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Featured Application: In this work, a systematic literature review of SR strategies has been ap-
plied to target search problems with environment constraints, to show which are being explored
in the fields as well as the current state-of-the-art SR approaches performance which is delivered.

Abstract: Target searching is a well-known but difficult problem in many research domains, including
computational intelligence, swarm intelligence, and robotics. The main goal is to search for the targets
within the specific boundary with the minimum time that is required and the obstacle avoidance
that has been equipped in place. Swarm robotics (SR) is an extension of the multi-robot system
that particularly discovers a concept of coordination, collaboration, and communication among a
large number of robots. Because the robots are collaborating and working together, the task that
is given will be completed faster compared to using a single robot. Thus, searching for single or
multiple targets with swarm robots is a significant and realistic approach. Robustness, flexibility,
and scalability, which are supported by distributed sensing, also make the swarm robots strategy
suitable for target searching problems in real-world applications. The purpose of this article is to
deliver a systematic literature review of SR strategies that are applied to target search problems, so as
to show which are being explored in the fields as well as the performance of current state-of-the-art SR
approaches. This review extracts data from four scientific databases and filters with two established
high-indexed databases (Scopus and Web of Science). Notably, 25 selected articles fell under two main
categories in environment complexity, namely empty space and cluttered. There are four strategies
which have been compiled for both empty space and cluttered categories, namely, bio-inspired
mechanism, behavior-based mechanism, random strategy mechanism, and hybrid mechanism.

Keywords: artificial intelligence; swarm intelligence; swarm robotics; systematic literature review;
target search

1. Introduction

In the past 50 years, artificial intelligence (Al) has been centered on developing
computers and algorithms that focus on human cognitive abilities. This type of Al, which
is also called mainstream Al, has proven to be very successful to solve problems that are
computationally heavy and lack human efficiency, such as controlling power plant systems
or aircraft dynamics. In the mid-1980s, there was a surge to explore a new type of Al
inspired by biological intelligence. It is called bio-inspired Al, the 21st century artificial
intelligence (Figure 1). Accordingly, the bio-inspired Al can be categorized into seven sub-
categories, which are evolutionary systems, cellular systems, neural systems, development
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systems, immune systems, behavioral systems, and collective systems [1]. One form of
bio-inspired Al which has been emerging rapidly is swarm intelligence (SI).

Figure 1. Bio-inspired artificial intelligence categorization.

Sl is inspired by studying the behavior of groups, or swarms, of a biological organ-
ism. Social insects such as ants, bees, and termites live in colonies or swarms, and every
single member in the colony seems to have its purpose yet the colony (swarm) appears
organized [2]. The most unique features of such swarms are the fact that they portray
complex collective behavior despite the simplicity of the individuals (agents) that make up
the swarm. The common complex collective behaviors are aggregation [3], foraging [4],
flocking [5], cooperation [6], and stigmergy [7]. Models of this system have been proven
to solve a difficult and complex real-world problem such as optimization [8,9], and target
search [10,11]. The main representatives of SI approaches are particle swarm optimiza-
tion (PSO) [12], bees algorithm (BA) [13], artificial bee colony optimization (ABC) [14],
ant colony optimization (ACO) [15,16], bacterial foraging optimization (BFO) [4], glow-
worm swarm optimization (GSO) [17], and firefly algorithm (FA) [18]. SI has also been
actively incorporated with the latest robotic technology by researchers and technologists,
which has emerged as the swarm robotics (SR) domain. SR, together with the implemen-
tation of SI methods, represents the computational agent into physically implemented or
simulated robotic devices. SR strategies have continuously increased the attention in many
applications, especially those that are 3D (dangerous, dirty, and dull) mission-related, such
as search and rescue [19], pollution detection [20], and natural disaster monitoring [21].
These types of applications require a large number of agents, are time consuming and may
even be dangerous to a human being [22]. In addition, all the given applications have a
common important task, which is to cooperatively search for targets in unknown environ-
ments. Compared to a single robot, swarm robots can significantly improve efficiency and
provide better robustness and adaptability in target searching tasks [23].

The problem of target searching has continued for a very long time, and more civilian
applications have emerged. This includes a wide variety of high-impact applications; for ex-
ample, rescue operations in disaster areas, exploration for natural resources, environmental
monitoring, and air surveillance.

By adapting the SR strategies, swarm robots can sense the environment, estimate the
target’s distance, and cooperatively coordinate swarm movement by taking advantage
of this information. The ultimate goal is to search for targets within the minimum time
while avoiding collisions with other robots [11]. Therefore, the purpose of this paper is
to deliver a systematic literature review (SLR) covering the main published solutions of
target search problems using SR strategies. This paper expands the algorithm behind the
SR strategies and their significant result, challenges, and future dimensions towards the
target search problem.

