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Abstract: A digital elevation model (DEM) digitally records information about terrain variations and
has found many applications in different fields of geosciences. To protect such digital information,
encryption is one technique. Numerous encryption algorithms have been developed and can be used
for DEM. A good encryption algorithm should change both the compositional and configurational
information of a DEM in the encryption process. However, current methods do not fully take into
full consideration pixel structures when measuring the complexity of an encrypted DEM (e.g., using
Shannon entropy and correlation). Therefore, this study first proposes that configurational entropy
capturing both compositional and configurational information can be used to optimize encryption
from the perspective of the Second Law of Thermodynamics. Subsequently, an encryption algorithm
based on the integration of the chaos system and linear prediction is designed, where the one with
the maximum absolute configurational entropy difference compared to the original DEM is selected.
Two experimental DEMs are encrypted for 10 times. The experimental results and security analysis
show that the proposed algorithm is effective and that configurational entropy can help optimize the
encryption and can provide guidelines for evaluating the encrypted DEM.

Keywords: digital elevation model; information security; chaos system; configurational information;
configurational entropy

1. Introduction

A digital elevation model (DEM) is a digital representation of terrain variations and
can explicitly reveal information about the topographic complexity with computer graphics.
With the development of advanced equipment for data acquisition (e.g., high-resolution
satellite sensors, unmanned aerial vehicle (UAV), and LiDAR (Light Detection and Rang-
ing)), it is becoming more and more easy to acquire DEMs. In addition, DEM transmission
becomes more and more frequent due to the development of advanced computer and net-
work communication technologies. However, due to the openness and sharing of networks,
there exists a serious threat in information security and confidentiality [1,2]. Therefore,
information protection is desired and hence has attracted much attention. The literature on
information protection can be traced back to Shannon’s paper entitled “Communication
Theory of Secrecy System” [3]. By now, numerous information protection methods have
been proposed, and encryption is one such solution.

An increasing number of encryption algorithms have been developed to protect infor-
mation from images as much as possible, and such algorithms can be employed to protect
DEMs as well. Since chaotic systems are sensitive to the initial parameters, determinacy,
ergodicity, and so forth [4–7], chaotic-systems-based encryption algorithms [8–15] are
popular among these methods. In general, a chaotic-system-based algorithm encrypts an
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image via two stages (i.e., confusion and diffusion). At the confusion stage, the positions
of pixels are changed. To enhance security, the pixel values are changed at the diffusion
stage. Sometimes, these two stages can be achieved simultaneously. Nevertheless, one
may notice that the precision of initial parameters for generating chaotic sequences can
influence the encryption performance of a chaotic system. At this point, for a given image,
one may ask two questions: (i) Can we employ a metric to help optimize an encryption
algorithm based on the chaos system? and (ii) What abilities should such a metric have? To
answer these two questions, let us first recall the viewpoint proposed by Shannon that it is
possible to break many kinds of ciphers using a statistical analysis on the histogram and
the correlation of adjacent pixels in the cipher image [3]. From this viewpoint, we know
that both the composition (proportions of pixels) and configurational information (spatial
structures) of an image should be considered when designing an encryption algorithm and
when evaluating its performance. This further suggests that we may need to find metrics
for capturing both compositional and configurational information of an image.

Some metrics have been developed to evaluate the performance of encryption systems
upon an image, e.g., correlation [9], NPCR (Number of Pixels Change Rate) [9,16], UACI
(Unified Average Changing Intensity) [9], histogram [17], and Shannon entropy [18–20].
Theoretically speaking, these metrics are not good enough for capturing both compositional
and configurational information. For example, Shannon entropy is a type of statistical
entropy [21] and thus is unable to completely capture the configurational information
of an image since its calculation relies on the occurrence probabilities of pixels, not the
two-dimensional spatial structures. Three DEMs are shown in Figure 1, where the ones in
the middle and right frames are the scrambled results of the one in the left frame. They
have different spatial structures, whereas their Shannon entropy values are the same.
Additionally, the information content of the multiscale representation of a DEM cannot be
well-quantified by these metrics.
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Figure 1. Three digital elevation models (DEMs) with the same histogram and, thus, same Shannon
entropy values.

