
applied
sciences

Article

Memory and Cache Contention Denial-of-Service Attack in
Mobile Edge Devices

Won Cho and Joonho Kong *

����������
�������

Citation: Cho, W.; Kong, J. Memory

and Cache Contention

Denial-of-Service Attack in Mobile

Edge Devices. Appl. Sci. 2021, 11,

2385. https://doi.org/10.3390/

app11052385

Academic Editor: Régis Leveugle

Received: 24 December 2020

Accepted: 4 March 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea;
jowon@knu.ac.kr
* Correspondence: joonho.kong@knu.ac.kr

Abstract: In this paper, we introduce a memory and cache contention denial-of-service attack and its
hardware-based countermeasure. Our attack can significantly degrade the performance of the benign
programs by hindering the shared resource accesses of the benign programs. It can be achieved
by a simple C-based malicious code while degrading the performance of the benign programs by
47.6% on average. As another side-effect, our attack also leads to greater energy consumption of
the system by 2.1× on average, which may cause shorter battery life in the mobile edge devices.
We also propose detection and mitigation techniques for thwarting our attack. By analyzing L1
data cache miss request patterns, we effectively detect the malicious program for the memory and
cache contention denial-of-service attack. For mitigation, we propose using instruction fetch width
throttling techniques to restrict the malicious accesses to the shared resources. When employing our
malicious program detection with the instruction fetch width throttling technique, we recover the
system performance and energy by 92.4% and 94.7%, respectively, which means that the adverse
impacts from the malicious programs are almost removed.

Keywords: memory and cache contention; denial of service attack; shared resources; performance; en-
ergy

1. Introduction

Recently, computing systems are ubiquitous and pervasive. Particularly, mobile
computing systems account for a large portion of the computing systems in the real-
world. For example, smartphones or tablet PCs are widely used in people’s everyday
life. Although mobile edge computing systems are convenient for people, they also
have limitations in terms of computing capability and availability. In the perspective of
computing capability, mobile edge devices have limited computing resources, as they have
small form factors. In the perspective of availability, they can only be used when there are
available power sources (e.g., battery) to operate the devices. On the other hand, though
they have less computing resources when compared to the high-performance computing
environments, recent mobile edge device users demand high computational capability
in their mobile devices for satisfactory mobile user experiences. Thus, mobile processors
(that are a key component in mobile computing systems) are becoming heavier and trying
to catch up with desktop performance [1].

Multi-core mobile processors have been introduced and widely used in mobile com-
puting systems in order to meet those requirements. For example, Exynos [2] mobile
system-on-chips (SoCs), which are employed in many smartphones and tablet PCs, have
adopted an octa-core CPU. Although multiple cores can enhance system performance
by exploiting parallelism in workloads, it is also a problem that some of the computing
resources must be shared between the cores. In typical mobile processor designs, a few
cores share L2 caches and main memories. In this case, when the multiple cores are
running simultaneously, L2 cache or main memory access requests must compete with

Appl. Sci. 2021, 11, 2385. https://doi.org/10.3390/app11052385 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9013-9561
https://doi.org/10.3390/app11052385
https://doi.org/10.3390/app11052385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052385
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11052385?type=check_update&version=3

Appl. Sci. 2021, 11, 2385 2 of 19

each other to gain control to those shared resources. Eventually, there remains a possibil-
ity of denial-of-service (DoS) attack in mobile edge computing systems when there is a
malicious program(s) that impede(s) normal (i.e., benign) programs access to the shared
resources [3,4]. In addition, DoS attacks may result in huge energy consumption because
the malicious code not only delays the execution of the normal programs (hence, it increases
the static power consumption of the system), but it also consumes non-negligible energy
by itself. This in turn leads to faster battery exhaustion in mobile systems, deteriorating
user experiences.

In this paper, we introduce a memory and cache contention denial-of-service attack
that causes a denial-of-service in normal programs. There have been a few previous
studies [3–7] on the attack that is similar to that introduced in this paper. We bring the
main concept of the attack from those works while revisiting it in the mobile edge devices.
Our memory and cache contention attack can be easily performed by a simple C-based
malicious code that is similar to memory copy operations with large data array size.
The malicious code consecutively carries out successive memory operations (a sequence of
load and store), resulting in much slower memory access of the normal programs.

We propose efficient hardware-based detection and mitigation techniques for counter-
measures. Our detection mechanism exploits the differences on workload characteristics
between the malicious code and general programs. By profiling the intensiveness of shared
resource accesses, our detection technique can effectively and efficiently detect the mali-
cious code for the memory and cache contention attack with very low false alarm rates.
For mitigation, we also introduce a simple solution that reduces the instruction fetch band-
width. It can be implemented by reducing the instruction fetch width to completely stop
executing the malicious codes. We evaluate performance degradation from the memory
and cache contention denial-of-service attack and how much our mitigation mechanism
can recover performance losses with cycle-accurate simulations. In addition, we provide
energy results, as our memory and cache contention denial-of-service attack leads to huge
energy consumption in mobile systems and also shows how our countermeasure effectively
reduces the energy consumed by the malicious program.

We summarize our contributions, as follows:

• we introduce memory and cache contention denial-of-service attack and demonstrate
how this attack threatens mobile edge computing systems in terms of both perfor-
mance and energy;

• through our evaluations, we show our memory and cache contention attack can
degrade system performance by 47.6% on average and also increase the system energy
consumption by 2.1×;

• our proposed hardware-based detection method effectively detects the malicious
codes by analyzing the intensiveness and steadiness of the shared resource accesses;
and,

• with our countermeasure that reduces the instruction fetch bandwidth, one can recover
performance degradation and exhaustive energy consumption by 92.4% and 94.7%,
respectively, when compared to the case without our countermeasure.

The rest of the section organization is composed, as follows. Section 2 introduces
related work regarding the attacks that exploit micro-architectural vulnerabilities, malicious
code detection methods, and studies that are related to the shared resource access and
control in computer systems. Section 3 explains our baseline system model, assumptions,
threat model, and attack mechanism with example malicious codes. Section 4 describes
our detection and mitigation techniques. Section 5 shows our evaluation framework and
the results in terms of performance and energy. Lastly, Section 6 concludes this paper.

2. Related Work

Micro-architectural denial-of-service attack has already been already introduced in
several studies [3–7]. Woo and Lee introduced the performance vulnerability of micro-
architectural DoS attacks, which hinder the normal programs accessing the shared re-

Appl. Sci. 2021, 11, 2385 3 of 19

sources [4]. They introduced several attack methods (e.g., continuous memory loads with
a fixed stride, exploitation on inclusion properties, or locked atomic operations, etc.) to
cause DoS in the chip multi-processors (CMPs). They also show that the malicious micro-
architectural DoS attack can severely degrade performance of the normal program by up
to 91%. However, the malicious code detection methods are not proposed in [4] and also
their solutions to mitigate the attacks are not evaluated. Although our work is based on the
malicious code simpler than that introduced in [4], our work shows that the memory and
cache contention DoS attack can be performed, even without well-prepared and meditated
malicious codes. It implies that our attack could be easily exploited, even though the
attacker does not have deep knowledge in target processor architecture. In addition, we
also present energy evaluation results, which are significant consequences of the memory
and cache contention attack.

