci. 2021, 11, 2405 16 of 18

our hybrid storage structure (referred to as HSS), and HDD only, respectively. The results
show that the search performance of SSD always beats the performance of other storage
devices. HSS performs slightly worse than SSD because our hybrid storage structure is
based on the hot-cold segment identification strategy. HDD performs significantly worse
than the other storage structures. For all data, SSD performs 1.6 times faster than HDD,
but it costs 2.6 times more. The performance of HSS, which balances cost and performance
optimally, shows more than 70% of SSD search performance with minimal use of the
expensive SSD. If the response time and cost are considered as main criteria in comparisons,
we conclude that a reasonable storage structure is possible with HSS.

Figure 14. Search performance of storage structures.

The storage system should be able to handle read-write operations of data efficiently.
The time needed for write of a certain number of RDF triples is shown in Figure 15. This
figure is a graph comparing the performance of “page size write” and “immediate write”
operations. The page size write means collecting data until it is a multiple of the SSD page
size and then performing a write operation, and the immediate write means an immediate
write operation. In this plot, we observe that the page size write operation performs better
than the immediate write operation. As the number of triples increase, the difference
becomes even clearer. The gap between the write time is owing to reducing unnecessary
erasing operations. As a result, cell unusable states are reduced by this benefit. Even
when the number of write operations is small, the performance is improved by more than
5.9 times, and as the number of write operations increases, the performance of the proposed
method is more excellent.

Figure 15. The time needed for write of a certain number of RDF triples.

5. Conclusions and Future Work

The efficient storage and query processing for Big RDF Data is a challenging re-
quirement in the LOD cloud. In this paper, we proposed an extended multidimensional
histogram, called MDH*, to store, compress, and discover LOD. Further, we established
an MDH*-based join algorithm to increase the efficiency of MDH*. An extended RDF
tuple with two special count frequencies was considered, which could help reduce join
costs. We also proposed an extension of the existing index structure. Our index structure
comprised two phases: one for MBB approximation using the 3D R*-tree and the other



Appl. Sci. 2021, 11, 2405 17 of 18

for auxiliary main memory indexes using k-d trees. In contrast to existing studies on this
subject, in which only the filtering phase was investigated, we considered the refinement
phase that improves the main memory performance because the refinement phase exerts
a critical influence on the performance of LOD query processing. The refinement phase
involved time-consuming processes, particularly when accessing numerous unreliable
LOD resources.

We investigated in detail a two-step index structure based on the MBB approximation
and the MDH* to improve the performance of join query processing. The filtering phase
quickly reduced the entire set being searched to a set of candidate MBBs using the 3D
R*-tree. The refinement phase precisely evaluated the extended RDF tuples in the can-
didate MBBs using the k-d trees. The two-step index structure aims to support efficient
join query processing using a hybrid storage structure and compact storage layout. We
evaluated the proposed method against other popular existing methods. Experimental
results indicated that our method based on the two-step index structure achieved efficient
join query performance with flash memory-based k-d trees and a small amount of storage.
In future work, it is desirable to discuss the maintenance problem of our index structure
in detail. After initializing the two-step index structure, the index must be dynamically
updated using up-to-date data. Recently, Vidal et al. [32] addressed this issue; however, a
more detailed study is required.

Author Contributions: Writing—original draft preparation, Y.S.; Software and validation, T.Z. and
S.Y.; Writing—review and editing, Y.L.; Project administration, Y.L.; Funding acquisition, Y.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A1B02008553).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Okoye, K. Linked Open Data: State-of-the-Art Mechanisms and Conceptual Framework. In Linked Open Data: Applications, Trends

and Future Developments; Okoye, K., Ed.; IntechOpen: London, UK, 2020; Volume 3, pp. 158–190. [CrossRef]
2. Svoboda, M.; Mlynkova, I. Linked Data Indexing Methods: A Survey. In On the Move to Meaningful Internet Systems: OTM 2011

Workshops, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7046, pp. 474–483. [CrossRef]
3. Harth, A.; Hose, K.; Karnstedt, M.; Polleres, A.; Satler, K.; Umbrich, J. Data Summaries for On-demand Queries over Linked

Data. In Proceedings of the 19th International Conference on World Wide Web (WWW), Raleigh, NC, USA, 26–30 April 2010; pp.
411–420. [CrossRef]

4. Hartig, O. Querying a Web of Linked Data: Foundations and Query Execution; IOS Press: Amsterdam, The Netherlands, 2016; Volume
5.

