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Abstract: The modal property and light propagation in tapered silicon ridge waveguides with
different ridge heights are investigated for a silicon on insulator (SOI) platform with a 500 nm
silicon (Si) thickness. Mode conversion between the transverse magnetic (TM) fundamental and
higher-order transverse electric (TE) modes occurs when light is propagated in a waveguide taper.
Such a conversion is due to mode hybridization resulting from the vertical asymmetry of the cross-
section in the ridge waveguides. The influence of angled sidewalls and asymmetric cladding on
mode conversion is also studied. It is shown that a very long taper length (adiabatic) is required
for a complete conversion to take place. Conversely, such mode conversion could be suppressed by
designing a short non-adiabatic taper. Our results show that significant improvement in performance
metrics can be achieved by considering process parameters’ effect on mode conversion. With an
optimum selection of the etching depth and accounting asymmetries due to angled sidewalls and
cladding, we demonstrate an 84.7% reduction in taper length (adiabatic) for mode conversion and a
97% efficiency TM preserving taper (ultra-short). The analysis is essential for applications such as
compact polarizers, polarization splitters/rotators, and tapers for TM devices.

Keywords: photonic integrated circuits; silicon photonics; mode hybridization; mode converters;
polarization splitter and rotators; tapered waveguides; adiabatic tapers; angled sidewalls

1. Introduction

In recent years submicron silicon-on-insulator (SOI) platform is becoming widely
used for ultra-compact complementary metal-oxide-semiconductor (CMOS) compatible
Photonic Integrated Circuits (PICs) driven by low cost, low power, and high-bandwidth
interconnects [1]. It is possible to design ultra-compact PICs on SOI due to their intrinsic
high-index-contrast (∆) in silicon waveguides. In a high-∆ optical waveguide with vertical
asymmetry, mode hybridization is observed at some particular widths, which may cause
mode conversion in tapered structures [2,3]. This property can cause problems in TM-type
PICs but can be favorable for realizing compact mode converters.

Silicon photonics PICs are mainly demonstrated to work for the TE-polarization due to
their strong mode confinement. However, TM-polarization is also very beneficial for many
applications, and it has some unique advantages over TE-polarization. PICs operating in
the TM-fundamental mode are more tolerant to fabrication variations and demonstrate low
propagation losses [4]. Additionally, the TM mode has a stronger evanescent field making
it more suitable for sensing applications [5]. An adiabatic taper is an indispensable basic
circuit design element for both polarizations [6,7]. However, to construct adiabatic tapers
for the TM-polarization, extra care needs to be given. Mode hybridization in adiabatic
tapers can cause an undesired conversion between the TM-fundamental and higher-order
TE-modes, which results in excess losses and channel cross-talks [8]. Therefore, this
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unwanted mode conversion needs to be suppressed by carefully designing tapers so that
TM-mode is maintained throughout with near 100% efficiency (TM-preserving tapers) [9].

On the other hand, by tailoring the mode hybridization in an adiabatic taper, several
polarization splitters-rotators (PSRs) have been realized [10–24]. The PSR components are
required to mitigate birefringence in the SOI platform [25,26]. In a PSR, light is coupled
with arbitrary polarization, where it is first split into two orthogonal components. Then,
one polarization state is rotated 90 degrees while the other remains unchanged. Waveguide-
type integrated PSRs are challenging to realize, as it is not easy to rotate the orthogonal
modes in a planar waveguide. Most polarization rotation approaches need complex, non-
even standard fabrication steps such as additional Si layer deposition, etching with high
alignment accuracy, multistep lithography, non-vertical etching [27,28]. However, the de-
sign technique employing the concept of mode hybridization does not involve any complex
fabrication. The difference lies in the input TM-polarization is first transferred to high
order mode (TE1) before converting it to TE0. The devices based on mode hybridization
have the advantages of fabrication tolerance and low insertion loss. Here, the key is the
mode evolution in the adiabatic taper as a result of mode hybridization. This enables an
efficient conversion from TM0 to TE1 mode. The latter is then transferred to the TE0 [10–24].
Note that the footprint of the adiabatic taper can limit the overall dimension of the PSR.
Therefore, reducing the size of the adiabatic taper is much desired.