In [3], another type of micro-architectural DoS is introduced. The main focus of [3]
is unfairness in memory bandwidth across the programs running simultaneously in the
system. Their solution to relieve memory bandwidth unfairness tries to guarantee the
fair sharing of the available memory bandwidth with their proposed memory scheduling
algorithm. Although their solution could relieve performance losses from the attack to some
extent, it cannot fully recover performance of the normal programs because it only provides
the fairness of the memory bandwidth across the programs running simultaneously in the
system while not fully restricting the shared resource accesses from the malicious program.

In [5], the DoS attack in the cloud system is introduced. It exploits that multiple virtual
machines (VMs) are typically co-running in one physical machine in the cloud. A malicious
VM can try to encroach on the effective cache capacity of the benign (victim) VM, incurring
performance losses. For the defense mechanism, they exploit the observation that the
memory bandwidth requirements for the malicious and normal VMs are different. In order
to identify the malicious VM, they sample the memory access statistics. Once detected as
the malicious VM, the proposed mitigation mechanism throttles or migrates the malicious
one not to encroach on the effective cache capacity and memory bandwidth. However, the
main target for the attack in [5] is cloud systems, while ours is mobile devices. Although
the proposed detection and mitigation methods are suitable for high-performance cloud
systems, it might be difficult to employ them in the mobile systems. This is because the
maximum memory bandwidth and available hardware resources in the cloud systems are
typically much higher than the mobile systems. Thus, if the attacker tries to fully exploit the
available memory bandwidth and resources in the cloud system, it would be relatively easy
to distinguish between the malicious and normal VMs. However, in mobile systems, only
considering the memory bandwidth statistics would make it difficult to detect the malicious
program. This is because the maximum achievable memory bandwidth requirement by
the malicious code would be much smaller in the mobile system, which, in turn, makes
it very hard to distinguish between the malicious and benign programs. In addition,
the mitigation method that is presented in [5] is architecture-dependent (e.g., execution
throttling) or cloud system-dependent (e.g., VM migration), which is difficult to employ in
mobile systems.

In [6], Bechtel and Yun have demonstrated memory DoS attacks. As shown in [6],
they have shown two types of the attack: read attack and write attack, which can sig-
nificantly degrade the performance of the system. Additionally, they have introduced
an OS-level detection technique that exploits last-level cache (LLC) writebacks and LLC
misses (by using hardware performance counters) to monitor the memory traffic. However,
our solution is a hardware-based solution that can be activated faster than the OS-level
solution. In addition, our solution can be employed in multi-core embedded systems where
operating systems are not available (e.g., firmware-based systems). In [7], Bechtel and
Yun have also demonstrated another type of the memory DoS attacks by using parallel
linked lists. By additionally exploiting the DRAM bank conflicts, the DoS attack has shown
up to 111× worst-case execution time increases. However, for a successful attack, the
attacker should be aware of the memory address mapping in advance, while our attack

Appl. Sci. 2021, 11, 2385 4 of 19

can be launched without any knowledge of the memory mapping, as discussed in [7].
Moreover, the mitigation mechanism for the attack is not presented in [7].

In [8], thermal-induced micro-architectural DoS attack is introduced. Their attack
incurs thermal stresses in simultaneous multi-threading (SMT) processors, which results
in performance degradation in the normal thread sharing the pipeline with the malicious
thread. When compared to the attack introduced in [8], our attack is totally different, as
we focus on generating meaningless requests to the shared resources instead of incurring
thermal stresses in the shared resources.

Except for the studies introduced above, thermal-induced instruction cache attack [9],
micro-architectural attack for side-channel analysis [10–12], and cache timing attacks to
crack AES keys [13] were also proposed to exploit micro-architectural vulnerability for
circumventing security. However, those studies are not related to denial-of-service attacks.
The malicious code detection methods have also been studied [14–18]. When compared to
the previous studies that focus on a general malicious code detection mechanism, we solely
focus on the memory and cache contention attack detection method with low-cost hardware-
based mechanisms. In [19,20], hardware-based online malware detection mechanisms are
proposed. These detection mechanisms focus on typical malwares incurring non-negligible
hardware overhead (e.g., logic for neural networks in [20]). In contrast, our detection and
mitigation mechanism can not only be implemented with negligible hardware overhead,
but it also does not cause any performance overhead for detection.

There have also been works that consider performance quantification and modeling
due to the resource sharing in the multi-core system. In [21], Eklov et al. introduced a
method for measuring the application performance, depending on the effective last-level
cache capacity. The proposed method uses a specialized program, which is called Pirate
program. The Pirate program is carefully designed to adjust the effective last-level cache
(LLC) capacity based on the knowledge of the LLC replacement policy in the system.
By simultaneously running the Pirate program and target program (whose performance
will be measured), the proposed method accurately measures performance by reading the
performance counters. In [22], the Bandwidth Bandit is proposed to measure the perfor-
mance impact of sharing the off-chip main memory, while the method for performance
measurement in [22] is very similar to that in [21]. In [23], an online performance model
that considers the performance slowdown due to cache and memory sharing is proposed.
With their performance model, they also proposed to partition the shared resources for
minimizing the performance slowdown. However, those works focus on measuring or
modeling the performance impacts due to resource sharing, while our work focuses on
malicious DoS attack and its countermeasure.

3. Memory and Cache Contention Denial-of-Service (DOS) Attack

The main objective of our attack is to incur shared resource contention in the shared
cache and main memory, which, in turn, degrades the performance and energy efficiency
of the normal program. We also explain assumptions and limitations for the system in
detail in Section 3.1.

3.1. System Assumptions

Our baseline system is composed, as shown in Figure 1. There are two processing
cores inside of the mobile CPU, which has an L2 cache shared between the cores. In the
lowest-level of the memory hierarchy, there is an LPDDR3 DRAM main memory. To model
our system similar to the mobile edge computing systems, the processing core parameter is
modified to model out-of-order execution-based mobile processing cores (such as ARM
Cortex-A15 [24]) as close as possible. The L2 cache capacity is 2 MB and it has a stride-
prefetcher that detects a memory access stride and prefetches data accordingly.

Appl. Sci. 2021, 11, 2385 5 of 19

Figure 1. The cache and memory hierarchy in the system.

Each core has 32 KB 2-way L1 data and 32-KB 2-way L1 instruction caches. The number
of entries in the L1 D-cache and L1 I-cache miss status handling registers (MSHRs) are 6
and 2, respectively. Table 1 summarizes our core and system-level architectural parameters.

Table 1. System and processor (CPU) specifications.

