
applied  
sciences

Article

Three-Dimensional Tooth Model Reconstruction Using
Statistical Randomization-Based Particle Swarm Optimization

Ritipong Wongkhuenkaew 1, Sansanee Auephanwiriyakul 2,* , Marasri Chaiworawitkul 3

and Nipon Theera-Umpon 4

����������
�������

Citation: Wongkhuenkaew, R.;

Auephanwiriyakul, S.;

Chaiworawitkul, M.; Theera-Umpon,

N. Three-Dimensional Tooth Model

Reconstruction Using Statistical

Randomization-Based Particle Swarm

Optimization. Appl. Sci. 2021, 11,

2363. https://doi.org/10.3390/app

11052363

Academic Editor: Keun Ho Ryu

Received: 27 January 2021

Accepted: 2 March 2021

Published: 7 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, Faculty of Engineering, Graduate School, Chiang Mai University,
Chiang Mai 50200, Thailand; ritipong_w@cmu.ac.th

2 Excellence Center in Infrastructure Technology and Transportation Engineering, Department of
Computer Engineering, Faculty of Engineering, Biomedical Engineering Institute, Chiang Mai University,
Chiang Mai 50200, Thailand

3 Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University,
Chiang Mai 50200, Thailand; marasri.chai@cmu.ac.th

4 Department of Electrical Engineering, Faculty of Engineering, Biomedical Engineering Institute,
Chiang Mai University, Chiang Mai 50200, Thailand; nipon@ieee.org

* Correspondence: sansanee@eng.cmu.ac.th; Tel.: +66-5394-2023

Abstract: The registration between images is a crucial part of the 3-D tooth reconstruction model. In
this paper, we introduce a registration method using our proposed statistical randomization-based
particle swarm optimization (SR-PSO) algorithm with the iterative closet point (ICP) method to find
the optimal affine transform between images. The hierarchical registration is also utilized in this
paper since there are several consecutive images involving in the registration. We implemented
this algorithm in the scanned commercial regular-tooth and orthodontic-tooth models. The results
demonstrated that the final 3-D images provided good visualization to human eyes with the mean-
squared error of 7.37 micrometer2 and 7.41 micrometer2 for both models, respectively. From the
results compared with the particle swarm optimization (PSO) algorithm with the ICP method, it
can be seen that the results from the proposed algorithm are much better than those from the PSO
algorithm with the ICP method.

Keywords: particle swarm optimization (PSO); iterative closest point (ICP); hierarchical registration;
3-D image registration; 3-D tooth model reconstruction; oral healthcare

1. Introduction

A 3-D tooth model reconstruction is a very crucial part of orthodontics. It is a helpful
tool in diagnostic or examination and also problem identification in the treatment planning
process in other dental caries in adults and children [1]. This is especially true in children
in which dental caries are one of the most children chronic diseases [2]. Nowadays, the
most powerful tools are image reconstructions from sophisticated devices, for example, CT
or laser. There are several research works on CT image reconstruction [3] and the recon-
struction from multimodal images [4–6]. Unfortunately, oral healthcare is not sufficient
and dental care access is limited, particularly in rural areas [7]. In Thailand, the dental
innovation foundation under royal patronage has provided dental care access in rural
communities for a long time. However, one of the difficulties in providing dental care to
children in those areas is how to take a 3-D tooth image inside their mouths. It is not easy
to use any sophisticated imaging devices when the units are applied in the countryside
due to the distance or the location limitation.

Therefore, a 3-D reconstruction system from optical images is needed. Still, one of
the essential processes in 3-D image reconstruction is image registration. In the literature,
there exist some 2-D medical image registration research works [8–12]. However, in our
case, the 3-D registration is more suitable. There exist some 3-D medical image registration
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methods [13,14] that utilize several features in the registration process including point-
cloud coordinates representing the 3-D shapes of objects. These coordinates have also been
used in the registration process shown in [15–20]. All the mentioned research works utilize
a variation of the particle swarm optimization (PSO) to find the matching location between
the source and target images. Most of the existing registration methods find the matching
locations/points based on rotation and/or translation only. However, in the 3-D affine
transform, there are other types of transform, e.g., scaling, shearing, and reflection.