To bridge the gaps induced by these metrics mentioned above, this study utilizes
the configurational entropy (thermodynamic entropy) to encrypt DEM. An encryption
algorithm is proposed with the integration of a chaos system and linear prediction and is
optimized by leveraging the configurational entropy. Apart from the Introduction section,
the remainder of this study is organized as follows. The Second Law of Thermodynamics
and configurational entropy are introduced first as the perspective for optimizing the DEM
encryption in Section 2. Then, a novel encryption algorithm based on the leverage of
configurational entropy is proposed and described in Section 3. Two DEMs are used in
experiments followed by the results analysis in Section 4. Finally, a conclusion is made in
Section 5.

2. The Second Law of Thermodynamics as a New Perspective for Optimizing
Encryption of Numerical Raster Data

The Second Law of Thermodynamics is concerned with the direction of natural
processes. This law states that an isolated and closed thermodynamic system can sponta-
neously evolve towards thermodynamic equilibrium, where its disorder degree (which
can be measured by entropy) is at maximum [22–24]. Inspired by this law, we can assume
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that a DEM could be considered an isolated and closed thermodynamic system where
pixels are taken as gas molecules. Different temperatures (i.e., different encryption tech-
niques or same techniques with different initial parameters) are imposed on the same
thermodynamic system (an image), and then, the gas molecules (pixels) move in different
directions and finally reach one type of status. Figure 2 shows different statuses of a closed
thermodynamic system under different temperatures. The disorder of the thermodynamic
system represents the complexity (randomness) of an image. The gas molecules move
in different directions and then form different distributions. The disorder degree of gas
molecules increases from (a) to (d).
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Figure 2. Four closed and isolated thermodynamic systems with the same gas molecules but different
distributions.

The disorder of an isolated and closed thermodynamic system can be quantified by the
thermodynamic entropy proposed by Ludwig Boltzmann [25,26]. The calculation formula
for the thermodynamic entropy (configurational entropy and Boltzmann entropy) is as
follows:

S = K log W (1)

where K is the Boltzmann constant (1 in the case of digital images, as suggested by [27])
and W is the number of microstates for a given macrostate. The configurational entropy
of numerical raster data has been defined and computed in [28] with the assistance of the
concept of multiscale representation, leading to two types of terms: relative and absolute.
Concretely, the macrostate is defined as the upscaling results by an operation with a
2 × 2 sliding window; the microstates are all possible downscaling results, which can
be seen in Figure 3. For an image, its relative configurational entropy (SR) is the sum of
configurational entropies of pixels in a sliding window of size 2 × 2 through the whole
image. The absolute configurational entropy (SA) is the sum of relative configurational
entropies across all scales, capturing the multiscale information, which can help us enhance
the analysis of the complexity of an encrypted DEM.
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The experiments conducted in [29] demonstrates that SR can measure the scrambling
degree of grayscale images at the confusion stage. Regarding the diffusion phase included
by an encryption function, the range of pixel values is modified. A good encrypted image
should have various value ranges and pixel structures different from the original one. At
this point, we can take the absolute configurational entropy as a metric to help choose
the best one among all encrypted images. Theoretically speaking, the higher the absolute
configurational entropy, the higher the complexity (and the lower the compressibility
concerning lossless compression). To improve the encryption security, we should select the
one with the maximum SA value among all cases. In this study, the base of the logarithmic
function in Equation (1) is set to 2 to measure the configurational information in units of
bits. The configurational entropy of an image is proportional to its complexity.

3. Encryption Based on the Integration of Chaos System and Linear Prediction

Inspired by the Second Law of Thermodynamics, this section proposes an encryption
algorithm consisting of two parts: (i) the encryption function and (ii) determination of the
best-encrypted image with configurational entropy, which are shown in Figures 4 and 5.
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Figure 5. The schematic process of the proposed encryption function. (a) Encryption of a DEM (an
image) for m rounds. (b) Determination of the best encrypted one with configurational entropy; m
(≥1) represents the m total encryption rounds; n (≥1) represents the number of scrambled images
with respect to 2n key pairs for generating logistic maps.