The organization of this paper is structured as follows: Section 2 describes the plan-
ning and execution of the SLR; Section 3 presents an overview and characteristics of SR;
Section 4 gives a summary of the studied literature, delivers the answers to the research
questions, and the explanation of the main characteristic of SR strategies that are taken in
the target search problem; and finally, in Section 5, the paper’s contributions are presented,
and concluding remarks are summarized.
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2. Systematic Literature Review

A systematic literature review, or SLR, is a popular technique which is widely used
to distinguish, evaluate, and interpret relevant parts of research for a specific issue, area,
or phenomenon of interest [24]. A systematic review is carried out with a formulated
question that uses systematic and explicit methods to identify, select, and critically appraise
relevant research and to collect and analyze data from studies that are included in the
review. The approached methodology by Kitchenham in [24] has been used as a guideline
for this SLR implementation.

2.1. Literature Review Planning Protocol
This paper considers the following planning protocol for the review:
1.  Research Questions

Q1. What SR strategies are being used to perform the target search task?

Q,. How many targets have been searched?

Q3. What is the target versus search agent ratio?

Q4. What is the mobility of the targets?

Qs. What is the state of the environment’s complexity?

Qg. Is the strategy verified by simulation only or both simulation and the real
robot platform?

Q7. How are the SR strategies implemented in the target search problem?

2. Databases for Literature Search

This systematic study was carried out on four well-established literature databases
with scientific scope, which are Springer, IEEE Xplore Digital Library, ScienceDirect,
and MDPI.

3.  Exclusion Criteria

E;. Works that are not included either in the Scopus or Web of Science (WOS) database.

E;. Works that are not related to the target search problem and SR.

E3. Works that do not present any type of experimentation or comparison result and
only make propositions.

4. Quality Criterion
QC;. Papers that compare the target search problem result using different SR strategies.
5. Data Extraction Fields

D;. Implemented SR strategy, being able to consider any SR strategies from classical
to new and state-of-the-art strategies.

D,. Target quantity that searches either a single target or multiple targets.

Dj3. Mobility of the target; either static or dynamic.

D,. Target versus search agent ratio data.

Ds. Environment complexity that states either an empty space state or a cluttered state.

Dg. Verification of the strategies either using simulation only or both simulation and
the real robot platform.

Dy. Inspiration phenomenon and mechanism of SR strategies that have been imple-
mented in the target search problem.

2.2. Execution

The choice of keywords for building the search strings was based on terms that were
commonly found in the literature and the term that was related to this review (i.e., swarm
robotics methods that were applied to target the search problem). For the SLR execution,
specific keyword strings were formulated and used for each database (Springer, IEEE
Xplore, ScienceDirect, and MDPI). The details are listed below:

(1) IEEE Xplore: (“Swarm robot*” AND “target search*”) with, eta-data in the com-
mand search;



Appl. Sci. 2021, 11,2383

40f17

Number of papers

== NN W W s s U,
o U o »nn O Lo U O U1 O

(2) Springer: (“Swarm robot*” AND “target search*”);

(3) ScienceDirect: (“Swarm robot” AND “target search”);

(4) MDPL: (“Swarm robot*” AND “target search*”).

The survey took place in the week ending 31 January 2021. Figure 2 portrays the num-
ber of searched documents in the databases using the selected keyword strings. The total
number of searched papers was 75; however, only 29 of the papers were enlisted in Scopus
and Web of Science, and as such 46 out of the 75 papers were excluded as per the exclusion
criteria E1. Out of these 29 papers, four articles were rejected using the exclusion criteria E;
and E3. Thus, the total number of papers that were selected for this review was 25 articles.

48

W Data from
database

m Enlisted in
Scopus or WOS

M Selected article
for review

Springer IEEE Xplore  ScienceDirect MDPI

Figure 2. Number of papers in the databases using the extraction criteria.

3. Background on Swarm Robotics

It is essential to introduce some background on SR strategy before presenting the
review analysis design. SR is an expanding field that is inspired by the natural and self-
organized behaviors of social animals such as a bird flock or an ant colony [25]. These in-
spirations from the natural behavior of social animals can be applied with the principles
of self-organization to collections of simple, autonomous robots [26]. The robots must
not have a sophisticated and complicated system and do not use a complex algorithm.
The main idea of SR is to gain the advantage of simple interactions among the robots in
order to solve complex problems using emergent behavior, similar to how social insects
operate [27].

To achieve this idealized simplicity, SR strategy needs to have three main character-
istics, i.e., robustness, flexibility, and scalability [28]. The first characteristic, robustness,
enables the swarm to continue to function as a system without impacting the performance
even if several agents fail to function. The second characteristic is flexibility, which enables
the swarm system to adapt and promptly change to the dynamic environment or the
changes in task difficulty. The third characteristic is scalability, which enables the system to
operate with small or large numbers of agents without affecting the system performance
and efficiency.