Specification

Processor core

Branch predictor Bimodal predictor, 2 K BTB

L1 data cache 32 KB, 2-way set-associative,
2-cycle, LRU

L1 instruction cache 32 KB, 2-way set-associative,
1-cycle, LRU

Fetch width 3

Issue width 8

Commit width 8

Clock frequency 2 GHz

L2 cache
2 MB, 8-way set-associative,

12-cycle, LRU,
Stride-prefetcher

Memory LPDDR3, 800 MHz, 1-channel,
1-rank, 8-bank

Although our attack is not limited to the system entirely same as that shown
in Figure 1 and Table 1, the most important assumptions for our attack are: (1) there
must be multiple cores in the CPU and (2) there must be shared L2 (or last-level) cache and
main memory. The first assumption is required for simultaneously running the normal
(benign) and malicious programs in the system. The second assumption is required for
causing denial-of-service in the normal program as the normal and malicious program
share the cache and memory resources in the system. A clear limitation of our attack is
that the attack can only be launched in the system in which both of the assumptions are
satisfied. However, please note that most of the mobile systems are adopting the multi-core

Appl. Sci. 2021, 11, 2385 6 of 19

CPUs, shared caches, and unified main memory, which means that most of the mobile
systems are vulnerable to our attack.

3.2. Our Attack and Threat Model

We assume that the attacker can hide (or inject) the malicious code inside of the
application (or application update package), pretending to be benign (i.e., in order not
to be detected). In addition, the attacker can compromise untrusted communication
mediums, such as public wireless access points. Once they are compromised, the attacker
can eavesdrop and/or manipulate the traffic across the compromised medium. The attacker
does not need to gain physical access to the victim mobile devices.

Our attack can be triggered by an injected malicious code in the unauthorized applica-
tion package (e.g., apk file in Android), as shown in Figure 2a. The attacker can make a
benign user install the application package that includes our malicious codes (e.g., by de-
ceiving the user). The installed application process (pretending to be a normal application)
can create a thread that includes our malicious code inside of the process, which runs as a
background process not to be detected by the user. In Scenario 1, a single mobile device
user can be affected. However, the attacker may deceive a huge number of mobile device
users, so that the attack can be widespread.

Figure 2. Possible attack scenarios.

Another scenario is also possible, as shown in Figure 2b. For example, the attacker
can establish a rogue wireless access point, as presented in [25]. Based on our assumption
on the attacker’s ability, the attacker can inject a malicious code when the user downloads
resources or applications via the untrusted/compromised communication medium. In this
scenario, many devices that are connected to the rogue access point (or other types of
compromised communication medium) can be affected. In addition to personal mobile
devices, it is also possible to attack the mobile edge servers, such as unmanned aerial
vehicles (UAVs) [26]. In this case, our malicious code can be injected into the system by
the attacker through Scenario 1 or 2 shown in Figure 2. When causing DoS in the mobile
edge server, the connected other mobile or Internet-of-Things (IoT) devices can be affected
by our DoS attack. It would incur a catastrophic impact if the devices are communicating
with the mobile edge servers for hard real-time tasks.

In the mobile device, our attack can be realized in multi-core CPUs, where multiple
cores share last-level (L2) cache and main memory. In the attack scenario, we assume that
the normal (i.e., legitimate) program is running on Core0, while the malicious program for
intentional memory and cache contention is running on Core1. The Core0 tries to access
the shared L2 cache and main memory when the normal program exhibits L1 cache misses
and L2 cache misses (or prefetch requests from the L2 cache), respectively. In this case,
when in the normal situation (Figure 3a), the normal program accesses the shared resources
without any interference from the other programs.

Appl. Sci. 2021, 11, 2385 7 of 19

Figure 3. The cases where (a) the normal program is solely running and (b) both normal and
malicious programs are running in the system.

On the contrary, in the case where the normal and malicious programs are running
together in the system, the malicious program consecutively generates memory access
requests, as it merely loads data and stores it again into the memory with a fixed stride
streaming behavior (an example malicious code will be shown in the next subsection).
For a successful attack, a data size to be accessed must also be sufficiently larger than the
L2 cache size. Otherwise, a large portion of the data requested from the malicious code
can be found in the L2 cache, failing to generate a large number of the malicious main
memory requests. Because the accessed data size is sufficiently larger than the L2 cache
size (thus, much larger than the L1 data cache size), the malicious code can consecutively
generate a large number of L1 data cache misses, which, in turn, tries to consecutively
access the L2 cache. Consequently, the malicious code can rapidly generate a number
of L2 cache access requests (i.e., L1 data cache miss requests) by sufficiently utilizing
the MSHR entries in the L1 data caches. Thus, the generated requests from the L1 data
caches put a strong bandwidth pressure to the L2 caches. In the L2 cache, because of
the stride-prefetcher, it may not generate a large number of the L2 cache misses from the
malicious code. However, the L2 cache prefetcher will consecutively generate the memory
access requests to fetch the data in the malicious program into the L2 cache in advance.
In this case, the effective main memory bandwidth for the normal programs is also reduced.
In summary, our memory and cache contention DoS attack eventually leads to two adverse
impacts on the normal programs:

• a large number of repetitive access requests to the L2 cache incurred by the malicious
code will consecutively prefetch the data of the malicious code into the L2 cache,
evicting the data of the normal program from the L2 cache (i.e., higher L2 miss rate of
the normal programs); and,

• a huge number of L2 prefetch requests that are caused by the malicious code will
exhaust the effective main memory bandwidth, resulting in available memory band-
width reduction and longer memory access latency of the normal program.

Consequently, there can be two system-level adverse impacts from the attack. Firstly, the
shared resource contention between the normal and malicious program will lead to perfor-
mance degradation (i.e., denial-of-service) of the normal programs. Secondly, the malicious
program will draw non-negligible power, while a longer execution time of the normal pro-
grams results in higher static energy consumption. It means that the adverse consequences
of the memory and cache contention attack would lead to user dissatisfaction due to the
shortened battery life in mobile edge devices as well as performance degradation.

Please note that typical mobile device users are hard to detect whether the malicious
code is running or not in the device, because it is executed in the background. In addition,
the application that is used by the attacker to hide the malicious code pretends to be a
normal application (e.g., a category of applications that are widely and frequently executed
in mobile devices), which also makes a detection of our malicious code even more difficult.

Appl. Sci. 2021, 11, 2385 8 of 19

3.3. Malicious Code Examples

Figure 4 demonstrates code snippets of our example malicious codes for memory
and cache contention DoS attack. Simple memory data copy operations are repeatedly
performed in the infinite loop, as shown in Figure 4a. When copying the data, the malicious
code only loads 4-byte (one integer element) within the 64-byte cache line. It eventually
leads to faster issuing of data fetching requests to the shared resources (L2 cache and main
memory) while preventing the L1 data cache hits for the remaining 15 integer elements that
reside in the same cache line. Because our malicious code shows a streaming behavior with
the fixed stride (64-byte), the stride-prefetcher employed in the L2 cache also generates a
number of prefetching requests (default degree: 8) to the main memory, as we explained
in the previous subsection. This, in turn, gives further bandwidth pressure to the main
memory. For memory footprint of our malicious code, we touch 32 MB (it actually copies
2 MB of the data, as we only copy 4 bytes in a 64-byte cache line) of the memory address
space for each source (sender in Figure 4) and destination array (receiver in Figure 4), which
is much larger than the L2 cache size. This eventually incurs a large number of malicious
L2 and main memory access requests.