In this paper, we develop a system that can create a 3-D image from optical images.
However, it is not easy to use real images taken from children due to a research ethical
approval requirement. Therefore, we postulate scanned images from two commercial tooth
models and then create point-cloud images. We propose the statistical randomization-based
particle swarm optimization (SR-PSO) algorithm to find an appropriate affine transform
(shearing, rotation, scaling and translation) between images for the registration purpose.
The proposed SR-PSO algorithm is based on a modification of the particle swarm opti-
mization [21] to cope with the premature convergence [22] and to improve exploration and
exploitation of the algorithm [23]. After that, the iterative closet point (ICP) method [24,25]
is used to refine the resulting registration because the ICP method has been proved in
several research works [8,17] that it can help to refine registered results. Finally, the 3-D
tooth models are reconstructed.

2. Registration Method

In a 3-D registration problem, the geometry transform can be calculated from the
relation between two point-cloud images. The more they are related, the higher quality of
the transformation. The highest quality transformation corresponds to the minimization of
the following statement:

H∗ = argminO(H(Q), P) (1)

where P is the target point-cloud matrix ([pi]M×4, M is the number of target point-cloud
points), Q is the source point-cloud matrix ([qj]N×4, N is the number of source point-cloud
points), and H is the geometry transform. Finally, O(·) is an objective function. Since
the transformation H is estimated by finding the nearest neighbor [26] between a set of
point-pairs (pj, qj), the minimum error of the distance between two corresponding points
can be considered [27]. Using the mean squared error (MSE), hence, the minimization
problem, in this case, is calculated as

H∗ = argminH
1
N

N

∑
j=1

(
qj ·H

T − pj

)2

(2)

pj = argmin
pi∈P

qj.H
T − pi (3)

The transformation H is the 3-D transformation with 15 unknown parameters, i.e., 3
parameters from scaling (S), 3 parameters from translation (T), 3 parameters from rotation
(R), and 6 parameters from shearing (SH) [28]. The matrix H is computed as

H= T × S × R × SH, (4)

where T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

, S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

, and SH =


1 sh1 sh2 0

sh3 1 sh4 0
sh5 sh6 1 0
0 0 0 1

,

and

R =


cos
(
θy
)

cos(θz) − cos
(
θy
)

sin(θz) sin
(
θy
)

0

sin(θx) sin
(
θy
)

cos(θz) + cos(θx) sin(θz) − sin(θx) sin
(
θy
)

sin(θz) + cos(θx) cos(θz) − sin(θx) cos
(
θy
)

0

− cos(θx) sin
(
θy
)

cos(θz) + sin(θx) sin(θz) cos(θx) sin
(
θy
)

sin(θz) + sin(θx) cos(θz) cos(θx) cos
(
θy
)

0

0 0 0 1

 (5)
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Hence,

H =


a d g l
b e i m
c f j n
p q r s

 (6)

where
a = sx(cycz) + sh3sx(−cysz) + sh5sx(sy),

b = sy(sxsycz + cxsz) + sh3sy(−sxsysz + cxcz) + sh5sy(−sxcy),
c = sz(−cxsycz + sxsz) + sh3sz(cxsysz + sxcz) + sh5sz(cxcy),

d = sh1sx(cycz) + sx(−cysz) + sh6sx(sy),
e = sh1sy(sxsycz + cxsz) + sy(−sxsysz + cxcz) + sh6sy(−sxcy),

f = sh1sz(−cxsycz + sxsz) + sz(cxsysz + sxcz) + sh6sz(cxcy),
g = sh2sx(cycz) + sh4sx(−cysz) + sx(sy),

i = sh2sy(sxsycz + cxsz) + sh4sy(−sxsysz + cxcz) + sy(−sxcy),
j = sh2sz(−cxsycz + sxsz) + sh4sz(cxsysz + sxcz) + sz(cxcy),

cx = cos(θx), cy = cos(θy), cz = cos(θz),
sx = sin(θx), sy = sin(θy), sz = sin(θz).