To achieve the above SR characteristics, the SR strategy needs to be designed with a
set of criteria [29]:

1.  The robot swarm must be made up of a number of autonomous robots with the ability
to sense and actuate in a real environment;
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2. The number of robots in the swarm must be large, at least as large as the control
rules authorize;

3. Robots must be homogenous. There can be different types of robots in the swarm,
however, not too varied;

4. The robots must not be unable or be inefficient in the main task that they must solve,
i.e., they need to cooperate in order to succeed or to improve the performance;

5. Robots are limited to local communication and sensing capabilities; this is to ensure
the coordination is in distribution mode, so that scalability will become one of the
properties of the system.

For further literature review about the characteristics and main properties of SR
strategy, the research by Navarro and Matia [30] is recommended.

4. Result of the Systematic Literature Review
4.1. Publication Distribution over the Years

Figure 3 shows the number of articles that have been published from 2005 until
2020 (based on the extraction criteria in Section 2) in five-year groups. This chronological
distribution with the exponential trend is evidence that interests in SR strategies have been
growing and have gained attention to solving the target search problem. The papers were
published in well-established, high-indexed databases, which began with only a single
paper that was published between 2005 to 2010, and five papers between 2011 and 2015;
the trend of publishing in the high-indexed databases continued from 2016 until 2020,
which accounted for the highest number of published papers—19 altogether, with an
average of 3.8 papers per year. The analysis results reveal that there has been a substantial
increase in the number of literature articles since 2016. This trend may be supported by
the incremental expansion of SI throughout the years with the support of the increasing
computational intelligence performance [31]. This would reveal a promising established
research area in SR strategies for the target search problem.
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Figure 3. The number of papers per year with a trend line.

4.2. Publication Distribution among Journals and Conferences

The selected papers that were based on SR strategies, applied to target search problems,
have been published in a wide range and variety of journals, as well as conferences, which
mainly focused on the engineering fields. From the 25 selected papers, 14 were published
in journals, and the remaining 11 papers were published in conferences.

There were 14 research papers that had been published across nine journals: this was
led by Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
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Intelligence and Lecture Notes in Bioinformatics) with four publications; the Journal of Robotics
and Autonomous Systems and the journal Sensors, each with two publications; and the
remaining six publications were each published in Studies in Computational Intelligence,
the Iranian Journal of Science and Technology—Transaction of Electrical Engineering, IEEE/ACM
Transaction on Computational Biology Bioinformatics, IEEE Access, Applied Soft Computing
Journal, and Neurocomputing (Figure 4). Most of the journals covered the application of
artificial intelligence and computational intelligence in the engineering domains.

Title of Journal

Lecture Notes in Computer Science (including subseries Lecture Notes ==,

in Artificial Intelligence and Lecture Notes in Bioinformatics)

Robotics and Autonomous Systems |
sensors [N

Studies in Computational Intelligence | NG

Iranian Journal of Science and Technology—Transactions of Electrical I

Engineering

IEEE/ACM Transactions on Computational Biology and Bioinformatics |

IEEE Access |
Applied Soft Computing Journal | NG

Neurocomputing | N

B Number of publications 0 1 2 3 4

Figure 4. Number of publications per journal.

On the other hand, the research papers belonged to nine conferences. Both the Ad-
vances in Swarm Intelligence (ICSI) and IEEE Congress on Evolutionary Computation
(CEC) were the top conferences, with two publications each (Figure 5). Each of the re-
maining conference papers were published in seven conferences which covered a wide
range of domains; mostly the focus was on Al, computational intelligence, and controlling
intelligent systems. It should be highlighted that only Information and Communication
Technology (ICICT) focuses specifically on the communication and information domain,
which is different from other conference domain focuses.

4.3. Citation Analysis

One of the quality measures of the published paper is how many times the article has
been cited by other researchers. To carry out a citation analysis and to maintain the quality
of the selected paper, the Scopus and WOS platform were selected to determine the number
of citations of selected papers in the review. Table 1 portrays the citation quantity for all the
selected papers in a decreasing order manner. The research paper entitled “Self-organized
Swarm Robots for Target Search and Trapping Inspired by Bacterial Chemotaxis” [32]
outperformed others, with the highest recorded number of citations (33). The second-
highest recorded number of citations, with 17, was the research paper entitled “Group
Explosion Strategy for Searching Multiple Target using SR” [22]. The third-highest citation
is by the SR community, which is the paper that has been published by Tang et al. [33],
with eight citations. The paper discussed the stigmergy strategy approach towards the
target search problem. From the 25 selected papers, 12 papers have not been cited even
once, and thus they have been excluded from Table 1. Based on the citation analysis results,
the average number of citations of all the selected research papers was 3.6.
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Artificial Intelligence: Methodology, System, and Application (AIMSA)

IEEE International Conference on Robotics and Biomimetics (ROBIO)

World Congress on Intelligent Control and Automation (WCICA)

International Conference on Intelligent Autonomous Systems (IColAS)

Information and Communication Technology (ICICT)

21st Chinese Control and Desision Conference (CCDC)

IEEE Region 10 Annual International Conference (TENCON)

Tittle of Conference
Advances In Swarm Intelligence (ICSI)

IEEE Congress on Evolutionary Computation (CEC)

B Number of publications

o

Figure 5. Number of publications per conference.