Figure 4. Code snippets of the example malicious codes.

Because there could be a number of variations (i.e., derivatives) for possible malicious
codes, we also show more malicious code examples. A variety of malicious codes can be
derived, as shown in Figure 4b–d. The overall shapes of the malicious codes are similar
to the codes that are shown in Figure 4a, while there is a slight difference inside of the
main loop. In Figure 4b–d, integer-type addition, integer-type multiplication, and float-
type addition are performed, respectively. Because they also contain consecutive memory
accesses (load and store), they also have an effect of the memory and cache contention DoS
attack, although the program behaviors and characteristics (e.g., functional unit usage)
are different from other types of the malicious codes. In this case, if we try to detect the
malicious codes by referring to the functional unit usage patterns (e.g., by sampling the
performance counters), the detection of the memory and cache contention DoS attack will
be difficult, as they can utilize a variety of the functional units in the CPU.

Although one may perform assembly code-level optimizations for more effective
attack, we do not perform any code optimization from our C-code example. One of the
main threats of our memory and cache contention DoS attack is that a simple and naive
malicious code can also lead to a successful attack, which implies that it could be very
widely exploited.

4. Hardware-Based Countermeasures for Memory and Cache Contention DoS Attack

We should provision malicious code detection and mitigation methods to alleviate
adverse impacts from the memory and cache contention DoS attack. In this section, we first

Appl. Sci. 2021, 11, 2385 9 of 19

explain how we can detect malicious code and mitigate the adverse impacts from the
memory and cache contention DoS attack.

4.1. Our Proposed Detection Method

In this subsection, we provide a detailed explanation of our detection mechanism in
order to thwart the memory and cache contention DoS attack. Our detection mechanism
focuses on the specific behavior of the malicious codes for the memory and cache contention
DoS attack. For a successful memory and cache contention DoS attack, the malicious code
must intensively and steadily generate access requests to the shared resources (L2 cache or
main memory). Consequently, it generates access requests to the L2 cache with a stable
(i.e., not much fluctuating) request interval pattern. Based on this insight, we detect how
steadily and intensively L1 data cache miss requests are generated from a certain core and
issued to the L2 cache within a certain time interval, since the malicious code issues the
requests with a relatively fixed rate when compared to the normal programs.

Figure 5 shows our L1 data cache miss request interval detection mechanism with a
hardware block diagram. The detection is carried out, as follows. Our detection hardware
monitors miss requests from the L1 data caches from the core. Once a miss request is
generated and sent to the L2 cache, we increment RCounter by one. CCounter is also
incremented by one every clock cycle. Once the CCounter value becomes greater than the
Thresint, we check whether the following condition is met or not:

Threslower < RCounter < Thresupper (1)

Figure 5. Hardware block diagram for our proposed detection mechanism. The detection hardware
is installed in each core.

If the condition is met, then we increment ACounter value by one. Otherwise, we
reset the ACounter value to ‘0’. Once the ACounter value hits Thresacc, the mitigation
trigger signal is asserted. In other words, our mitigation mechanism is triggered when the
condition in Equation (1) is consecutively satisfied by Thresacc times.

In this work, the threshold values (Thresint, Threslower, Thresupper, and Thresacc) are
determined, as shown in Table 2. Because our detection method is novel and the threshold
values are newly introduced in this paper, we use an empirical method by running the
simulations to determine the threshold values without referring to the results from the
literature. The Thresint determines how frequently the detection mechanism is carried
out. The lower Thresint, the more frequent detection mechanism we can perform. How-
ever, low Thresint may increase the false alarm rates because of the short detection time
intervals. Through architectural simulation, we empirically determine Thresint as 100,000.
The Threslower, Thresupper, and Thresacc should be determined by considering the program
characteristics. Threslower and Thresupper are related with the intensiveness of the shared
resource accesses that are caused by the malicious codes. Figure 6 shows the range of the

Appl. Sci. 2021, 11, 2385 10 of 19

RCounter for each workload (malicious codes and selected SPEC2006 workloads). The nor-
mal workloads show wider ranges of the RCounter values, while the malicious code only
shows a limited range (roughly 600~1200). Based on this observation, we conservatively set
the Threslower and Thresupper as 600 and 1200, respectively. Thresacc is related to the steadi-
ness of the shared resource accesses caused by the malicious codes. From the simulations,
we confirm that the normal programs are not likely to satisfy the condition in Equation
(1) consecutively by 400. Thus, we conservatively set the Thresacc as 500 to minimize the
false alarm. Although there could be a little better threshold values for our environment
(because our work determines the threshold values not formally, but empirically), our
detection and mitigation techniques can still successfully thwart the attack, as will be
shown in Sections 5.2 and 5.3. We will further investigate how to formally find the optimal
threshold values for a certain environment and architecture as our future work. In terms of
the hardware costs, the main part of our detection mechanism only requires three counters
(RCounter, CCounter, and ACounter), three magnitude comparators, one multiplexor, and
four registers (for threshold values). The hardware cost for our detection mechanism is
negligible when considering that the modern mobile CPUs are already adopting an order
of megabyte on-chip cache memories.

Table 2. Threshold values used for our detection mechanism.

Values Used in This Work

Thresint 100,000

Threslower 600

Thresupper 1200

Thresacc 500

Figure 6. The ranges of RCounter values for each workload. The black-colored dot corresponds
to the average value of RCounter while the gray bar corresponds to the range (i.e., min to max) of
RCounter values.

Although our example malicious codes regularly and steadily issue L1 data cache
miss requests to the shared L2 cache, the average RCounter values of some applications
(e.g., bwaves, leslie3d, and namd) are actually higher than those of the malicious codes.
These applications, which show higher RCounter values than the malicious codes, have
two important characteristics: (1) high L1 data cache misses per cycle (intensiveness of the
L1 data cache misses) and (2) low average L1 data cache miss latency (latency to obtain the
data from the lower-level memories after the L1 data cache miss). Higher L1 data cache
misses per cycle means that more L1 data cache miss requests are issued for a certain time
period, which, in turn, leads to higher RCounter values. Low average L1 data cache miss
latency means that many of the L1 data cache miss requests are served from the L2 cache
(i.e., relatively low L2 cache miss rates) instead of the main memory, which implies that
these workloads do not intensively access the main memory as much as our malicious

Appl. Sci. 2021, 11, 2385 11 of 19

codes or other applications. In the case of low average L1 data cache miss latency, the CPU
core pipeline or dependent instruction execution is likely to be stalled much less than in
the case of high average L1 data cache miss latency. It makes the successive load/store
instructions, which also have a high possibility to result in the L1 data cache miss, be issued
relatively faster, which eventually increases RCounter values. On the other hand, when
running the malicious codes, the average L1 data cache miss latency is much higher than
those three applications. It means a non-negligible portion of the data requested from the
L1 data cache is served from the main memory, resulting in resource contention in both L2
cache and main memory.