(7)

It is worthwhile noting that a through j are non-rigid transformations resulting from
the combination of scaling, shearing, and rotation properties. Meanwhile, l, m, and n are
simply tx, ty, and tz, respectively. Moreover, p, q, and r are set to 0 since they are perspective
property values. Finally, s is always set to 1 because of the scaling factor.

The proposed statistical randomization-based particle swarm optimization (SR-PSO)
algorithm described in the following section is used to find the optimal H. Each individual
in the swarm has 15 dimensions. The search space is defined as shown in Table 1.

Table 1. Parameters boundaries in optimization process.

Parameters Lower Bound Upper Bound

tx, ty, tz –1.5 (cm) 1.5 (cm)
8x, 8y, 8z –45 (deg) 45 (deg)
sx, sy, sz 0.8 (20% downscaling) 1.2 (20% upscaling)

sh1, sh2, sh3, sh4, sh5, sh6 –0.5 (cm) 0.5 (cm)

Statistical Randomization-Based PSO (SR-PSO) Algorithm

In this research, we modify the particle swarm optimization [21,29–31] following [22,23]
to cope with the premature convergence, low accuracy, and to improve exploration and
exploitation of the algorithm. In particular, we modify and combine the methods in [22]
and [23] to exploit both of their advantages.

Let X =
{

xj|j = 1 . . . N
}

be a set of N particles in the swarm in d-dimensional feature
space. xb

i and xg are the individual best of the ith particle and the global best of the swarm,
respectively. The update equations for velocity and position of each particle are

vi(t + 1) = wvi(t) + c1r1(xb
i (t)− xi(t)) + c2r2(xg(t)− xi(t)) (8)

xi(t + 1) = xi(t) + vi(t + 1) (9)

where r1 and r2 are randomly generated numbers from the uniform distribution within
[0, 1]. c1 and c2 are the acceleration coefficients, and w is the inertia weight calculated
by [29–31]

w(t + 1) = wmax −
(wmax × tα)

(Tα)
(10)
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where wmax = χ, T is the number of iterations, α = 1 (normally 0 < α ≤ 2), and

χ =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ , ϕ > 4 (11)

In our case, we also set the velocity limit to [vmin, vmax] where

vmax,d = k× (ubd − lbd), for 0.1 ≤ k ≤ 1 (12)

vmin,d = −1× vmax,d. (13)

In the experiment, we set k = 0.1.
We modify the method in [22] by introducing an extra intermediate particle by ran-

domizing the particle’s position using Gaussian distribution in each dimension in order
to increase the chance of premature convergence avoidance. The details of intermediate
particles are as follows:

For the jth dimension of intermediate particle
(

xtmi
j

)
with K being the number of

particles in the swarm,

− Calculated from an average of all individual best
(

xb
ij

)
:

xtm1
j =

∑K
i=1 xb

ij

K
(14)

− Calculated from a median of all individual best
(

xb
ij

)
:

xtm2
j = median

1≤i≤K
(xb

ij) (15)

− Calculated by random generate number from Gaussian distribution with mean and
standard deviation computed from individual best positions:

xtm3
j = σj × Z + µj, when Z ∼ N(0, 1) (16)

− Calculated from the larger absolute value of the maximum and the minimum in
that dimension:

xtm4
j =

 min
1≤i≤K

(xb
ij) if

∣∣∣∣ min
1≤i≤K

(xb
ij)

∣∣∣∣ > ∣∣∣∣ max
1≤i≤K

(xb
ij)

∣∣∣∣
max

1≤i≤K
(xb

ij) else
(17)

− Calculated from the smaller absolute value of the maximum and the minimum in
that dimension:

xtm5
j =

 min
1≤i≤K

(xb
ij) if

∣∣∣∣ min
1≤i≤K

(xb
ij)

∣∣∣∣ < ∣∣∣∣ max
1≤i≤K

(xb
ij)

∣∣∣∣
max

1≤i≤K
(xb

ij) else
(18)

If the lth intermediate particle (xtml) is the best particle among the intermediate particles
and it is better than the global particle, then the global best particle will be replaced by xtml.