Table 1. Summary of the top 13 cited articles.

-

N

Title

Publication Year

Citations

Self-organized swarm robots for target search and
trapping inspired by Bacterial Chemotaxis [32]

Group explosion strategy for searching multiple targets
using swarm robotic [22]

A stigmergy based search method for swarm robots [33]
The multi-target search problem with environmental
restrictions in swarm robotics [34]

Avoiding decoys in multiple targets searching problems
using swarm robotics [35]

Swarm robots search for multiple targets based on an
improved grouping strategy [36]

Target searching and trapping for swarm robots with
modified bacterial foraging optimization algorithm [37]
Comparison of a real Kilobot robot implementation with
its computer simulation focusing on target-searching
algorithms [38]

A comparative study of biology-inspired algorithms
applied to swarm robots target searching [39]

Triangle formation based multiple targets search using a
swarm of robots [40]

Target search using swarm robots with kinematic
constraints [41]

Optimal tree search by a swarm of mobile robots [42]

A grouping method for multiple targets search using
swarm robots [43]

2015

2013
2017
2014

2014

2018

2015

2018

2016

2016

2009
2018
2016

33

17

4.4. Research Strategy Analysis

After an analysis of the 25 selected papers that were published from 2009 until 2020,
Table 2 was constructed based on the extraction criteria in Section 2; it summarizes and
highlights all the important elements of the most recent high-impact papers for target
search problem with environment constraints using the SR strategy. The first column
lists the paper’s reference; the second column is the proposed method(s), recording the
implemented SR strategy in the paper; the third column states the number of targets that
are available, either single or multiple; the fourth column quantifies the ratio between
targets and agents; the fifth column records the targets which are stated whether in the
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static or dynamic condition; the sixth column specifies the environment complexity in the
simulation or experimental setup, which is either empty space or cluttered; the seventh
column mentions the algorithm verification selection, either the simulation only or both
simulation and real robot platform; the last column contains the natural phenomenon
inspiration that has been used in the SR strategy.

Table 2. A summary of the most recent papers for target search problem with environment constraint.

Number of Targets/Agents Mobility of Environment Verification -
Reference SR Proposed Method Target(s) Ratio Targets Complexity Method Inspiration Phenomenon
- ingle < tatic mpty space imulation ocking behavior of birds
[41] K‘““‘;Z:rcc;";i;:‘g“ytarga Singl 1 Stati Empty sp Simulati Flocking behavior of bird
[22] Group exlﬁ(’é’gls‘;“ strategy Multiple >1 Static Empty space Simulation ~ Explosion phenomenon in
- . Explosion phenomenon in
[34] Three rezglacttéog:andhng Multiple <1 Static Cluttered Simulation nature and flocking
8 behavior of birds
Explosion phenomenon in
[35] Decoy-avoiding strategies Multiple <1 Static Cluttered Simulation nature and flocking
behavior of birds
Modified bacterial Foraging behavior of
[37] foraging optimization Multiple <1 Static Cluttered Simulation b & % herichia coli
(MBFO) strategy acteria (Escherichia coli)
Self-organized target F : .
. . . . . oraging behavior of
[32] searchsilgctleté;ppmg Multiple <1 Dynamic Empty space Simulation bacteria (Escherichia coli)
Integrated strategy based
on a modified particle
[43] swarm optimization (PSO) Multiple <1 Static Empty space Simulation Flocking behavior of birds
algorithm and a grouping
strategy
Comparative between Flocking behavior of birds,
PSO, ant colony foraging behavior of ants,
[39] optimization (ACO) and Single <1 Static Cluttered Simulation and natural selection by
genetic algorithm (GA) in biologically inspired
target search selection
) Triangle formation search . . . . Triangle formation
[40] (TFS) strategy Multiple <1 Static Empty space Simulation behavior
[44] Sweep clseiiéltigggyprotocol Single <1 Dynamic Empty space Simulation Sweep cleaning behavior
Finite-state machine and Simulati
[33] coding phase pheromone Single <1 Static Empty space (1:1mu la 1051 ¢ Cockroach behavior
strategy and real robo
Multi-objective particle
swarm optimization
[45] (MOPSO) and Single <1 Static Empty space Simulation Flocking behavior of birds
energy-saving decision
rules strategy
[46] Flying satr;:tlélg(; search Multiple <1 Static Cluttered Simulation Flying ant behavior
Improved grouping
strategy based on
[36] constriction factor particle Multiple <1 Static Cluttered Simulation Flocking behavior of birds
swarm optimization
(CFPSO) ) )
[47] Dispersal search strategy Single <1 Static Empty space ar?gr;g;?trlgélot Random walk behavior
[42] Tree search strategy Single <1 Static Cluttered Simulation Tree tfggﬁ;sie;rrchmg
[48] Lévy walk strategy Multiple <1 Static Empty space Simulation Lévy flight behavior
[49] Chemost;;i;ehavmr Single <1 Dynamic Cluttered ar?‘lin;g;??ggo " Microorganism behavior
A probabilistic finite state . . . . Random walk and triangle
[50] Ir)fchine-base d strategy Multiple <1 Static Empty space Simulation estimation technology
fwo-stage imitation . . . . Deep learning and
[51] learning framework Multiple <1 Static Empty space Simulation luti leorith
strategy evolutionary algorithm.
Dynamic target searching Simulati
[52] and t-racl:in;g stigmergy Single <1 Dynamic Empty space aml:lnrlga?rlggot Foraging behavior of ant
strategy
A pheromone underwater . ) Simulation . .
[53] robot monitoring strategy Multiple <1 Static Empty space and real robot Foraging behavior of ant
Repulsion-based robotic
y Darwinian particle swarm . . . . . . .
[54] optimization (RDPSO) Single <1 Static Cluttered Simulation Flocking behavior of birds
strategy )
[55] Beggogzgggr?tslg Eggled Single <1 Static Empty space Simulation Naturalbpeiigif’\r/olutlon
A distributed strategy for
[11] multi-target search in an Multiple <1 Static Empty space Simulation Pedestrian behavior