5. Umbrich, J.; Hose, K.; Karnstedt, M.; Harth, A.; Polleres, A. Comparing Data Summaries for Processing Live Queries over Linked
Data. World Wide Web 2011, 14, 495–544. [CrossRef]

6. Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), New York, NY, USA, 18–21 June 1984; Volume 14, pp. 47–57. [CrossRef]

7. Umbrich, J. A Hybrid Framework for Querying Linked Data Dynamically. Ph.D. Thesis, National University of Ireland, Galway,
Ireland, 2012.

8. Lynden, S.; Kojima, I.; Matono, A.; Makanura, A.; Yui, M. A Hybrid Approach to Linked Data Query Processing with Time
Constraints. In Proceedings of the WWW Workshop on Linked Data on the Web (LDOW) 2013, Rio de Janeiro, Brazil, 14 May
2013.

9. Harth, A.; Decker, S. Optimized Index Structures for Querying RDF from the Web. In Proceedings of the 3rd Latin American Web
Congress (LA-Web), Washington, DC, USA, 1 October–2 November 2005; pp. 71–81. [CrossRef]

10. Neumann, T.; Weikum, G. RDF-3X: A RISC-style Engine for RDF. In Proceedings of the 34th International Conference on Very
Large Data Bases (VLDB), Auckland, New Zealand, 24–30 August 2008; pp. 647–659. [CrossRef]

11. Wess, C.; Karras, P.; Bernstein, A. Hexastore: Sextuple Indexing for Semantic Web Data Management. In Proceedings of the
34th International Conference on Very Large Data Bases (VLDB), Auckland, New Zealand, 24–30 August 2008; pp. 1008–1019.
[CrossRef]

http://doi.org/10.5772/intechopen.94504
http://doi.org/10.1007/978-3-642-25126-9_59
http://doi.org/10.1145/1772690.1772733
http://doi.org/10.1007/s11280-010-0107-z
http://doi.org/10.1145/971697.602266
http://doi.org/10.1109/LAWEB.2005.25
http://doi.org/10.14778/1453856.1453927
http://doi.org/10.14778/1453856.1453965


Appl. Sci. 2021, 11, 2405 18 of 18

12. Atre, M.; Chaoji, V.; Zaki, M.; Hendler, J. Matrix Bit Loaded: A Scalable Lightweight Join Query Processor for RDF Data. In
Proceedings of the 19th International Conference on World Wide Web (WWW), Raleigh, NC, USA, 26–30 April 2010; pp. 41–50.
[CrossRef]

13. Yuan, P.; Liu, P.; Wu, B.; Jin, H.; Zhang, W.; Liu, L. TripleBit: A Fast and Compact System for Large Scale RDF Data. In Proceedings
of the 39th International Conference on Very Large Data Bases (VLDB), Riva del Garda, Trento, Italy, 30 August 2013; pp. 517–528.
[CrossRef]

14. Quilitz, B.; Leser, U. Querying Distributed RDF Data Sources with SPARQL. In Proceedings of the 5th European Semantic Web
Conf. (ESWC), Lecture Notes in Computer Science, Canary Islands, Spain, 27 June 2008; Volume 5021, pp. 524–538. [CrossRef]

15. Langegger, A.; Wob, W.; Blochl, M. A Semantic Middleware for Virtual Data Integration on the Web. In Proceedings of the 5th
European Semantic Web Conference (ESWC), Lecture Notes in Computer Science, Canary Islands, Spain, 27 June 2008; Volume
5021, pp. 493–507. [CrossRef]

16. Abdelaziz, I.; Mansour, E.; Ouzzani, M.; Aboulnaga, A.; Kalnis, P. Lusail: A System for Querying Linked Data at Scale. In
Proceedings of the 44th International Conference on Very Large Data Bases (VLDB), Rio de Janeiro, Brazil, 27–31 August 2018; pp.
485–498. [CrossRef]

17. Lyden, S.; Yui, M.; Matono, A.; Nakanura, A.; Ogawa, H.; Kojima, I. Optimising Coverage, Freshness and Diversity in Live
Exploration-based Linked Data Queries. In Proceedings of the 6th International Conference on Web Intelligence, Mining and
Semantics (WIMS), Nimes, France, 13–15 June 2016; Volume 18. [CrossRef]

18. Tsatsanifos, G.; Sacharidis, D.; Sellis, T. On Enhancing Scalability for Distributed RDF/S Stores. In Proceedings of the 14th
International Conference on Extending Database Technology, Uppsala, Sweden, 21–24 March 2011; pp. 141–152. [CrossRef]

19. Mountantonakis, M.; Tzitzikas, Y. Scalable Methods for Measuring the Connectivity and Quality of Large Numbers of Linked
Datasets. ACM J. Data Inf. Qual. 2018, 9, 15. [CrossRef]