The confusion phase included under the proposed encryption function is implemented
by the chaos system generated by two logistic maps with different initial parameter values.
Mathematically, the logistic map [30] is written as follows

xn+1 = rxn(1− xn) (2)

where xn is located in the interval [0,1] and 0≤ r≤ 4. When r ∈ (3.5699456, 4), the sequence
generated by the logistic map can show chaotic status, though there are many periodic
windows in this interval. We can assume that a DEM is read as a numerical matrix of size
M × N. The confusion phase scrambles the whole image, indicating that both row and
column scrambling are needed. To begin this process, first, we set the initial parameter
r0 and x0 values to iterate the chaotic system (i.e., Equation (2)) for M times and then a
chaotic sequence of length M, { x1, x2, x3, x4, x5, ,xm}, is generated and referred to as SM.
Then, sorting this chaotic sequence in ascending or descending order, we get {x1, x2, x3,
x4, x5, ,xm} named Sm. Next, we need to find the position values of SM in Sm and to record
the transformation positions TP = { tp1, tp2, tp3, tp4, tp5, tpm}. When we use TP for row
scrambling, we only need to move the tp1 row to the first row and the tp2 row to the second
row until all rows are scrambled. Similarly, regarding column scrambling, new parameter
r0 and y0 values are needed to iterate the logistic map for N times and then to conduct the
same operation as the row scrambling.

Concerning the diffusion phase, the three-point prediction is employed. A 2 × 2
sliding window is moved pixel by pixel, which generates the predicted pixels. Regarding
the edge pixels, the missing ones among pixels a, b, and c are automatically set to 0.
Thereafter, the difference between the confused image and the predicted one is computed
and then taken as the final encrypted DEM in one round. The advantages of three-point
prediction are (i) reducing the correlation between pixels (increasing the complexity of an
image) and (ii) changing the range of pixel values.
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After introducing the encryption function, we describe how the whole encryption al-
gorithm is optimized with the assistance of configurational entropy. As shown in Figure 5a,
users can determine the total encryption rounds, m, and the number of different confusion
phases, n, as illustrated in Figure 5b. The encrypted image (DEM) in the last round is taken
as the input of the encryption function for the next round in the whole encryption process.
Figure 5b shows how to select the best-encrypted image. An image can be scrambled by 2n
logistic maps with 2n different key pairs (r0, x0) at the confusion phase; thus, n confused
DEMs with the same histogram but different structures. Among these n confused DEMs,
the one with the maximum absolute SR difference (|DSR|) compared to the original is
selected as the input for the diffusion phase in which the range of pixel values is changed.
The absolute configurational entropy (SA) is finally employed to determine which one
is the most suitable for transmission. From a theoretical perspective of information, the
higher SA value, the higher the complexity (lower compressibility) of a DEM, indicating
higher encryption performance. Two modes are provided for users: (i) complexity first and
(ii) compressibility first. For the former, the one with the maximum SA is finally selected.
Regarding the latter, the one with the minimum absolute SA difference (|DSA|) compared
to the original DEM is chosen.

The encrypted image can be further processed by lossless compression techniques,
such as Huffman encoding [31], free lossless image format (FLIF) [32], and multiscale
compression [33], to reduce the burden on transmission and storage. To improve the
encryption performance as much as possible, it is recommended that users encrypt a DEM
for at least 4 times (i.e., m ≥ 4) using the proposed algorithm.

4. Experimental Results and Analysis
4.1. Encryption Results

Two 600 × 600 DEMs with different complexities tabulated in Table 1 were considered
experimental images. Their data formats were plain text, and their elevation values were
integer. Figure 6 shows these two DEMs, showing different complexities and various
ranges of pixel values.