unknown environment
strategy
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Analysis of the review was carried out, and the result verified that 64% (16/25) of the
proposed methods used the SI approach in their SR strategies. Particle swarm optimization
(PSO) was the most preferred SI algorithm, with 9/16 research papers having implemented
it. PSO was originally suitable for solving global optimization problems, and target search
problems had a similar characteristic of global optimization problems especially in multi-
target search problems. Six of the papers chose the behavior-based approach in their SR
strategies and the remaining three papers implemented the random walk method in their
SR strategies to tackle the target search problem.

Data from Table 2 also shows that 56% (14/25) of the papers set their experiments
with multiple targets over single targets, and in 96% (24/25) of papers, the search agents
were more than an available target. In terms of the target’s mobility, 84% (21/25) of the
papers set their targets in static conditions. These results show that the researchers focused
on emerging swarm behaviors and interactions between the search agents during the target
search problem.

Review analysis also revealed that 64% (16/25) of research papers set the search
environment space without any obstacles (empty space). The final data that were disclosed
in Table 2 was the algorithm verification method. A total of 80% (20/25) of the papers only
used a simulation platform to verify their proposed algorithm. There are two reasons why
the simulation platform is popular among researchers: firstly, the possibility to test a vast
number of agents without investing a large budget; second is the time-consumption matter.

Through the analysis of the above characteristics, the research questions that had
been mentioned in Section 2 were answered. The next subsection describes the main
characteristic of the most used SR strategies and how they are implemented on the target
search problem.

4.4.1. Particle Swarm Optimization

Particle swarm optimization, or PSO, took inspiration from birds’ flocking behavior
and was introduced by Kennedy and Eberhart [56]. Agents that are considered as particles
in PSO are flown through a problem space to consider the best result (fitness) position
within the search space. During the searching process, the particles update their velocity
and latest best position as well as the overall best position that has been achieved within
the neighborhood, either a global optimum or local optimum. For each ith iteration,
the velocity (v) and position (x) will be updated as the particle performs the kth step of the
PSO algorithm:

of = wof 4 on (Pi - xf'(_l) + cara (Pn - xf_l) 1

And:

xf = x4 @)

where vi»‘ and xf‘ are designated as velocity and position vectors for the ith particle in the kth
time-step, p; represents the personal best position of the ith particle, while p;, represents the
overall best position of all particles within the neighborhood. w is the inertia weight that is
introduced to balance between the global search and local search by controlling how much
the current velocity of the particle contributes to its velocity in the next iteration [57]. ¢ and
cy are referred to as cognitive scaling and social scaling factors, respectively, while rq and r,
are random numbers that are drawn from a uniform distribution. The PSO algorithm was
originally developed for solving global optimization problems, and there is a similarity
between the objective of multiple target problems and global optimization problems, which
is the searching for the best solution with minimal time-consumption. This is the main
reason why the PSO method has been adapted by the researcher community when handling
the target search problem using SR strategies.

Songdong et al. in [41] reported an approach in controlling swarm autonomous
wheeled mobile robots with non-holonomic constraints to search for a single target. The pro-
posed SR strategy focused on kinematic constrain target search strategy. The proposed
algorithm compared both similarities and differences with the PSO, because the proposed
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algorithm was inspired by the PSO algorithm. The simulation results demonstrated that
the proposed algorithm had successfully searched the target and portrayed the swarm
robots to be able to cooperatively work together during the target search process.