To increase the chance of exploration and exploitation of xg, we randomly select the
individual best (xb

k) from all particles (instead of randomly selecting a particle except the
best one as in [23]) using

xb
select = rand(Xb) where Xb =

{
xb

1, . . . , xb
K

}
(19)
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For each dimension (xb
select,i), if a randomly generated number (∈ [0, 1]) is bigger than

or equal to a certain thresholding value, we reinitialize xb
select,i by randomizing the number

within [lbi, ubi], where lbi and ubi are the lower and upper bounds in the search space in
the ith dimension. That is

xb
select,i =

{
rand(lbi, ubi) if rand(0, 1) > 1− 1

d
xg

i otherwise
(20)

In this case, we set the thresholding value to 1− (1/d), where d is the number of dimensions
of a particle. If xb

k is better than xg, it is then updated using

xg =

{
xb

select if f
(

xb
select) < f (xg)

xg otherwise
(21)

The SR-PSO algorithm is summarized as followings:
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The SR-PSO algorithm is summarized as followings: 

For each population 

 Update velocity of all particles using equation (8), 

 Update all particle positions using equation (9), 

 Update each individual best b
kx  ∀k=1 to K, 

 Update the global best (xg), 
 Calculate the intermediate particles using equations (15) – 

(18), 

 Find the best intermediate particle ( _tm bestx ), 

 If ( ) ( )<_ gtm bestf fx x  then 

  = _g tm bestx x  

 Find b
selectx  using equation (19) 

 Reinitialize ,
b
select ix  using equation (20) 

 Update xg using equation (21) 
End For 

 

In our experiment, the optimal solution is the global best in the last population. To 
fine tune the registration results from the SR-PSO algorithm, after we find the optimized 
parameters, we utilize the iterative closest point algorithm (ICP) method as in [24,25] with 
the Nelder–Mead simplex method [32]. 

 

Figure 10. The best SR-PSO with the ICP registration results for the pairs (a) 1 and 2; (b) 2 and 3; 
(c) 3 and 4; (d) 4 and 5; (e) 5 and 6 of the regular-tooth model. 

Table 7. MSE of the final registration of six consecutive views (micrometer2) for the regular-tooth 
model (the best value is in bold). 

SR-PSO with ICP PSO with ICP 
α = 0.5 α = 1.0 α = 1.5 α = 2.0  
7.3670 7.3668 7.3666 7.3667 17.1150 

 
  

In our experiment, the optimal solution is the global best in the last population. To
fine tune the registration results from the SR-PSO algorithm, after we find the optimized
parameters, we utilize the iterative closest point algorithm (ICP) method as in [24,25] with
the Nelder–Mead simplex method [32].

3. Experimental Results

The 3-D tooth model reconstruction system is shown in Figure 1. The SR-PSO al-
gorithm is used to find the optimal transformation matrix H−1 (transform from source
point-cloud to target point-cloud). The ICP method is used to fine-tune the resultant
H−1. Finally, the 3-D tooth models are reconstructed based on the registered source and
target point-clouds.
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Figure 1. Diagram of the proposed 3-D tooth model reconstruction system. 
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Registration) 

ICP (Fine-tune) 3-D model reconstruction 
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5

Figure 1. Diagram of the proposed 3-D tooth model reconstruction system.