Table 1. Two DEMs for the experiments [28]; SR and SA denote relative and absolute configurational entropy, respectively.

DEM Latitude Extent Longitude Extent SR SA Size (KB)

A 34◦27′04′′ N–35◦02′53′′ N 100◦36′21′′ E–101◦49’23′′ E 2,502,048.3 401,204,550.0 1758
B 31◦23′17′′ N–32◦06′40′′ N 104◦07′31′′ E–105◦06’55′′ E 2,416,595.3 308,809,911.3 1459
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For convenience conducting the experiments, both m and n were set to 10 to encrypt
two DEMs. The development environment was Microsoft Visual studio 2013 with .Net
Framework 4.5, and the language used for programming was C#. The keys for generating
chaotic sequences and corresponding |DSR| of the confused DEM A in the confusion phase
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of the first round are tabulated in Table 2. Figure 7 shows the scrambled images, while
they have the same histogram. The fourth one was selected for the diffusion phase because
its |DSR| was the maximum compared with the remaining confused images. By using
the proposed encryption algorithm, we obtained 10 encrypted DEM A, which are shown
in Figure 8, and the key pairs are shown in Table 3, where CR represents the lossless
compression ratio (i.e., the ratio between the bytes used for storing the original data and
that for storing the compressed data) by using LZMA [34,35], which is a dictionary-based
compression algorithm and takes into consideration the spatial structure of data. From
Figure 8, we find that the pixel value range has been modified and the tenth one has the
maximum |DSA| and SA as shown in Table 3. Therefore, it is selected as the best one when
mode (i) is activated. Regarding mode (ii), Figure 8e is considered the best one. From
Figure 9, we find that the SA values of the encrypted images increased, whereas the CR
values decreased with the increase in the total encryption rounds (i.e., m). This can be
explained by the viewpoint derived from [19] that, from a theoretical perspective, the lower
the redundancy (which is measured by configurational entropy here) of an image, the
lower the compression ratio of the image achieved.

Table 2. Comparisons of relative configurational entropy of confused DEM A under different keys
in the first round. (r0, x0) and (r0, y0) denote the keys to scramble the row and column of DEM A,
respectively. |DSR|means the absolute SR difference compared to the original one.

No. (r0, x0) (r0, y0) |DSR|

1 (3.6949202, 0.94) (3.6477592, 0.16) 1,425,882.9
2 (3.7278720, 0.12) (3.7657562, 0.64) 1,455,723.6
3 (3.6158898, 0.54) (3.7451577, 0.34) 1,440,030.0
4 (3.6694297, 0.82) (3.6036054, 0.56) 1,490,201.9
5 (3.7033331, 0.43) (3.8601213, 0.80) 1,478,572.8
6 (3.5919501, 0.58) (3.7767205, 0.53) 1,472,217.3
7 (3.7562061, 0.76) (3.9686558, 0.74) 1,449,584.6
8 (3.7254665, 0.13) (3.942484, 0.03) 1,455,760.0
9 (3.7873567, 0.05) (3.6882554, 0.48) 1,443,565.6
10 (3.8638823, 0.83) (3.6808917, 0.04) 1,453,363.9

Table 3. The best key pairs among 10 encryption times for DEM A. |DSA|means the absolute SA difference compared to
the original one. SA is the absolute configurational entropy.