An integrated method based on a modified PSO algorithm and a grouping strategy for
multiple-target search swarm robots was developed by Tang et al. in [43]. The developed
algorithm has been evaluated in the simulation platform and was compared with the basic
PSO algorithm to show the algorithm’s effectiveness. Based on the algorithm comparison,
the proposed method portrayed good adaptability and a high success rate in searching
for multiple targets. In 2017, Tang et al. [36] has continuously improved the method by
incorporating the obstacle avoidance behavior into the algorithm. By considering the
obstacle avoidance behavior in the algorithm, the improved grouping strategy (IGES)
for multiple-target search swarm demonstrates the significant improvement in terms of
adaptability, accuracy, and efficiency during the multiple target search process.

Previous work by Yuen et al. [45] proposed an algorithm of swarm robots dependent
solely on light energy to survive and complete target searching tasks in an unknown area.
The research not only considered target searching, but also energy consumption matters.
To increase the complication of the target search problem, the target and energy charging
points were also scattered around the search area. For energy saving decision rules,
the multi-objective particle swarm optimization (MOPSO) has been considered. Several
sets of simulation experiments were conducted.

The results showed an optimum quantity of 15 robot swarm systems that were able
to search a single target and stabilize the energy level simultaneously for the long-term.
This proved that the energy-optimized MOPSO as a design framework is suitable for a
long-term target searching swarm system.

A novel algorithm, repulsion-based robotic Darwinian particle swarm optimization
(Rb-RDPSO) that combines the Darwinian principle of “survival of the fittest” with an ion-
based repulsion mechanism has been introduced to tackle the target search problem [54].
Several simulations in a cluttered environment have been designed to validate the pro-
posed method. The proposed method is inspired by PSO and has been compared with
the traditional robotic Darwinian particle swarm optimization (RDPSO), the robotic PSO,
and the distributed PSO. The outcomes portray the advantages of the proposed method ef-
ficiency in both speed and search results. The method also showed a superior performance
compared to other strategies as the number of swarm agents decreased.

4.4.2. Behavior-Based Approach

The idea of behavior-based SR is inspired by the implementation of behavior-based
Al theory using an architecture called the “subsumption architecture” by [1]. The robots’
behaviors “subsume” each other depending on the results from a variety of inputs, such as
vision and pressure sensor data. At any given time, only one behavior will be activated.
The active behavior varies based on the gained sensor data. One of the earliest works of
behavior-based formation control was applied to groups of robots by Balch and Arkin [58].
Their work successfully integrated formation behaviors with navigation and obstacle avoid-
ance both in simulation and on a set of land-based ground vehicles. The behavior-based
concept has continuously been developed throughout the years and has been implemented
in the SR fields.

Zheng and Tan in [22] proposed a swarm robot searching strategy of multiple targets in
obstructive environments. The searching strategy was named as group explosion strategy
(GES) and has been inspired by the explosion phenomenon behavior in nature. Each swarm
agent is self-adaptively divided into small groups and performs the target searching process
independently. Through its advantages of quick convergence from intra-group cooperation
and capability of multiple targets searching in parallel from intergroup cooperation, GES
simulation outputs portray a great efficiency in energy consumption and target searching
time. The proposed strategy also shows great stability in obstructive environments.
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Research work performed by Li and Tan in [34] gives attention to the basic search
problem of multi-target search in several conditions of environmental restrictions. They pro-
posed the IGES to solve the multi-target search problem. The strategy was an improved
version of the previous GES [22] and was inspired by a firework explosion phenomenon
behavior with three restriction-handling strategies. The proposed IGES strategy has been
tested in the simulation and compared with the GES and RPSO methods. The simulation
outcomes show that IGES is more efficient and has great stability during the searching
process compares to GES and RPSO methods. The strategy also has greater compatibility
with other restriction-handling strategies.

A simple cooperative strategy as the baseline of target searching problems with a new
type of object (decoys) was proposed by Zheng et al. [35] and was also inspired by the
firework explosion phenomenon behavior. In the paper, decoys were also considered as
targets that can be sensed but cannot be collected by the robots. This becomes a problem
that needs to be considered in the multi-target search task. The method introduced a
simple cooperative strategy to solve the problem by comparing it with a non-cooperative
strategy as the baseline. The strategies can be integrated with other searching algorithms
and provide a solution for avoiding decoys. Simulation results portray that the strategy
has almost similar computation overload compared to other strategies, however has better
performance in iterations and visiting times of decoys. The strategy shows great adaptive-
ness to large-scale problems and functions more efficiently when the quantity of decoys or
robots increases.

The implementation of a “sweep cleaning” protocol in a swarm of flying robots has
been carried out by Fermin et al. [44]. The research implements an idea from sweep cleaning
behavior. The “dynamic cleaners” problem is one of the attractive applications proposed by
the research community in the SI field. The swarm converges in the given area and searches
the target area where the contamination spreads. Based on the simulation outcomes,
the accuracy of the introduced strategy is 89.8%, and the cleaning time process decreases by
12.87% for each single agent incrementation. The strategy can be implemented in several
real-life world applications such as target searching and search and rescue operations.