To test the algorithm, we ran the experiment of the generated original shape and its
3-D transformation as shown in Figure 2.
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Parameters  Values 
Number of particles K 100 
Number of iterations T 2000 

Constriction coefficient χ 0.7298 
 α 0.5, 1.0, 1.5, 2.0 
 ϕ 4.1 

Personal learning coefficient c1 1.4962 
Global learning coefficient c2 1.4962 

Figure 2. (a) The original shape (Target point-cloud) and (b) the 3-D transformation
(Source point-cloud).

The transformation matrix used to transform the original shape described by the
target point-cloud (Figure 2a) to the transformed shape described by the source point-cloud
(Figure 2b) is

H =


0.882050 −0.285362 −0.555884 −0.061153
0.225174 1.041540 0.181496 0.063487
0.249299 −0.413927 0.966936 −0.163016

0 0 0 1

 (22)

Hence, the transform matrix from the source point-cloud (Figure 2b) to the target
point-cloud (Figure 2a) is

H−1 =


0.901895 0.421703 0.439339 0.1
−0.143742 0.826257 −0.237726 −0.1
−0.294063 0.244980 0.819157 0.1

0 0 0 1

 (23)

In the experiment, the parameters for the SR-PSO algorithm were set as shown in
Table 2. To demonstrate how the SR-PSO algorithm works in each step, we provide an
example as follows:
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Table 2. Statistical randomization-based particle swarm optimization (SR-PSO) algorithm’s parame-
ters settings in the experiment.

Parameters Values

Number of particles K 100
Number of iterations T 2000

Constriction coefficient χ 0.7298
α 0.5, 1.0, 1.5, 2.0
ϕ 4.1

Personal learning coefficient c1 1.4962
Global learning coefficient c2 1.4962

Suppose an initialized particle is

H−1 =


0.731187 −0.409449 0.035758 0.590480
0.142237 0.573472 1.013846 1.008356
−0.099053 −0.640562 1.135987 1.336424

0 0 0 1

, then after the velocity and po-

sition are updated, the transformation is

H−1 =


0.791731 −0.221107 0.249697 0.479447
−0.022301 0.854962 0.732671 0.571793
−0.010562 −0.459633 1.176127 0.893047

0 0 0 1

. The individual best of this par-

ticle is H−1
b =


0.731187 −0.409449 0.035758 0.590480
0.142237 0.573472 1.013846 1.008356
−0.099053 −0.640562 1.135987 1.336424

0 0 0 1

 and the global best in

this iteration is H−1
g =


1.004627 0.362394 −0.003666 0.024357
−0.764060 0.540426 −0.902233 1.839488

0.567330 0.659548 1.130398 −0.219057
0 0 0 1

. Then, all five

intermediate particles are H−1
tm1 =


0.995780 0.115222 −0.006401 −0.116843
−0.012096 1.016352 0.012924 0.045527

0.032553 0.004589 0.998258 0.055794
0 0 0 1

,

H−1
tm2 =


1.012918 0.166930 −0.011245 −0.209060
0.071820 1.028852 0.106682 0.048913
0.065354 −0.028643 0.978727 0.171113

0 0 0 1

,

H−1
tm3 =


1.064280 0.408684 −0.434687 0.419931
0.324798 1.345943 0.210470 0.898905
0.221952 0.184071 1.084612 −0.470323

0 0 0 1

,

H−1
tm4 =


0.112204 −0.176563 0.677722 −1.436055
−0.037890 0.631210 0.318046 0.523522
−0.659836 −0.011208 0.253057 0.588023

0 0 0 1

, and

H−1
tm5 =


0.599898 −0.757315 −0.454490 1.325230
0.730332 0.576859 −0.516980 −0.534417
0.809368 −0.039595 0.673142 2.244765

0 0 0 1

. The best of intermedi-

ate particles is H−1
tm1 and it is better than H−1

g , hence H−1
g = H−1

tm1. Then xb
select from
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Equation (20) is H−1
b_select =