mth Round (r0, x0) (r0, y0) SA |DSA| Size (KB) CR

1 (3.6694297, 0.82) (3.6036054, 0.56) 267,144,464.1 134,060,085.9 1759 3.239
2 (3.9720618, 0.63) (3.8118391, 0.31) 300,969,521.6 100,235,028.4 1529 2.682
3 (3.9982823, 0.61) (3.6946723, 0.56) 329,305,875.0 71,898,675.0 1641 2.634
4 (3.6911029, 0.24) (3.7563811, 0.84) 359,120,512.9 42,084,037.1 1764 2.602
5 (3.6761227, 0.71) (3.9535386, 0.56) 393,026,254.4 8,178,295.6 1850 2.531
6 (3.6468789, 0.54) (3.7460818, 0.2) 427,592,398.5 26,387,848.5 1946 2.485
7 (3.9889696, 0.77) (3.7643806, 0.9) 464,150,752.2 62,946,202.2 2074 2.474
8 (3.7666660, 0.74) (3.7904553, 0.39) 511,483,888.6 110,279,338.6 2172 2.435
9 (3.9793047, 0.27) (3.7826054, 0.06) 550,795,418.0 149,590,868.0 2253 2.392
10 (3.8921841, 0.88) (3.8734612, 0.19) 604,312,707.5 203,108,157.5 2373 2.380
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Figure 9. Scatters plot of m rounds compared to the SA value of the encrypted DEM A and that of CR compared to the
SA values.

Regarding DEM B, Table 4 shows the |DSR| values of 10 confused ones illustrated in
Figure 10. We find the 10th one is the best in the confusion phase. Table 5 shows similar
results to DEM A. Obviously, when mode (i) is employed, the 10th one is the best since it
has the maximum SA value in comparison with the others shown in Figure 11. However,
the second one is selected when mode (ii) is activated. Figure 12a illustrates that the SA
values increase with the increase in encryption rounds. However, we find that the CR
values decrease in Figure 12b. These experimental results indicate that the configurational
entropy is useful to optimize the proposed encrypted algorithm.

Table 4. Comparisons of the relative configurational entropy of confused DEM B under different
keys in the first round.

No. (r0, x0) (r0, y0) |DSR|

1 (3.9127452, 0.56) (3.9430024, 0.44) 1,366,081.4
2 (3.7803406, 0.42) (3.7118742, 0.28) 1,371,377.5
3 (3.9446201, 0.10) (3.6720488, 0.25) 1,401,148.1
4 (3.8410564, 0.11) (3.7863010, 0.4) 1,201,102.3
5 (3.6867861, 0.75) (3.5896140, 0.09) 1,373,653.2
6 (3.5921033, 0.19) (3.9948832, 0.07) 1,381,518.3
7 (3.6462285, 0.68) (3.5859005, 0.23) 1,375,019.6
8 (3.7970835, 0.63) (3.8113753, 0.49) 1,377,774.8
9 (3.9591995, 0.05) (3.9107138, 0.70) 1,382,701.9
10 (3.9429938, 0.25) (3.7159570, 0.45) 1,388,199.0
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Table 5. The best key pairs among 10 encryption rounds for DEM B.

mth Round (r0, x0) (r0, y0) SA |DSA| Size (KB) CR

1 (3.9446201, 0.1) (3.6720488, 0.25) 285,857,730.3 22,952,181.0 1491 2.696
2 (3.6978437, 0.44) (3.9206044, 0.49) 320,402,657.6 11,592,746.3 1592 2.636
3 (3.6557073, 0.03) (3.8864578, 0.33) 350,085,107.0 41,275,195.7 1728 2.606
4 (3.9037505, 0.02) (3.7374396, 0.21) 383,939,349.7 75,129,438.4 1826 2.550
5 (3.7128502, 0.56) (3.7213353, 0.35) 413,822,209.8 105,012,298.5 1911 2.492
6 (3.8007097, 0.09) (3.9265191, 0.78) 452,157,235.0 143,347,323.7 2031 2.477
7 (3.5822104, 0.46) (3.7138054, 0.15) 494,673,201.5 185,863,290.2 2139 2.453
8 (3.6359581, 0.57) (3.9861503, 0.54) 532,925,355.6 224,115,444.3 2220 2.403
9 (3.9345383, 0.58) (3.7636595, 0.61) 590,387,815.5 281,577,904.2 2325 2.382
10 (3.8741445, 0.34) (3.900868, 0.25) 635,882,520.3 327,072,609.0 2446 2.377
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Figure 11. Three-dimensional images of encrypted DEM B. The numbering sequence is consistent
with the encryption round.