There would be a concern regarding how we can effectively detect variants of our
malicious programs. For example, we could make our malicious codes fit into L2 caches
(in order to cause L2 cache hits and try to evict the cache blocks of other programs), trying
to prevent the malicious codes from accessing the main memory. In this case, we only
cause DoS in the shared L2 caches. In addition, we may construct a malicious code to
access memory arrays with irregular indexing sequences to increase row buffer misses
in the DRAM main memory instead of linearly increasing the index with a certain stride.
It may cause the higher latency to serve the data from the main memory, which also wastes
more main memory bandwidth for benign programs. However, the main characteristic
of our malicious code and its variants is to execute the load/store instruction regularly
and consecutively (i.e., steadily), which causes DoS to the shared resources in the system.
In order to efficiently characterize the shared resource access pattern of the malicious
code, we focus on the point (i.e., location) at which the malicious code and its variants
inevitably show a very similar pattern. To accomplish it, our detection mechanism monitors
a connection port (where we can monitor the L1 data cache miss request pattern) between
the L1 data cache and shared L2 cache. In addition, our example variants of the malicious
codes can use multiple different functional units (such as floating point ALUs in Figure 4d)
along with the memory accesses, as shown in Figure 4. It could circumvent the malicious
code detection that uses the performance counters or functional unit usage characteristics,
while our proposed mechanism can successfully detect the malicious codes for the memory
and cache contention DoS attack.

The regular and data-intensive applications (e.g., image processing) might be falsely
detected as a malicious code when adopting our detection mechanism because the mobile
domain typically has wider spectrum of applications compared to the high-performance
domain. However, mobile devices are employing various accelerators to improve perfor-
mance of those regular and data-intensive applications [27]. For example, the image or
graphical processing can be performed in graphic processing units (GPUs) or other image
processing accelerators, such as digital signal processors (DSPs). On the other hand, the
mobile CPUs are more focusing on control-intensive programs in mobile devices. Although
the attacker may launch the memory contention attack with those GPUs or DSPs, it only
has a limited impact, because it can only cause the main memory contention. In addition,
exploiting GPUs or DSPs requires much more efforts for attackers to successfully attack the
system because the attacker should use specialized application programming interfaces
(APIs) to employ those hardware accelerators. On the contrary, our simple C-based mali-
cious code can easily and simply be executed in mobile CPUs. Because mobile devices are
employing more specialized accelerators, the possibility of falsely detecting those mobile
applications (such as image processing) as malicious codes would be lowered.

Our proposed detection method may be subject to the adversarial mimicry attack.
However, it requires a huge effort on the attacker side, which can be justified, as follows.
In order to evade the detection mechanism, the attacker should satisfy the following con-
dition: there should be at least one interval that satisfies RCounter value is out of the
range between the Threslower and Thresupper within Thresacc (or less) consecutive intervals.
In other words, the mimicry attacker should put a code that generates slower or extremely
faster memory accesses at least once a Thresacc interval for evasion of the detection. How-
ever, it is very hard to be achieved, because the attacker cannot know the exact threshold

Appl. Sci. 2021, 11, 2385 12 of 19

parameters (such as Threslower and Thresupper) set for a certain mobile device. In order to
figure out the threshold parameters for the detection, the attacker should put huge effort
on reverse engineering by testing a huge number of malicious code variants, which is not
practically feasible.

4.2. Our Proposed Mitigation Method
4.2.1. Instruction Fetch Bandwidth Throttling

Once we detect the memory and cache contention DoS attack in the system, we should
apply a mitigation method that can neutralize the consequences of the attack. Because
the memory and cache contention DoS attack is mainly caused by resource contentions
between the normal and malicious programs, restricting malicious program’s accesses
to the shared resources would be an effective solution for mitigation. In this paper, we
propose reducing instruction fetch bandwidth when the malicious program is detected by
our detection mechanism. We employ the instruction fetch throttling to reduce instruction
fetch bandwidth, which dynamically adjusts the fetch width of a certain processing core.
When our detection mechanism sends the mitigation mechanism trigger signal, it reduces
the instruction fetch width from 3 to 0 by controlling the MUX selection signal, as shown
in Figure 7. When the instruction fetch width of a certain core becomes 0, the core cannot
fetch the instruction, fully restricting malicious program’s accesses to the shared resources.
In terms of hardware overhead, our mitigation mechanism can be implemented with one
multiplexor and the fetch width control unit, as already shown in Figure 7. The fetch width
control unit can be implemented by temporarily halting (e.g., clock gating) the instruction
fetch units. Please note that the clock gating scheme is very widely used in digital circuits.

Figure 7. Our dynamic instruction fetch width throttling technique.

Appl. Sci. 2021, 11, 2385 13 of 19

4.2.2. Throttling Periods

It is also crucial to determine how long we should maintain the throttling in order to
fully suppress the effect of the malicious memory and cache contention. Figure 8 describes
an example timing diagram for our throttling engagement and disengagement. To trigger
the throttling mechanism, we should spend at least Thresacc × Thresint cycles (in this work,
500 × 100, 000 cycles) for profiling. Once our throttling mechanism is engaged, it lasts
500 million processor clock cycles. After that, the throttling mechanism is disengaged and
the CPU returns back to the normal execution mode while resetting the profiling counters
(i.e., CCounter, RCounter, and ACounter) to ‘0’.

Figure 8. An example timing diagram for the instruction fetch width throttling.

We set the throttling phase to be ten times longer than the profiling phase, as shown
in Figure 8. It means that we can recover performance and energy by at least over 90%, on
average, as long as our detection mechanism correctly detects the malicious codes. Because
our detection mechanism is hardware-based one that profiles runtime program execution
patterns, we cannot forcibly terminate the detected malicious code (although the profiling
phase is much shorter than the throttling phase), which is why we cannot achieve 100%
recovery rates. This is a clear limitation of a hardware-based approach (the similar approach
was also employed in [9]). 500 million cycles correspond to 250 ms in our simulated system,
with 2 GHz CPU. We believe that it would be sufficient time to minimize the impact of the
attack. Obviously, the recovery rate will vary, depending on the time periods of profiling
and throttling phases though the investigation on the relationship between the recovery
rate and profiling/throttling time periods is out-of-scope of this paper.

The instruction fetch throttling is independently performed across the processing
cores, because the fetch width throttling should be applied to each core. For example, once
our detection mechanism detects the malicious program in Core1, only Core1 is engaged
to the instruction fetch width throttling while the Core0 is not engaged. Once 500 million
cycles have been spent since the throttling was engaged in Core1, it resumes the execution
by recovering the instruction fetch bandwidth from ‘0’ to ‘3’ in Core1, returning back to the
profiling phase.