The two most common waveguides in a PIC design are strip and ridge types. In an
SOI platform, the under cladding is always SiO2 (silicon oxide). It is possible to have
upper cladding with different materials like silicon nitride, silicon oxide, and air (no
cladding). Mode conversion in an SOI strip waveguide with an upper air cladding is
reported previously, as this makes it asymmetrical in the vertical direction [2,3]. It is also
possible to avoid this mode conversion by introducing SiO2 top cladding instead of air
to eliminate vertical asymmetry [3]. However, for this to happen, waveguides should be
fabricated perfectly rectangular (without any sidewall angle). All the fabrication processes
introduce some sidewall angles causing waveguides to be inherently asymmetric even
with top SiO2 cladding. As reported in Ref. [29], the sidewall angle should be less than 20

to suppress mode hybridization and avoid undesired mode conversion. However, it is very
challenging to eliminate the sidewall angle, and a typical value in most of the fabrication
processes is around 80 [29–31].

The other popular waveguide, particularly for silicon-based integrated optoelectronics
is SOI ridge waveguides [32–35]. The ridge waveguide structure is inherently asymmetric
in the vertical direction, even when considering SiO2 upper cladding (without angled
sidewalls). Consequently, strong mode conversion is observed between TM0 mode and
higher-order TE polarization in regular adiabatic and bi-level tapers [9]. However, in pre-
vious reports, no emphasis was given to various process parameters since strong mode
hybridization was easily achieved in an SOI platform with relatively thin silicon thick-
ness. A taper length of <200 microns was sufficient for mode conversion [9,11,12,17,19,24].
Note that, due to strong mode hybridization in ridge waveguides, it is also difficult to
depress mode conversion in ultra-short low loss tapers in TM-type PICs. Figure 1a,b
show the cross-section of the ideal rectangular waveguide and waveguide with angled
sidewalls, respectively.

Even though the SOI platform with 220 nm silicon thickness is very popular, the SOI
platform with thicker silicon (400–500 nm) is attractive to achieve efficient coupling between
the III-V laser and silicon waveguide [36]. Additionally, various high-performance passive
components, such as optical spiral delay lines, ring resonators, and Bragg grating, were
also reported with 500 nm thick silicon [37]. For the first time, this paper studies the mode
conversion in submicron 500 nm SOI for different waveguide ridge heights and upper
claddings. The study paves the way for realizing compact PSRs and robust TM-type circuits.
Additionally, it shows that, without optimization, adiabatic tapers for mode conversion
would be at least ten times longer (1000s of microns) compared to relatively thinner SOI
platforms. To reduce this taper length, we extend the work performed on angled sidewalls
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in strip waveguides [29] to the ridge waveguides. By selecting an optimum etch-depth
and considering asymmetries caused by angled sidewalls and cladding, we demonstrated
an 84.7% reduction in the overall taper length needed for polarization mode converters.
It is also shown that ultra-short adiabatic tapers with 97% TM preserving efficiency can be
achieved. These results illustrate the importance of accounting for the process parameters
while designing TM preserving and mode evolution tapers.
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Figure 1. The cross-section for an SOI ridge waveguide (a) without sidewall angle (b) with
sidewall angle.

2. Structure and Analysis

In this work, we consider tapered submicron SOI ridge waveguides. A regular lateral
adiabatic taper is considered for studying mode conversion. In the present example, the
SOI wafer has total silicon (Si) height H = 500 nm, and the refractive indices of the Si and
SiO2 are 3.455 (nSi) and 1.445 (nSiO2), respectively. An SOI wafer with 500 nm Si thickness
is available with many Multi-Project-Wafer (MPW) offerings [30,31].

In our analysis, we have considered three different ridge heights, i.e., h = 200 nm
(0.4 H), h = 250 nm (0.5 H), and h = 300 nm (0.6 H). For clarity purposes, the etch-depth
(h) is given as a ratio to the total silicon height (H). For a deeply etched ridge waveguide,
the ridge height (h) is larger than the slab height (H-h), while for low etch-depth, the
opposite is true. Figure 1a shows an ideal rectangular ridge waveguide with SiO2 top
cladding. However, the fabrication process is not ideal, and it introduces angled sidewalls
[Figure 1b]. Since 80 is the most commonly reported sidewall angle [29–31], we study the
effect of this angle on the mode conversion. We also evaluate mode property and light
propagation in a ridge waveguide exposed to air with 80 sidewalls. By quantifying the
effect of etch-depth, angled sidewalls, and asymmetric cladding on mode conversion in
tapered ridge waveguides, designs can be made more compact. Finally, we combine all the
findings to reduce the length requirement of an adiabatic taper for 100% mode conversion.
Additionally, calculations are done to find the best possible TM preserving efficiency that
can be achieved in non-adiabatic short tapers.