From the two aforementioned encryption examples, we find that configurational
entropy can help users choose the best-encrypted one according to specific requirements,
e.g., the size of encrypted data should be as small as possible, and the encrypted image
should be as complicated as possible. For instance, in consideration of transmission
bandwidth, users can choose the encryption with the minimum SA value. To enhance
the complexity of the encrypted image, users can set larger and larger m and n values if
possible.
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4.2. Security Analysis

A good encryption algorithm should be capable of resisting all attacks. In this section,
we perform a security analysis on the proposed encryption algorithm.

1. Key space and sensitivity analysis

A good encryption approach should be sensitive to the secret keys. In this study, the
iteration times, (i.e., m and n) can be used as keys as well as the parameters r0 and x0 of a
logistic map. Moreover, the precision of parameters of the logistic map can be used as keys
as it can influence the performance of chaotic sequences. The key space is proportional to
the parameter precision: m (≥1) and n (≥1). If the precision is 10−20, the key space size
can be at least m × 1040. Hence, the key space is big enough to resist brute-force attacks.
Moreover, using keys (r0, x0) only to recover the original image is very difficult as the range
of pixel values is changed after using the proposed encryption algorithm. Figure 13 shows
two decrypted DEM A with wrong keys.
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Figure 13. Three-dimensional images of decrypted DEM A: (a) with keys r0 = 3.7004182, x0 = 0.28,
r0 = 3.8994119, and y0 = 0.86; (b) with keys r0 = 3.8777651, x0 = 0.21, r0 = 3.7276262, and y0 = 0.27.

2. Classical attacks

Attackers have many methods of attack. Four classical types of attacks [7] are listed as
follows:
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• Selected plaintext: The opponent chooses a plaintext string and constructs the cipher-
text string when temporary access to the encryption machine is granted.

• Selected cipher text: The opponent obtains a ciphertext string and constructs the
corresponding plaintext string when temporary access to the encryption machine is
granted.

• Known plaintext: The opponent owes a plaintext string and its corresponding cipher-
text.

• Ciphertext only: The opponent owes a ciphertext string

The selected plaintext attack is considered the most powerful one. The proposed en-
cryption approach is highly sensitive to the initial parameters for a logistic map. Moreover,
at the fusion phase, the encryption data are related to not only the one in the confusion
phase but also the one predicted by the three-point prediction technique used at the diffu-
sion stage. Moreover, different encrypted numerical raster data are derived from various
former ones because m and n are variable. This means that the encrypted data are able to
resist the chosen plaintext attack, indicating that it can resist the remaining attacks.

4.3. Decryption Results with True Keys

To decrypt the encrypted DEMs A and B, the true keys tabulated in Tables 3 and 5 are
used. The decryption of an image is the inverse process of its encryption. With true keys,
the reconstructed DEMs A and B are illustrated in Figure 14.
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5. Conclusions

DEM is a digital representation of terrain information. Information security for DEMs
is an important topic due to the openness of computer and network communication. By
using encryption, the information from DEMs can be well protected. In this study, an
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algorithm based on chaos system and linear prediction is proposed. To optimize the
proposed encryption algorithm, configurational entropy is employed. At the confusion
stage, the one with the maximum relative configurational entropy different from the
original is selected for the diffusion stage, where the one with the maximum absolute
configurational entropy is chosen for the sake of obtain the best encryption performance
and the one with the minimum absolute configurational entropy is chosen to reduce the
burden on transmission and storage. Two DEMs are taken as experimental data and
encrypted 10 times. From the experimental results and analysis, we draw the following
major conclusions

• The proposed encryption algorithm is valid, and its security is high.
• Configurational entropy is helpful for optimizing the encryption process.

On the other hand, three areas are recommended for future research. The first is
to investigate the effects of different predictors in the diffusion phase of an encryption
performance. The second is to explore multiscale DEM encryption with the help of absolute
configurational entropy. Finally, more advanced chaos systems and watermark signature
techniques [36–39] are expected to be employed as one part of this study to provide
excellent performance in only one encryption round.
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