0.995691 0.122637 −0.006306 −0.116511
−0.012102 1.016839 0.012930 0.045549

0.030081 0.212238 1.000898 0.065096
0 0 0 1

. After

comparing H−1
g with H−1

b_select, H−1
b_select is better, hence H−1

g = H−1
b_select. Figure 3 depicts the

registration mean-squared error (MSE) of the global best of the SR-PSO algorithm. We can
see that, as the iteration proceeds, the MSE decreases and moves towards 3.22 × 10−31

at the 2000th iteration. Figure 4 shows the registration progress image of the global best
particle in the 1st, 50th, 500th, and 2000th iterations. It can be seen that the registration
result in the last iteration is an almost perfect match.
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The registration mean-squared errors (MSEs) using the SR-PSO algorithm with and
without refining with the ICP method are shown in Table 3. The best result is when α = 1.5
with an extremely tiny error of 3.22 × 10−31. The best final registration result is also shown
in Figure 5.

Table 3. The registration mean-squared error (MSE) in pixels2 (the best value is in bold).

α

0.5 1.0 1.5 2.0

SR-PSO without ICP 7.68 × 10−2 9.23 × 10−2 3.22 × 10−31 9.68 × 10−2

SR-PSO with ICP 7.68 × 10−2 9.23 × 10−2 3.22 × 10−31 9.68 × 10−2
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The best final transformation matrix is

H−1 =


0.901895 0.421703 0.439339 0.1
−0.143742 0.826257 −0.237726 −0.1
−0.294063 0.244980 0.819157 0.1

0 0 0 1

 (24)

Although the MSEs of the final registration with the other values of α are not as good,
the final registration images are almost aligned as shown in Figure 6. The reason for this
mistake might be because the SR-PSO algorithm does not find the correct global minimum.
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Now, we are ready to implement this algorithm on tooth reconstruction. We used
the EinScan series, a commercial 3-D scanner, to collect a point-cloud data set in several
consecutive views from two commercial tooth models. Examples of data acquisition setup
and the point-cloud data are shown in Figure 7.
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Figure 7. (a) Hardware setup and (b) point-cloud view.

We implemented this system on two different tooth models, i.e., a regular tooth model
and an orthodontic tooth model. We used only six consecutive point-cloud coordinate
(x, y, z) views with an interval of 30 degrees in each model. The information of the tooth
point-cloud data is shown in Table 4.

Table 4. Tooth dataset information.

Model Object View Object Name Points Number

Regular tooth model

1 Scan_0.asc 28,807
2 Scan_1.asc 28,970
3 Scan_2.asc 28,983
4 Scan_3.asc 25,809
5 Scan_4.asc 17,303
6 Scan_5.asc 21,739

Total Six views 151,592

Orthodontic tooth model

1 Scan_0.asc 25,301
2 Scan_1.asc 25,772
3 Scan_2.asc 22,432
4 Scan_3.asc 17,167
5 Scan_4.asc 22,537
6 Scan_5.asc 24,148

Total Six views 137,357

In this dataset, we randomly sampled each view into 60% of the original view. We
also assumed that there was overlapping between each consecutive view. We also selected
representative points inside the overlapping area using the voxel hull method [33–35]
before we implemented the registration process with the parameter setting shown in
Table 2. Since there were six consecutive views, we utilized the hierarchical registration
to increase the registration performance as shown in Figure 8 with F = 6. At each level,
we selected the best final registration result (SR-PSO algorithm with the ICP method) to
survive to the next level of the hierarchical registration.
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We also compared the results with those from the regular particle swarm optimization
(PSO) algorithm with the ICP method. The registration process from the PSO algorithm
with the ICP method is the same as the SR-PSO algorithm with the ICP method. However,
the inertia weight update equation in PSO [29] is

w(t + 1) = wmax − t
(wmax − wmin)

(T)
(25)

The parameter setting was similar to those used in the SR-PSO algorithm except that
wmin, wmax, c1, and c2 were set to 0.4, 0.9, 2, and 2, respectively.