2.1. Mode Hybridization Widths

For any waveguide eigenmode, the mode polarization ratio (γ) can be defined as:

γ =

∫
|EX|2dxdy∫

|EX|2dxdy +
∫ ∣∣Ey

∣∣2dxdy
(1)

where Ex and Ey are the components of the electric field in the x- and y-directions, respec-
tively. This equation is true for any eigenmode. For a typical TE mode, the Ex-component
is much stronger than the Ey component, and consequently, the ratio γ is close to 100%.
On the other hand, for a TM mode, ideally γ = 0. Therefore, modes are hybridized when
0 < γ < 100%. In other words, at mode hybridization widths, the Ex and Ey components
of two different modes become comparable to each other. By calculating γ for all guided
modes at different widths, mode hybridization regions can be identified. However, in this
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work, we have used commercial software to determine waveguide widths at which modes
are hybridized. A Finite-Difference-Eigenmode (FDE) solver (from Ansys Lumerical) is
used to identify the region where mode crossing occurs between TM0 mode and TE1 mode.
At the core silicon width (Wco) of mode crossing, due to vertical asymmetry, TM0 and TE1
modes are hybridized [22]. We run FDE simulations, varying the ridge waveguide width
(Wco) from 0.5 µm to 3 µm. At each step, the effective index (neff) for the first 4–5 modes
are calculated, and we then subtract from it the neff of the slab mode (without the ridge).
For a ridge waveguide, an optical mode is supported if its effective index is higher than the
slab mode. We then plot this difference (∆neff) to determine the width (Wh) at which mode
hybridization is observed.

Figure 2a–c shows the ∆neff for the SOI ridge waveguides for different etch depths for
oxide-cladded ridge waveguide without any sidewall angle as the width of core silicon
(Wco) varies from 0.5 µm to 3 µm. The mode hybridization between TM0 and TE1 is
observed at silicon waveguide widths (Wco = Wh) of 1.47µm, 1.37 µm, and 1.23 µm for
the ridges with etch-depths of 0.6 H, 0.5 H, and 0.4 H, respectively. It can be seen that
Wh gets narrower when the waveguide etch-depth is reduced. As the latter is reduced
from 0.6 H to 0.4 H, the mode hybridization region shifts from Wh = 1.47 µm to 1.23 µm.
The simulation shows no significant change in the mode hybridization width (Wh) due to
vertical asymmetry introduced by asymmetric cladding and angled sidewalls.

2.2. Taper Design for Efficient Mode Conversion

Due to mode hybridization at Wh, mode conversion between TM0 and TE1 will
occur when light propagates along an adiabatic taper if its end widths W1 and W2 sat-
isfy the condition: W1 < Wh < W2. In our design, the taper end width is chosen as
W1 = 1 µm and W2 = 2 µm (Figure 3). This will satisfy the mode conversion condition for a
ridge waveguide with all the selected etch depths (W1 = 1 µm < Wh = [1.47 µm, 1.37 µm,
1.23 µm] < W2 = 2 µm). For TM-type PICs, where low loss TM0 tapers are desired, mode
conversion is harmful and causes unwanted losses. One of the simplest methods to avoid
such unwanted mode conversion is to design tapers whose end widths are either (W1, W2)
< Wh or (W1, W2) > Wh. However, if some design requirements put constraints on the
end widths (W1 < Wh < W2), ultra-short non-adiabatic tapers should be implemented to
preserve the TM fundamental mode.