Researchers also investigate the use of multi-modal locomotion on a swarm of robots
through a multi-target search algorithm that is inspired by flying ants” behaviors [46]. The
proposed strategy focuses on the SI elements such as distributivity, robustness, and scal-
ability to guaranty that efficient exploration is archived. The simulation outputs portray
that efficient exploration was achieved at the macro level of the swarm robots during the
multi-target searching process.

A stigmergy-based search method [33] has been presented for swarm robots. The pro-
posed strategy implements the finite-state machine and coding phase pheromone strategy
inspired by cockroach behavior. It utilized a pheromone technique by arranging radio
frequency identification (RFID) tags in the environment as a carrier of the pheromone.
Through several numerical experiments and verifications, the results proved the applicabil-
ity of the proposed algorithm.

In the target searching task, all the agents in the swarm were tasked with gathering at
the specifically designated node, which was termed as the target node. The scope of the
solution increases during target search if the graph is guaranteed to be explored completely.
In conjunction with the requirements, Sinha and Mukhopadhyaya in [42] proposed a target
search algorithm of limited visibility swarm of asynchronous robots based on tree search
behavior. Each node of the tree was assumed to be attached with memory. The target
node was initially visible to at least a single agent in the swarm. The algorithm takes
computational cycles to gather all the agents at the target node after the exploration of the
tree has been completed. The simulation outcomes show the efficiency of the proposed
tree search strategy in the target search problem.



Appl. Sci. 2021, 11, 2383

12 of 17

4.4.3. Random Walk or RW

An environment or target can be searched more effectively and efficiently if a suitable
search strategy is used. Due to the individual ability limitation of swarm robots, such as
local sensing and low processing power, random searching is another preferred approach
that has been selected by researchers in the SR domain. The commonly used random
walk methods are Brownian motion (BM) and Lévy flight (LF), which both mimic and are
inspired by the self-organized behavior of social insects [59]. BM is the random movement
of particles that are suspended in a fluid, resulted from fast particles colliding between
the molecules of the fluid [60]. LF is an RW by which the agents can travel a significantly
large distance by taking many short steps and the occasional long step [61]. This is possible
due to the step size that has a power-law distribution, and agents that use LF are more
likely to reach the furthest area fasters than those which use BM. Each LF step orientation is
sampled from a uniform distribution, while the step lengths are sampled from a heavy-tail
(power-law) distribution:

p(l) ~ 1 (=D 3)

Previous work by Zhong et al. [38] presents the implementation of a targeted search
by SR algorithm using a dispersal search strategy that is based on the random walk method.
The developed strategy has been tested in the Virtual Robot Experimental Platform (V-REP)
simulator and was then validated by the Kilobots robot platform. The algorithm has
three main steps, which are dispersal target searching, obstacle avoidance, and target
surrounding. Both results in the simulation and robot platforms indicate the functionality
and quality of the proposed strategy in the target search problem.

A new target search behavioral algorithm that preserves Lévy properties at the collec-
tive level in the unknown environment under limited energy and deadline conditions has
been proposed by Khaluf et al. [48]. The paper highlights the problem of how Lévy proper-
ties can disappear in larger robot swarm sizes due to spatial interferences. The simulation
results define the algorithm that can accelerate target search processes in large unknown
environments by parallelizing Lévy exploration.

4.4.4. Hybrid Strategy

Hybrid strategy that incorporates two or more techniques may compensate for the
vulnerability of one technique by making use of the other. Researchers often give special
attention to this hybrid strategy solution. This approach can be seen in the triangle
formation search (TFS) strategy for swarm robots and has been introduced by Li et al. [40]
to overcome the multiple target search problem. The strategy is based on triangle formation
and random search, focusing on balancing between exploration and exploitation during
the target searching process. In addition, a new random walk strategy of linear ballistic
motion, incorporated with triangle estimation, has been compared with the TFS strategy
and the performance of a new random walk strategy shows its advantages and can serve
as a benchmark in the multiple-target search problems.

4.4.5. Comparison of SR Strategies Applied to Target Search Problems

Table 3 portrays the comparison of SR strategies that have been implemented in
target search problems. Particle swarm optimization (PSO) is well established in the target
search problem domain as a result of its algorithm implementation simplicity. The PSO
is also well-established for the global optimization problem where there is a similarity
with the target searching problem, which is searching for the best solution in minimal time.
However, the PSO strategy has a limitation in terms of its tendency to be trapped in a
local minimum.
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Table 3. Comparison of SR strategies applied to target search problems.

SR Strategies Mechanism Advantages

Limitation

1.  Search is driven by
social interaction among

1. Inspired from bird flocking particles by

behavior [12].

2. Particles (agents) flown through a
problem space to search the best
result (fitness) position within the
search space.

Particle S particles best position
article Swarm

Optimization the overall swarm

. . - position.

3. Particle velocity, best po.s.ltlon, .and 2 Simplicity of algorithm
overall (global) best position will be implementation
updated during the search process 3. Low in computational

intensity.

consideration of each 1.

during the selection of 2.

Has tendency to trap in
a local minimum.