5. Evaluation
5.1. Evaluation Methodology

For evaluations of the attack and our detection and mitigation methods, we model a
mobile edge computing system in gem5 architectural simulation tool [28], as described in
Section 3.1. The performance of the system is measured as IPC (instructions per cycle) of
the normal program. Please note that performance of the malicious code is meaningless, as
it is only used to cause DoS to the normal programs. For normal programs, we use a set
of SPEC2006 workloads (selected 13 workloads) [29]. For the accuracy of the simulations,
we show the results of running 1 billion instructions after we fastforward two billion
instructions. The instruction count is measured based on SPEC2006 programs for fair
comparisons. In other words, we only count the number of executed instructions of
the normal programs, while the executed instruction count of the malicious program is
ignored. For energy evaluations, we use McPAT [30] with 32 nm process technologies.
In our experiments, we assume that the malicious code was already injected to the system,

Appl. Sci. 2021, 11, 2385 14 of 19

because our focus is to unveil adversarial performance and energy impacts from our
DoS attack. The attacker can easily inject and execute the malicious codes using various
methods, as we explained in Sections 3.1 and 3.2 [31]. The malicious codes can also be
injected via downloading the malicious apps or phishing, as reported in [32].

In this paper, we compare performance and energy across three broad cases: spec,
spec+mal_tX, and spec+mal_tX_ft, where X represents the number of the malcode type (type-
X in Figure 4). spec represents the case, where only the normal program is executed in the
system. spec+mal_tX corresponds to the case where the normal program and malicious code
are running in the system simultaneously without our detection and mitigation techniques.
spec+mal_tX_ft represents the cases where our malicious code detection and mitigation
techniques are applied when running both normal and malicious programs. We have a
total of nine different cases for comparisons, as we have four types of the malicious codes.

Our detection and mitigation mechanisms are geared towards our memory and cache
contention DoS attack and corresponding malicious codes. Thus, a comparison between
the detection and mitigation mechanisms for different types of the attacks may result in
unfair comparisons. Thus, we perform the comparison among the three cases explained
above (spec, spec+mal_tX, and spec+mal_tX_ft).

5.2. Performance

Figure 9 shows the results of performance comparison for nine cases. When we
compare spec and spec+mal_t1, the performance of spec+mal_t1 is degraded by 47.7%, on
average, as compared to spec. In the case of xalancbmk, the performance degradation is
up to 78.0%, which means that the malicious memory and cache contention incurs huge
performance losses of the normal programs running at the same time. This is because
of the shared resource (L2 cache and main memory) contention between the normal and
malicious program. In the cases of the other types of the malicious codes, the overall
trends are also similar to the results of spec+mal_t1. The performance degradations of the
normal programs due to malcode type-2, type-3, and type-4 are 47.7%, 47.8%, and 47.3%,
respectively, as shown in Figure 9.

Figure 9. Performance comparison across three broad cases (total nine cases): spec, spec+mal_tX,
and spec+mal_tX_ft. The results are normalized to spec for each workload.

On the contrary, if our detection and mitigation mechanisms are employed, the perfor-
mance of the normal programs is improved, as they restrict the shared resource usage of
the malicious program. On average, with our detection and mitigation mechanisms (i.e., in
the cases of spec+mal_tX_ft) performances of the normal programs are improved by 84.9%,
85.4%, 86.1%, and 83.6% as compared to the cases of spec+mal_t1, spec+mal_t2, spec+mal_t3,
and spec+mal_t4, respectively.

Table 3 shows the performance recovery rates. The performance recovery rates
(Rperf_recovery) are calculated, as follows:

Rperf_recovery = 1 −
IPCSPEC − IPCSPEC+mal_tX_ft

IPCSPEC − IPCSPEC+mal_tX
(2)

Appl. Sci. 2021, 11, 2385 15 of 19

where IPCSPEC, IPCSPEC+mal_tX, and IPCSPEC+mal_tX_ft represents IPC in the cases of spec,
spec+mal_tX, and spec+mal_tX_ft, respectively. In the case of spec+mal_t1_ft, a performance
recovery rate is 91.7% on average. One of the main reasons why we cannot obtain 100%
performance recovery rate is that there must be a profiling phase to detect the malicious
code before the throttling phase. If we would increase the duration of each throttling phase
(i.e., more than 500 million cycles), then we could further improve performance recovery
rates though it may also lead to performance losses of the normal programs in case of
misdetection (i.e., false alarm). For the other types of the malicious codes, our detection
and mitigation mechanisms also result in very high Rperf_recoverys (93.1%, 93.4%, and 91.5%
in the cases of spec+mal_t2_ft, spec+mal_t3_ft, and spec+mal_t4_ft, respectively).

Table 3. Rperf_recovery for each workload in the cases of spec+mal_tX_ft.

spec+mal_t1_ft spec+mal_t2_ft spec+mal_t3_ft spec+mal_t4_ft

gemsFDTD 95.1% 95.1% 95.2% 95.1%

bwaves 95.0% 95.0% 95.0% 95.0%

bzip2 95.7% 95.7% 94.1% 93.7%

gcc 91.1% 91.3% 91.0% 91.5%

h264ref 90.5% 88.5% 81.9% 88.7%

lbm 94.8% 94.7% 94.8% 90.6%

leslie3d 85.2% 83.9% 94.5% 92.5%

mcf 94.6% 94.6% 94.6% 94.6%

milc 93.9% 93.8% 93.9% 93.9%

namd 75.6% 97.3% 97.4% 74.3%

perlbench 94.0% 93.9% 93.9% 93.9%

xalancbmk 94.1% 93.4% 94.1% 93.3%

sjeng 94.3% 94.3% 94.3% 94.3%
Geomean 91.7% 93.1% 93.4% 91.5%

With our detection mechanism, the RCounter pattern that is shown in Figure 6 should
be consecutively seen by Thresacc (i.e., 500 in this paper) times to be regarded as the
malicious code. As a result, during our simulation, we did not see any false alarm case
(i.e., falsely detect and actually throttle the normal program) for 13 SPEC2006 programs.
When considering that our throttling phase is 500 million cycles while we simulate total
one billion instructions, even with only one false alarm and throttling case, a serious
performance loss in the SPEC2006 programs will occur. However, we can see a performance
recovery rate of 92.4%, on average, which is attributed to zero false alarm case in our
simulations, as shown in our recovery rate results. This is because we set the threshold
values very conservatively to prevent false alarms. It also implies that our proposed
mechanism accurately differentiates normal and malicious programs.

Although the worst-case Rperf_recovery is still higher than 74%, in some workloads,
they show relatively lower Rperf_recoverys. For example, in the case of namd, Rperf_recoverys
when running malicious code type-1 and type-4 are relatively lower than the cases when
running type-2 and type-3. Because of the conservative Thresupper and Threslower, our
detection mechanism may falsely regard the malicious program as normal one, which,
in turn, leads to a little lower Rperf_recovery. However, it is very rare case, as relatively low
Rperf_recoverys are only shown in several workloads. Although we could increase the range
of Thresupper and Threslower, it might also increase the false alarm rates. Therefore, we use
relatively conservative Thresupper and Threslower, since it still shows over 90% Rperf_recoverys
on average.