An Eigen-Mode-Expansion method (EME-Ansys Lumerical) is used to simulate the
mode conversion efficiency as the taper length (Ltp) increases. For scanning length in
a very large range, the EME algorithm is very efficient compared to Finite-Difference-
Time-Domain solver (FDTD). The simulations are performed for three different ridge
heights under three different process conditions. The beam propagation simulation is
also done in 3D FDTD to visualize the light propagation along the taper. For beam
propagation simulation in FDTD, the same taper lengths of 200 µm (adiabatic) and 10 µm
(TM-preserving) are chosen for different process conditions, and conversion ratios obtained
are shown as well. The difference between EME and FDTD algorithm in determining the
conversion efficiency is only 0.35%. The results are as follows:

2.2.1. (0.6. H) Ridge Waveguide (Ridge Height > Slab Height)

We start our analysis with a deeply etched ridge waveguide. The ridge height is
300 nm (0.6 H), corresponding to a slab height of 200 nm. Figure 4 shows mode conversion
efficiencies when the TM0 mode is launched and coupled to the TE1 mode. The TM0
mode propagates along the adiabatic taper with a start and end widths of W1 = 1 µm and
W2 = 2 µm, respectively. The simulations are performed for angled sidewalls and different
top cladding conditions. From Figure 4, one can realize very highly efficient tapers for TM0
to TE1 mode conversion with ~100% conversion efficiency by appropriately selecting Ltp.
The Ltp required for mode conversion is observed to be strongly dependent on the process
asymmetries related to the angled sidewalls and cladding material.
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Figure 2. The calculated ∆neff (neff (mode)-neff(slab)) for the eigen modes of SOI ridge waveguide
with different etch depths along with hybridized mode profiles. (a) h = 300 nm (0.6 H); (b) h = 250 nm
(0.5 H); (c) h = 200 nm (0.4 H). The total height of silicon is H = 500 nm and simulations are done at
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Figure 4. (a) The mode conversion efficiency (η) as the function of taper length (Ltp) when TM0 mode
is launched. (b) Light propagation with θ = 00 and ncl = 1.445. (c) Light propagation with θ = 80 and
ncl = 1.445. The total height of silicon is H = 500 nm, ridge height (h) = 0.6 H and simulations are
done at 1550 nm wavelength.

Under an ideal rectangular waveguide with symmetric cladding (SiO2), a taper length
of 1820 µm is required for the complete mode conversion. However, when angled sidewalls
are accounted for, the size is reduced to 1600 µm. This enhanced mode hybridization
corresponds to a 12% reduction in taper length. Alternatively, when an air top cladding
and sidewall angle are simultaneously present, the length for 100% mode conversion is
reduced to 1110 µm. This corresponds to a total reduction of 39%, which is very significant
compared to an ideal case.

It is important to note that mode conversion for SiO2-cladding waveguide can be
significantly reduced by choosing ultra-short taper lengths. From Figure 4, the optimum
length is 10 µm, for which the conversion efficiency is very low. For this taper length,
the TM0 mode preserving ability is highest, i.e., 98%, see FDTD (Finite-Difference Time-
Domain) simulation in Figure 4b). Since it is not possible to avoid angled sidewalls, it must
be considered when designing low-loss TM tapers. Figure 4c shows the transmission
efficiency assuming a sidewall angle of 80. The drop-in efficiency due to angled sidewalls
is only 1%, which is acceptable.

Figure 5 shows FDTD simulation along an adiabatic taper of length 200 µm when
the launched mode is TM0. Figure 5a,b are shown for SiO2 cladding with 00 and 80

sidewall angles, respectively, while Figure 5c is shown for angled air-cladding waveguide.
As predicted, the conversion efficiency increases with process asymmetries of the angled
sidewalls and air-top cladding.
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Figure 5. The light propagation in the designed taper Ltp = 200 µm (a) θ = 00 and ncl = 1.445 (b) θ = 80

and ncl = 1.445 (c) θ = 80 and ncl = 1. The total height of silicon is H = 500 nm, ridge height (h) = 0.6 H
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2.2.2. (0.5. H) Ridge Waveguide (Ridge Height = Slab Height)