For the regular-tooth model, the registration MSEs for the SR-PSO algorithm and the
PSO algorithm for each registration pair are shown in Table 5. Meanwhile, the registration
MSEs for each of the two algorithms with the ICP method for each registration pair are
shown in Table 6. Figures 9 and 10 show the best registration image of each consecutive
pair from the SR-PSO algorithm without and with the ICP method, respectively. Again, the
local optima are the cause of high MSE in pair-wise registration. Although Table 6 shows
that the PSO algorithm with the ICP method is a little bit better than the SR-PSO algorithm
with the ICP method in some pair-wise registrations, i.e., 1 vs. 2, 2 vs. 3, and 3 vs. 4, the
difference is only in the order of 0.002 to 0.05 micrometer2. When considering the final
registration results of six consecutive views shown in Table 7, we find that the best result
from the SR-PSO algorithm with the ICP method and α = 1.5 is 7.3666 micrometer2 whereas
that from the PSO algorithm with the ICP method is 17.1150 micrometer2. The result from
the SR-PSO algorithm with the ICP method is better than that from the PSO algorithm
with the ICP method. The final registration result of the regular-tooth model is shown in
Figure 11. We can see that the final registration image provides a good visualization to
human eyes.

Table 5. MSE from SRPSO and PSO for the regular-tooth model (the best value is in bold and the
worst value is underlined).

MSE in Micrometer2

SR-PSO PSO

View pairs α = 0.5 α = 1.0 α = 1.5 α = 2.0
1 vs. 2 5.9300 6.1910 6.3274 6.3470 7.0328
2 vs. 3 5.0026 4.9070 4.8937 4.9507 5.3218
3 vs. 4 5.8824 5.4310 6.0370 5.5086 8.1904
4 vs. 5 5.2666 5.3131 5.2807 32.312 6.7879
5 vs. 6 6.0431 5.8163 5.9118 5.8166 6.5468
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Table 6. MSE from SR−PSO with iterative closet point (ICP) and PSO with ICP for the regular-tooth
model (the best value is in bold).

MSE in Micrometer2

SR-PSO with ICP PSO with
ICP

View pairs α = 0.5 α = 1.0 α = 1.5 α = 2.0
1 vs. 2 5.8628 5.8636 5.8632 5.8809 5.8156
2 vs. 3 4.8906 4.8912 4.8860 4.8884 4.8844
3 vs. 4 5.4030 5.4024 5.4017 5.4031 5.4055
4 vs. 5 5.1326 5.1253 5.1747 5.1261 5.1261
5 vs. 6 5.6829 5.6880 5.6828 5.6882 5.6956
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Figure 10. The best SR-PSO with the ICP registration results for the pairs (a) 1 and 2; (b) 2 and 3; (c) 3
and 4; (d) 4 and 5; (e) 5 and 6 of the regular-tooth model.

Table 7. MSE of the final registration of six consecutive views (micrometer2) for the regular-tooth
model (the best value is in bold).