Appl. Sci. 2021, 11, 2385 16 of 19

5.3. Energy Comparison

Figure 10 depicts the results of energy comparison for nine cases: spec, spec+mal_tX,
and spec+mal_tX_ft, where X is 1–4. The memory and cache contention DoS attack not only
causes significant performance degradation, but also significantly increases the energy
consumption of the system. In the case of spec+mal_t1, the energy consumption of the
system increases by 2.1× on average. In the case of xalancbmk, system energy consumption
increases by up to 4.8×. It means that the memory and cache contention DoS attack
maliciously consumes system energy, which may eventually result in catastrophic impacts
on availability and user experience in mobile edge devices. In the other cases, where we
run different types of the malicious codes, it also shows similar energy increases (~2.1×).

Figure 10. Energy comparison across three broad cases (total nine cases): spec, spec+mal_tX, and
spec+mal_tX_ft. The results are normalized to spec for each workload.

When we employ our detection and mitigation techniques, we can also reduce energy
consumption that is caused by the attack. When applying our detection and mitigation
techniques (spec+mal_tX_ft), energy consumption is significantly reduced by 43.5% on
average, as compared to spec+mal_tX. When comparing the energy consumptions between
spec+mal_tX_ft and spec, spec+mal_tX_ft leads to more energy consumption only by 4.4%
when compared to the case of spec.

Table 4 summarizes the energy recovery rates (Renergy_recovery) when employing our
detection and mitigation method across the 13 SPEC2006 workloads. The energy recovery
rates are calculated, as in Equation (3):

Renergy_recovery = 1 −
ESPEC+mal_tX_ft − ESPEC

ESPEC+mal_tX − ESPEC
(3)

where ESPEC, ESPEC+mal_tX, and ESPEC+mal_tX_ft represent energy consumptions of the CPU
in the case of spec, spec+mal_tX, and spec+mal_tX_ft, respectively. When we employ the
detection and mitigation techniques (spec+mal_tX_ft), we can recover energy consumption
by 94.7% on average, leaving only a marginal gap between energy consumptions in the
cases of spec and spec+mal_tX_ft. In summary, our detection and mitigation techniques
successfully recover malicious energy consumption from the memory and cache contention
DoS attack, which eventually results in longer battery life as well as better availability and
user experience in mobile edge devices.

Appl. Sci. 2021, 11, 2385 17 of 19

Table 4. Renergy_recovery for each workload in the cases of spec+mal_tX_ft.

spec+mal_t1_ft spec+mal_t2_ft spec+mal_t3_ft spec+mal_t4_ft

gemsFDTD 97.4% 97.4% 97.3% 97.4%

bwaves 96.5% 96.5% 96.4% 96.5%

bzip2 97.7% 97.7% 97.0% 96.8%

gcc 89.9% 89.9% 89.4% 89.8%

h264ref 93.4% 92.1% 87.4% 92.1%

lbm 96.6% 96.6% 96.5% 94.3%

leslie3d 92.6% 92.2% 97.1% 96.1%

mcf 97.3% 97.3% 97.2% 97.2%

milc 94.1% 94.0% 93.8% 94.1%

namd 83.1% 94.9% 94.7% 82.6%

perlbench 95.7% 96.5% 96.4% 95.7%

xalancbmk 98.4% 98.3% 98.4% 98.3%

sjeng 95.2% 95.2% 95.0% 95.1%

Geomean 94.4% 95.3% 95.1% 94.2%

6. Conclusions

In this paper, we introduce memory and cache contention attack, which causes denial-
of-service (DoS) and exhaustive energy consumption in mobile edge devices. The memory
and cache contention DoS attack can be realized with a simple malicious code that performs
consecutive memory data transfer operations. The malicious program mainly hinders
shared resource accesses of the normal programs, incurring performance degradation
of the normal programs and excessive energy consumption in the system. We propose
profiling the intensiveness and steadiness of the L1 data cache miss request issues in
order to detect and mitigate the memory and cache contention DoS attack. By utilizing
the differences between the workload characteristics of normal and malicious program,
our proposed detection technique successfully detects the malicious program for the
memory and cache contention DoS attack with near-zero false alarm rates. To mitigate
the memory and cache contention DoS attack, we propose employing an instruction
fetch bandwidth throttling. Our evaluation results demonstrate how much the memory
and cache contention DoS attack can degrade performance (by 47.6% on average) and
cause excessive energy consumption (by 2.1× on average). In addition, our detection and
mitigation techniques successfully alleviate the adverse impacts of the memory and cache
contention DoS attack. With our detection and mitigation techniques, the performance and
energy of the normal programs are recovered by 92.4% and 94.7% (on average), respectively.
As our future work, we will perform the detailed sensitivity study with various profiling
and throttling time periods and then investigate broader types of memory and cache
contention attacks (considering various accelerators) in mobile system-on-chips. We will
also investigate the synergistic effects by combining the hardware- and software-level
detection and mitigation mechanisms.

Author Contributions: Conceptualization, W.C. and J.K.; methodology, W.C. and J.K.; Simulation,
W.C.; Result analysis, W.C. and J.K.; Writing, W.C. and J.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported in part by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07045908)
and the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A01051836).

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2021, 11, 2385 18 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on reasonable request
from the corresponding author. The additional experiment data are not publicly available due to the
reason that all the experiment data are already presented in this article’s figures and tables.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Halpern, M.; Zhu, Y.; Reddi, V.J. Mobile CPU’s rise to power: Quantifying the impact of generational mobile CPU design trends

on performance, energy, and user satisfaction. In Proceedings of the 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Barcelona, Spain, 12–16 March 2016; pp. 64–76.

2. Yang, S.H.; Lee, S.; Lee, J.Y.; Cho, J.; Lee, H.J.; Cho, D.; Heo, J.; Cho, S.; Shin, Y.; Yun, S.; et al. A 32nm high-k metal gate application
processor with GHz multi-core CPU. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco,
CA, USA, 19–23 February 2012; pp. 214–216.

3. Moscibroda, T.; Mutlu, O. Memory Performance Attacks: Denial of Memory Service in Multi-core Systems. In Proceedings of the
16th USENIX Security Symposium on USENIX Security Symposium, Boston, MA, USA, 6–10 August 2007; pp. 18:1–18:18.

4. Woo, D.H.; Lee, H.H. Analyzing performance vulnerability due to resource denial of service attack on chip multiprocessors.
In Proceedings of the Workshop on Chip Multiprocessor Memory Systems and Interconnects in conjunction with the 13th Annual
International Conference on High-Performance Architecture, Phoenix, AZ, USA, 11 February 2007.

5. Zhang, T.; Zhang, Y.; Lee, R.B. DoS Attacks on Your Memory in Cloud. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS’17), Abu Dhabi, United Arab Emirates, 2–6 April 2017; pp. 253–265.

6. Bechtel, M.; Yun, H. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. In Proceedings of the 2019
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Montreal, QC, Canada, 16–18 April 2019; pp.
357–367.