The etch-depth of the ridge waveguide is now reduced and made equal to slab height.
In this case, both are equal to 250 nm. We observe a substantial increase in mode conversion
efficiency as the ridge height is reduced. From Figure 6, even for an ideal case with no
sidewalls and symmetric SiO2 cladding, the taper length for an efficient mode conversion
is 985 µm. With angled sidewalls, the required Ltp is 750 µm, representing a 25% reduction
in the overall length. Finally, when angled sidewalls and air-cladding are considered, the
corresponding Ltp for mode conversion is 655 µm, which corresponds to a 33.5% reduction
compared to an ideal case. When compared with deeply etched ridge waveguide, the effect
of angled sidewalls is more pronounced. Since it is not possible to fabricate waveguides
without sidewalls, the maximum efficiency is 94.5% for low-loss TM tapers for the sidewall
angle of 80. For TM polarization preserving taper, Figure 6b and 6c show FDTD propagation
in an ultra-short Ltp = 10 µm for sidewall angles of θ = 00 and θ = 80, respectively.
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Figure 6. (a) The mode conversion efficiency (η) as the function of taper length (Ltp) when TM0 mode
is launched. (b) Light propagation with θ = 00 and ncl = 1.445. (c) Light propagation with θ = 80 and
ncl = 1.445. The total height of silicon is H = 500 nm, ridge height (h) = 0.5 H, and simulations are
done at 1550 nm wavelength.

Figure 7 shows the light propagation along an adiabatic Ltp = 200 µm taper, similar to
Figure 5 but for 0.5 H etch-depth. Compared to Figure 5, an increase in mode conversion
efficiency for the same taper length is observed. It is evident that mode conversion in
a tapered ridge waveguide is strongly dependent on etching depth. In a deeply etched
waveguide, even when maximum asymmetry due to angled sidewalls and air top cladding
is accounted, the conversion is only 56%, whereas, for a 0.5 H waveguide, it is 78%.
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Therefore, process parameters play an important role in mode conversion, and they must
be accounted for in the PIC circuit design. Furthermore, a small change in the etch depth
can cause a significant difference in the mode conversion.
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Figure 7. The light propagation in the designed taper Ltp = 200 µm (a) θ = 00 and ncl = 1.445 (b) θ = 80

and ncl = 1.445 (c) θ = 80 and ncl = 1. The total height of silicon is H = 500 nm, ridge height (h) = 0.5 H
and simulations are done at 1550 nm wavelength.

2.2.3. (0.4. H) Ridge Waveguide (Ridge Height < Slab Height)

We finally consider a case of a low etched ridge waveguide in which ridge height is
less than slab height. As seen from the 0.5 H waveguide analysis, the mode conversion
efficiency increases as the etch-depth is reduced. For a low etched ridge waveguide, the
mode conversion efficiency is maximum. It is not possible to further reduce the etch depth
to enhance efficiency. Reducing the etch depth below certain limits causes TM fundamental
mode to become leaky, and it is not well supported in the waveguide. However, it is still
possible to increase the mode conversion efficiency and reduce the taper length requirement
by accounting for enhanced mode hybridization due to angled sidewalls and asymmetric
cladding. As depicted in Figure 8, a 100% conversion efficiency between TM0 and TE1
mode is obtained at a taper length of 440 µm for an ideal case. The taper length is only
376 µm when the waveguide is modeled with a sidewall angle of 80. When both angled
sidewalls and upper air cladding are considered, the size reduces to 277 µm. Additionally,
low etch depth waveguides are reported to show lower propagation loss [37]. This is due
to a reduction in the optical mode interaction with the ridge sidewall.
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Figure 8. (a) The mode conversion efficiency (η) as the function of taper length (Ltp) when TM0 mode
is launched. (b) Light propagation with θ = 00 and ncl = 1.445. (c) Light propagation with θ = 80 and
ncl = 1.445. The total height of silicon is H = 500 nm, ridge height (h) = 0.4 H and simulations are
done at 1550 nm wavelength.
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Since in a low etch-depth ridge waveguide, very strong mode conversion is observed,
it is not recommended to design an ultra-short taper to preserve the TM mode. Figure 8
shows the light propagation in a taper with length Ltp = 10 µm. Even for an ideal case
without any sidewall angle, the TM mode is maintained with only 85% efficiency. This
efficiency further reduces to 83% when modeled with sidewalls.

Figure 9 shows FDTD beam propagation results along the designed taper with
Ltp = 200 µm. A considerable increase in mode conversion efficiency is observed as ex-
pected compared to the deeply etched ridge waveguide (see Figure 5).
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Table 1 summarizes the important results for all the cases. It is concluded that, for
efficient mode conversion, taper length can be significantly reduced by choosing the
optimum process parameters. For a 100% mode conversion, we showed that an 1820 µm
length taper could be reduced to a length of 277 µm by using a small ridge height and
by considering angled sidewalls in an air clad waveguide. This corresponds to a total
of 1540 µm (84.7%) decreases in the overall footprint. Even though an ultra-short taper
successfully suppresses unwanted mode conversion, the TM0 mode preserving efficiency
is greatly improved if designed with a high etch-depth ridge waveguide.