Does not have
guaranteed convergence
to a local or global
minimum.

1.  Inspired by subsumption

. 1.
architecture [1]. . . The flexibility of its input
2. Only one behe.amor canbe activated oo o tion enable the
Behavior-based atany given time and the robots’ behavior-based strategy to
output behavior. depends on the comply with several search
activated behavior. environment scenarios. 2.

3. The active behavior varies based on
gained sensor data.

Requires sophisticated
rule comparison
analysis to solve
large-scale and practical
problems.

Takes a long
computational time.

1. Does not required any
initial knowledge of
target distribution and
environment details.

2. Simple and easy to
implement towards SR.

1. Inspired by the self-organized
behavior of social insects [50].
Most commonly used random
walks are Brownian motion (BM)
and Lévy flight (LF).

Random Walk 2.

The random walk distribution
and its properties tend to be
lost when the swarm size
increases.

Dependent on the combined
strategies that have been
implemented.

Combining two or more SR strategies to

Hybrid Strategy overcome the limitation of each strategy.

Dependent on the combined
strategies that have been
implemented.

The behavior-based strategy has continuously been implemented in the robotic do-

main because of its input sensor combination flexibility which can comply with various
types of search environments. On the other hand, the behavior-based strategy tends to take
a long computational time during the solving of large-scale and practical problems due to
sophisticated rule comparison analysis.

The random walk strategy has also been applied to the target search problem by
several researchers [38,48]. The RW strategy does not require any initial knowledge of
target distribution and environment details which is its advantage, but its distribution and
properties tend to decline when the swarm size increases.

Each strategy has its advantages and limitations. Some research has proposed the
hybrid strategy in order to maintain the advantages and to overcome the limitations of
each strategy.

5. Conclusions and Future Works

This article covered the main papers of swarm robotics strategies that were applied to
target search problem by systematically answering the research questions that had been
described in the literature review planning protocol. Through this meticulous process,
it was possible to identify that each proposed strategy had addressed a specific constraint
or restriction; hence, it became difficult to compare them directly to each other. The SR
strategies emerged as a new method for dealing with target search problems in conjunction
with the rise of Al, particularly in the SI field. This is supported by the increasing demand
for SR field utilization in high-impact applications such as exploration for natural sources
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or search and rescue, where the target search task is one of the important elements of
the problem.

During this review, it was noted that most of the SR strategies were using the SI
approach, particularly the PSO method. The PSO algorithm was developed to focus on
solving global optimization problems. There is a similarity between the objective of target
problems and global optimization problems, i.e., searching for the best solution with
minimal time-consumption. Due to this similarity, the PSO method is easily adapted to SR
strategies during the solving of the target search problem. All the SR strategies that have
been applied in target search problems are inspired by natural behavior; this proves that
there is knowledge that can be gained from nature.

From the environmental constraints” point of view, out of the 25 strategies of the
selected articles, 16 strategies were implemented in empty space and 9 strategies were
applied to the cluttered environment. The strategies focused on bio-inspired mechanisms,
behavior-based mechanisms, random strategy mechanisms, and hybrid mechanisms. These
results show that the researchers focused more on emerging swarm behaviors and inter-
actions between the search agents than the swarm interaction between the environment
during the target search problem. For further recommendations, both interactions (interac-
tion between search agents and swarm interaction between the environment) are equally
important and need to be considered.

Additionally, it should be acknowledged that SR strategies, such as PSO, behavior-
based and random walk, have been successfully applied to solve the target search problem.
However, there are still some aspects in SR strategy applications towards target search
problems that need to be further investigated. Thus, recommendations for future re-
search include:

1. Dynamic environment simulation testing with various kind of targets which have
different outcome values [22,62]. Most of the articles only focused on a static environ-
ment;

2. Real robot platform experiments to validate the simulation results, thus minimizing
the real-world application gap [36,37]. Due to research capital limitations, most of the
articles only verified the algorithm in a simulation platform;

3. Derive a mathematical model of the swarm robot interactions and design a suitable
controller that comes with a certain proof of convergence [34]. Most of the articles
only manually designed the local behaviors, analyzing them by trial and error until
the desired swarm behaviors were achieved.
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Abbreviations
The following abbreviations are used in this manuscript:
ABC artificial bee colony
ACO ant colony optimization
Al artificial intelligence
BA bees algorithm
BFO bacterial foraging optimization
BM Brownian motion
FA firefly algorithm
GES group explosion strategy
GSO glow-worm swarm optimization
IGES improved group explosion strategy
LF Lévy flight
MOPSO multi-objective particle swarm
PSO particle swarm optimization
RbRDPSO  repulsion-based robotic Darwinian particle swarm optimization
RDPSO robotic Darwinian particle swarm optimization
RFID radio frequency identification swarm optimization
RPSO robotic particle swarm optimization
RW random walk
SI swarm intelligence
SLR systematic literature review
SR swarm robotics
TFS triangle formation search
VREP virtual robot experimental platform
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