7. Bechtel, M.; Yun, H. Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems. arXiv 2020,
arXiv:2005.10864.

8. Hasan, J.; Jalote, A.; Vijaykumar, T.N.; Brodley, C.E. Heat stroke: Power-density-based denial of service in SMT. In Proceedings of
the 11th International Symposium on High-Performance Computer Architecture, San Francisco, CA, USA, 12–16 February 2005;
pp. 166–177.

9. Kong, J.; John, J.K.; Chung, E.Y.; Chung, S.W.; Hu, J. On the Thermal Attack in Instruction Caches. IEEE Trans. Dependable Secur.
Comput. 2010, 7, 217–223. [CrossRef]

10. Aciicmez, O. Yet another microarchitectural attack: Exploiting i-cache. In Proceedings of the 2007 ACM Workshop on Computer
Security Architecture, Fairfax, VA, USA, 2 November 2007; pp. 11–18.

11. Spreitzer, R.; Griesmayr, S.; Korak, T.; Mangard, S. Exploiting Data Usage Statistics for Website Fingerprinting Attacks on Android.
In Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, WISEC 2016, Darmstadt,
Germany, 18–22 July 2016; pp. 49–60.

12. Yarom, Y.; Genkin, D.; Heninger, N. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA. In Proceedings of the
Cryptographic Hardware and Embed ded Systems-CHES 2016-18th International Conference, Santa Barbara, CA, USA, 17–19
August 2016; pp. 346–367.

13. Bernstein, D.J. Cache-timing attacks on AES. 2004. Available online: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
(accessed on 4 January 2018).

14. Christodorescu, M.; Jha, S. Static Analysis of Executables to Detect Malicious Patterns. In Proceedings of the 12th Conference on
USENIX Security Symposium, Washington, DC, USA, 4–8 August 2003; Volume 12, pp. 1–18.

15. Christodorescu, M.; Jha, S.; Seshia, S.A.; Song, D.; Bryant, R.E. Semantics-aware malware detection. In Proceedings of the 2005
IEEE Symposium on Security and Privacy (S&P’05), Oakland, CA, USA, 8–11 May 2005; pp. 32–46.

16. Kinder, J.; Katzenbeisser, S.; Schallhart, C.; Veith, H. Detecting Malicious Code by Model Checking. In Proceedings of the Second
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Vienna, Austria, 7–8 July 2005;
pp. 174–187.

17. Kolter, J.Z.; Maloof, M.A. Learning to Detect and Classify Malicious Executables in the Wild. J. Mach. Learn. Res. 2006, 7,
2721–2744.

18. Schmidt, A.D.; Bye, R.; Schmidt, H.G.; Clausen, J.; Kiraz, O.; Yuksel, K.A.; Camtepe, S.A.; Albayrak, S. Static Analysis of
Executables for Collaborative Malware Detection on Android. In Proceedings of the 2009 IEEE International Conference on
Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5.

19. Demme, J.; Maycock, M.; Schmitz, J.; Tang, A.; Waksman, A.; Sethumadhavan, S.; Stolfo, S. On the Feasibility of Online Malware
Detection with Performance Counters. In Proceedings of the 40th Annual International Symposium on Computer Architecture,
Tel-Aviv, Israel, 23–27 June 2013; pp. 559–570.

20. Ozsoy, M.; Donovick, C.; Gorelik, I.; Abu-Ghazaleh, N.; Ponomarev, D. Malware-aware processors: A framework for efficient
on-line malware detection. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 651–661.

http://doi.org/10.1109/TDSC.2009.16
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Appl. Sci. 2021, 11, 2385 19 of 19

21. Eklov, D.; Nikoleris, N.; Black-Schaffer, D.; Hagersten, E. Cache Pirating: Measuring the Curse of the Shared Cache. In Proceedings
of the 2011 International Conference on Parallel Processing, Taipei, Taiwan, 13–16 September 2011; pp. 165–175.

22. Eklov, D.; Nikoleris, N.; Black-Schaffer, D.; Hagersten, E. Bandwidth Bandit: Quantitative characterization of memory contention.
In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Shenzhen, China,
23–27 February 2013; pp. 1–10.

23. Subramanian, L.; Seshadri, V.; Ghosh, A.; Khan, S.; Mutlu, O. The application slowdown model: Quantifying and controlling the
impact of inter-application interference at shared caches and main memory. In Proceedings of the 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Waikiki, HI, USA, 5–9 December 2015; pp. 62–75.

24. ARM Processor Introduction. Cortex-A15 MPCore Processor. 2011. Available online: http://www.arm.com/products/
processors/cortex-a/cortex-a15.php (accessed on 15 July 2017).

25. Choi, H.; Kim, Y. Large-Scale Analysis of Remote Code Injection Attacks in Android Apps. Secur. Commun. Netw. 2018, 2018,
1–17. [CrossRef]

26. Wang, J.; Liu, K.; Pan, J. Online UAV-Mounted Edge Server Dispatching for Mobile-to-Mobile Edge Computing. IEEE Internet
Things J. 2020, 7, 1375–1386. [CrossRef]

27. Reddi, V.J. Mobile SoCs: The Wild West of Domain Specific Architectures. ACM SigArch, Computer Architecture Today. Available
online: https://www.sigarch.org/mobile-socs/ (accessed on 18 April 2020).

28. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.
The Gem5 Simulator. SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

29. Spradling, C.D. SPEC CPU2006 Benchmark Tools. SIGARCH Comput. Archit. News 2007, 35, 130–134. [CrossRef]
30. Li, S.; Ahn, J.H.; Strong, R.D.; Brockman, J.B.; Tullsen, D.M.; Jouppi, N.P. McPAT: An Integrated Power, Area, and Timing

Modeling Framework for Multicore and Manycore Architectures. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, New York, NY, USA, 12–16 December 2009; pp. 469–480.

31. Jin, X.; Hu, X.; Ying, K.; Du, W.; Yin, H.; Peri, G.N. Code Injection Attacks on HTML5-based Mobile Apps: Characterization,
Detection and Mitigation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS’14), Scottsdale, AZ, USA, 3–7 November 2014.

32. 5 Ways Your Mobile Device Can Get Malware. Available online: https://www.securitymetrics.com/blog/5-ways-your-mobile-
device-can-get-malware (accessed on 24 February 2021).

http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://doi.org/10.1155/2018/2489214
http://doi.org/10.1109/JIOT.2019.2954798
https://www.sigarch.org/mobile-socs/
http://doi.org/10.1145/2024716.2024718
http://doi.org/10.1145/1241601.1241625
https://www.securitymetrics.com/blog/5-ways-your-mobile-device-can-get-malware
https://www.securitymetrics.com/blog/5-ways-your-mobile-device-can-get-malware

	Introduction
	Related Work
	Memory and Cache Contention Denial-of-Service (DOS) Attack
	System Assumptions
	Our Attack and Threat Model
	Malicious Code Examples

	Hardware-Based Countermeasures for Memory and Cache Contention DoS Attack
	Our Proposed Detection Method
	Our Proposed Mitigation Method
	Instruction Fetch Bandwidth Throttling
	Throttling Periods

	Evaluation
	Evaluation Methodology
	Performance
	Energy Comparison

	Conclusions
	References