Table 1. Results Summary.

Silicon Height H = 500 nm

Ridge Height (0.6H) Ridge Height (0.5 H) Ridge Height (0.4 H)

Mode
Converter

(Ltp)

TM Preserving
Efficiency

(Ltp = 10 µm)

Mode
Converter

(Ltp)

TM Preserving
Efficiency

(Ltp = 10 µm)

Mode
Converter

(Ltp)

TM Preserving
Efficiency

(Ltp = 10 µm)

θ = 00

ncl = 1.445
1821 µm 98% 985 µm 96% 440 µm 85%

θ = 80

ncl = 1.445
1600 µm 97% 750 µm 94.5% 376 µm 83%

θ = 80, ncl = 1 1110 µm 96% 655 µm 94% 277 µm 80%

3. Discussion

The insertion loss (IL) of a photonic device is defined as:

IL = −10 log
(

Pout

Pin

)
(2)
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where Pin indicates input optical power and Pout indicates output optical power. In addi-
tion to surface roughness, the main loss mechanism in these devices is the presence and
excitation of unwanted optical modes. In the case of TM to TE1 mode converter, the per-
centage of TM mode in the output power contributes towards loss. Therefore, Equation (2)
can be modified as:

IL (Mode Convertor) = −10 log
(

Pout(TE1)

Pin(TM0)

)
(3)

Similarly, for a TM taper, the excitation of unwanted TE1 mode is the main source of
the loss. The insertion loss of the TM preserving taper can be defined as:

IL (TM preserving Taper) = −10 log
(

Pout(TM0)

Pin(TM0)

)
(4)

Therefore, the best low-loss configuration for the mode conversion is the air cladding
with a partial etch of 0.4 H (0.176 dB), whereas for the TM preserving taper is the case of
symmetric cladding with a ridge height of 0.6 H (0.084 dB). Here we have assumed an rms
sidewall roughness of 3 nm.

Mode converters based on mode hybridization in adiabatic tapers are highly tolerant
to fabrication tolerance. This is because irrespective of fabrication deviation in width,
the mode hybridization width is always found along the taper. However, if the input
width (W1) is too close to the mode hybridization width (Wh), the device is more prone to
fabrication variations. Along with width variation, there is also a possibility of thickness
variation and changes in the sidewall angle. We study the effect of thickness and changes
in sidewall angle (see Figure 10). From this figure, it can be seen that the decrease in the
ridge height slightly improves the mode conversion efficiency. Similarly, the increase in
sidewall angle had a similar effect on the efficiency. However, fabrication variation does
not cause much difference in the performance.
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4. Conclusions

In summary, the effect of ridge height, sidewall angle, and asymmetric cladding
on mode conversion in a tapered submicron 500 nm SOI ridge waveguide is analyzed.
The waveguide is highly asymmetrical in the vertical direction irrespective of top cladding
(SiO2 or air). Therefore, if the taper end widths lie in between the mode hybridization
regions, then mode conversion between TM fundamental mode and higher-order TE modes
can occur. This mode conversion in the submicron ridge waveguide is strongly dependent
on the ridge height. The SOI ridge tapered waveguide with reduced etching depth has
efficient mode conversion compared with deeply etched ones. Angled sidewalls and
asymmetric cladding can further strengthen the mode hybridization and mode conversion.
We demonstrate an 84.7% reduction in length for an efficient mode conversion with a low
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etched waveguide (80 sidewalls) with air-top cladding. Such efficient mode conversion
enables applications like compact polarization rotators/splitters. For general TM-type PICs,
such mode conversions are not usually desired because it introduces excess loss and cross
talk. It has also been shown that for such applications, PICs should be implemented using
ultra-short non-adiabatic tapers designed with deep-etched ridge waveguides. This will
ensure TM fundamental mode is maintained in the circuit. This work also shows that 97%
efficient TM preserving taper can be designed with a deep-etched ridge waveguide.
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