20. Fevgas, A.; Bozanis, P. A Spatial Index for Hybrid Storage. In Proceedings of the 23th International Database Applications &
Engineering Symposium (IDEAS), Athens, Greece, 10–12 June 2019; pp. 1–8. [CrossRef]

21. Sakr, S.; Wylot, M.; Mutharaju, R.; Le Phuoc, D.; Fundulaki, I. Linked Data: Storing, Querying, and Reasoning; Springer: Cam,
Switzerland, 2018; Volume 4, pp. 51–83. [CrossRef]

22. Linking Open Data: W3C SWEO Community Project. Available online: http://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData (accessed on 12 March 2017).

23. Chawla, T.; Singh, G.; Pilli, E.S. JOTR: Join-Optimistic Triple Reordering Approach for SPARQL Query Optimization on Big
RDF Data. In Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Bangalore, India, 10–12 July 2018; pp. 1–7. [CrossRef]

24. Bayer, R.; McCreight, E.M. Organization and Maintenance of Large Ordered Indexes. Acta Inform. 1972, 1, 173–189. [CrossRef]
25. Litwin, W. Linear Hashing: A New Tool for File and Table Addressing. In Proceedings of the 6th International Conference on

Very Large Data Bases (VLDB), Montreal, QC, Canada, 1–3 October 1980; pp. 212–223. [CrossRef]
26. Fagin, R.; Nievergelt, J.; Pippenger, N.; Strong, H.R. Extendible Hashing: A Fast Access Method for Dynamic Files. ACM Trans.

Database Syst. 1979, 4, 315–344. [CrossRef]
27. Moten, D. 3D R-tree in Java. Available online: https://github.com/davidmoten/rtree-3d (accessed on 13 October 2019).
28. Jin, C.; De-lin, S.; Fen-xiang, M. An Improved ID3 Decision Tree Algorithm. In Proceedings of the International Conference on

Computer Science & Education (ICCSE), Nanning, China, 25–28 July 2009; pp. 127–130. [CrossRef]
29. Park, D.C.; Du, D. Hot Data Identification for Flash-based Storage Systems Using Multiple Bloom Filters. In Proceedings of the

Mass Storage Systems and Technologies (MSST), Denver, CO, USA, 23–27 May 2011. [CrossRef]
30. Park, D.C. Hot and Cold Data Identification: Applications to Storage Devices and Systems. Ph.D. Thesis, The University of

Minnesota, Minneapolis, MN, USA, 2012.
31. SWAT Projects-The Lehigh University Benchmark (LUBM). Available online: http://swat.cse.lehigh.edu/projects/lubm (accessed

on 10 March 2020).
32. Vidal, V.; Casanova, M.; Menendez, E.; Arruda, N.; Pequeno, V.; Paes Leme, L. Using Changesets for Incremental Maintenance of

Linkset Views. In Proceedings of the 17th International Conference on Web Information Systems Engineering (WISE), New York,
NY, USA, 8–10 November 2016; pp. 196–203. [CrossRef]

http://doi.org/10.1145/1772690.1772696
http://doi.org/10.14778/2536349.2536352
http://doi.org/10.1007/978-3-540-68234-9_39
http://doi.org/10.1007/978-3-540-68234-9_37
http://doi.org/10.1145/3164135.3164144
http://doi.org/10.1145/2912845.2912859
http://doi.org/10.1145/1951365.1951384
http://doi.org/10.1145/3165713
http://doi.org/10.1145/3331076.3331091
http://doi.org/10.1007/978-3-319-73515-3
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://doi.org/10.1109/ICCCNT.2018.8493743
http://doi.org/10.1007/BF00288683
http://doi.org/10.5555/48751.48788
http://doi.org/10.1145/320083.320092
https://github.com/davidmoten/rtree-3d
http://doi.org/10.1109/ICCSE.2009.5228509
http://doi.org/10.1109/MSST.2011.5937216
http://swat.cse.lehigh.edu/projects/lubm
http://doi.org/10.1007/978-3-319-48743-4_16

	Introduction 
	Background and Related Work 
	Overview of Linked Open Data 
	Hybrid Storage Structure 
	Related Work 

	Hybrid Index System 
	Extended Multidimensional Histogram 
	Two-Step Index Structure 
	Hot-Cold Segment Identification Algorithm 
	Two-Step SPARQL Query Processing 

	Experimental Evaluation 
	Join Query Performance and Storage Amount 
	Performance of Hot-Cold Segment Identification Method 

	Conclusions and Future Work 
	References