SR-PSO with ICP PSO with ICP

α = 0.5 α = 1.0 α = 1.5 α = 2.0
7.3670 7.3668 7.3666 7.3667 17.1150

For the orthodontic-tooth model, the registration MSEs for the SR-PSO algorithm and
the PSO algorithm for each registration pair are shown in Table 8. Figure 12 shows the
best registration images of different pairs from the SR-PSO algorithm. Meanwhile, the
registration MSEs for the SR-PSO algorithm with the ICP method and the PSO algorithm
with the ICP method for each registration pair are shown in Table 9. The best registration
images of different pairs from the SR-PSO algorithm with the ICP method are shown
in Figure 13. We can see that using only the SR-PSO algorithm provides better results
than using only the PSO algorithm. However, the PSO algorithm with the ICP method is
better than the SR-PSO algorithm with the ICP method in one of the pair-wise registrations
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(4 vs. 5) with a little difference. The final registration MSEs of the six consecutive views are
shown in Table 10. The best final 3-D registration image is from the SR-PSO algorithm with
the ICP method and α = 0.5. It has an MSE of 7.4130 micrometer2 whereas the comparable
error of 7.4672 micrometer2 is achieved by the PSO algorithm with the ICP method. We can
also see in Figure 14 that the final 3-D registration image of the orthodontic-tooth model
also provides a good visualization to human eyes.
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Table 8. MSE from SR-PSO and PSO for the orthodontic-tooth model (the best value is in bold).

MSE in Micrometer2

SR-PSO PSO

View pairs α = 0.5 α = 1.0 α = 1.5 α = 2.0
1 vs. 2 5.5553 5.7212 5.6724 5.7199 28.973
2 vs. 3 6.2493 6.2868 6.1613 6.2224 35.490
3 vs. 4 179.95 12.719 5.4687 12.779 6.7116
4 vs. 5 7.0814 6.7577 6.5847 8.6855 14.036
5 vs. 6 5.4288 5.3262 5.3638 5.4472 35.000

Table 9. MSE from SR-PSO with ICP and PSO with ICP for the orthodontic-tooth model (the best
value is in bold).

MSE in Micrometer2

SR-PSO with ICP PSO with ICP

View pairs α = 0.5 α = 1.0 α = 1.5 α = 2.0
1 vs. 2 5.5093 5.5101 5.5093 5.5127 5.5130
2 vs. 3 6.1441 6.1440 6.1440 6.1444 6.1570
3 vs. 4 5.2854 12.511 5.2706 12.514 5.2847
4 vs. 5 6.3945 6.3948 6.3946 6.3999 6.3933
5 vs. 6 5.2859 5.2801 5.2810 5.2814 5.2815
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Figure 12. The best SR-PSO registration results for the pairs (a) 1 and 2; (b) 2 and 3; (c) 3 and 4; (d) 4
and 5; (e) 5 and 6 of the orthodontic-tooth model.
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Figure 13. The best SR-PSO with ICP registration results for the pairs (a) 1 and 2; (b) 2 and 3; (c) 3
and 4; (d) 4 and 5; (e) 5 and 6 of the orthodontic-tooth model.
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Table 10. MSE of the final registration of six consecutive views (micrometer2) for the orthodontic-
tooth model (the best value is in bold).

SR-PSO with ICP PSO with ICP

α = 0.5 α = 1.0 α = 1.5 α = 2.0
7.4130 7.4141 7.4141 7.4131 7.4672
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4. Conclusions

To aid in orthodontics or the diagnostic and treatment planning process in dental caries,
a 3-D tooth model reconstruction is one of the important parts. In this paper, we introduce
a registration process using our proposed statistical randomization-based particle swarm
optimization (SR-PSO) algorithm with the iterative closet point (ICP) method to determine
the optimal affine transform between images in 3-D. Because there were several consecutive
images scanned from a commercial tooth model, we implemented a hierarchical registration
process to produce the final registration image. We also compared the results with those
from the particle swarm optimization (PSO) method with the ICP method. The best results
from the SR-PSO algorithm with the ICP method for the regular-tooth model and the
orthodontic-tooth model yielded the mean-squared error (MSE) of 7.3666 micrometer2

and 7.4130 micrometer2, respectively. For the sake of comparison, the MSEs from the PSO
algorithm with the ICP method for the two tooth models were 17.115 micrometer2 and
7.4672 micrometer2, respectively. The SR-PSO algorithm with the ICP method provided
better results than that of the PSO algorithm with the ICP method. Moreover, the resulting
3-D images from the SR-PSO algorithm with the ICP method are also viewable by human
eyes and are useful for experts. In future work, we will implement this algorithm for the
tooth models with defections in order to simulate dental caries in real situations.
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