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Abstract: Cooperative spectrum sensing (CSS) is a vital part of cognitive radio networks, which
ensures the existence of the primary user (PU) in the network. However, the presence of malicious
users (MUs) highly degrades the performance of the system. In the proposed scheme, each secondary
user (SU) reports to the fusion center (FC) with a hard decision of the sensing energy to indicate the
existence of the PU. The main contribution of this work deals with MU attacks, specifically spectrum
sensing data falsification (SSDF) attacks. In this paper, we propose a correlation-based approach
to differentiate between the SUs and the outliers by determining the sensing of each SU, and the
average value of sensing information with other SUs, to predict the SSDF attack in the system. The
FC determines the abnormality of a SU by determining the similarity for each SU with the remaining
SUs by following the proposed scheme and declares the SU as an outlier using the box-whisker plot.
The effectiveness of the proposed scheme was demonstrated through simulations.

Keywords: cognitive radio networks; spectrum sensing data falsification (SSDF); opposite malicious
user (OMU); random opposite malicious user (ROMU); box-whisker plot

1. Introduction

The services provided for the rapid growth of the applications, such as computers,
laptops, ipads, internet of things (IoT), etc., have increased the demand of the spectrum,
which results in spectrum shortage. According to the Federal Communication Commission
(FCC), most of the spectrum is underutilized, even in the crowded region, the spectrum
utilization is between 15% and 85% [1]. To tackle the issue of the spectrum underutilization,
cognitive radio technology (CRT) has emerged as a strong candidate for exploiting the spec-
trum [2]. The main functionality of CRT is to determine the availability of the spectrum for
the secondary users (SUs). For achieving the spectrum availability and efficient utilization
of the spectrum, the SUs need to continuously monitor the available spectrum to find the
spectrum holes and vacate the spectrum whenever the primary user (PU) appears in the
network [3].

The spectrum sensing is performed to determine the presence or absence of the PU
in the network. Different detection techniques, such as matched filter detection, cyclo-
stationary feature detection, energy detection, etc., have been proposed in the literature [4,5].
Every detection technique has their own features. For example, feature detection is optimal,
when the PU information is available at the SU. When the SU has no prior information
about the PU, then the energy detection technique is the optimal detection technique. The
SU has only knowledge about the local noise power. The received signal energy is utilized
to decide about the existence of the PU in the network.
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Various techniques are used to efficiently utilize the scarce spectrum by merging the
underlay and overlay methods in hybrid cognitive radio networks [6]. However, spectrum
sensing is highly vulnerable to fading and hidden terminal problems between the PU
and the SUs [7,8]. Thus, the decision of the spectrum sensing performed by a single SU
is neither sufficient nor reliable for final decision about the presence of the PU in the
network. To overcome the problem of the single SU sensing, researchers take advantages
of cooperative spectrum sensing (CSS) for the enhancement of spectrum sensing. In CSS,
each single SU gathers information about the PU channel, and shares its local sensing
information with the FC, which accumulates the sensing information from the SUs and
declares the global decision about the presence of the PU in the network [9,10]. In CSS, the
SUs send information to the FC in two ways. In the first scenario, the SU sends a single
bit of information to the FC, which is also known as the hard-decision rule. In the second
scenario, which is called the soft combination rule, the SU sends a sampled energy value to
the FC [11,12].

However, the existence of malicious users (MUs), or outliers, in the network highly
degrades the performance of CSS. Various attacks, which highly degrade the performance
of the networks, have been studied in the literature. Two common attacks are primary user
emulation attacks (PUEAs) and spectrum sensing data falsification (SSDF) attacks [13,14].
In SSDF attacks, the MUs falsify the sensing results, which influences the sensing results in
two ways. First, it decreases the probability of detection, which ultimately decreases the
spectrum utilization. Second, it increases the probability of misdetection and the probability
of false alarm, which increases interference in the network. Thus, overall performance
of CSS is degraded by the SSDF attacks. To mitigate the effects of these attacks, several
schemes have been proposed [15–17]. In Reference [18], the impact of incorrect information
of the sensing system was formulated as detection performance and sensing efficiency;
additionally, an authentication code length was proposed to reduce the system overhead.
The authors of [19] proposed a MU suppression scheme, which consists of an improved
energy detector followed by a statistical algorithm implemented at the FC. The authors
of [20] proposed a neighbor detection-based spectrum sensing algorithm in distributed
CRNs, which detects attackers with the help of neighbors during spectrum sensing to
improve the decision-making accuracy. In this algorithm, the extreme outliers are isolated
in the cognitive radio ad hoc network via the modified Z-test, and then the q-out-of-m
rule is implemented to mitigate the SSDF attack [21]. Similarly, the authors integrated the
reputation and q-out-of-m rule mechanism to mitigate the effect of the SSDF attack [22,23].
The authors of [24] utilized a k-medoids clustering algorithm to mine the collection of
sensing reports at the FC to determine the attacker’s presence; additionally, the proposed
scheme can be utilized on streaming data (sensing reports), and thereby detects and isolates
the attackers existing in the networks. The intelligent MUs were accurately detected by
the authors of [25], who used a physical-layer network coding scheme based on a novel
scheme friend or foe (FOF) detection. A cross-layered approach was presented to make
the SU able to differentiate between the PU and MU through the hidden Markov model
at the medium access control (MAC) layer [26]. The authors of [27] took advantage of the
compressive sensing to detect the attack and defensive behavior and proposed a density-
based MU detection with the trusted user to distinguish the MU precisely. A robust defense
strategy against the MUs via double-sided neighbor distance-based genetic algorithm was
presented in order to filter out the MU sensing reports in CSS [28]. The authors of [29]
proposed a novel attacker identification algorithm that is able to skillfully detect attackers
and reject their reported results. Moreover, a novel attacker punishment algorithm was
provided with the aim of punishing attackers by lowering their individual energy efficiency,
motivating them to quit sending false results. A comparative analysis of different outlier
techniques was proposed by the authors of [30]. Similarly, a comparative analysis of the
various outlier method for the MUs was discussed by the authors of [31]. The authors
of [32] assigned a reputation value to the SU, while ignoring the SUs having a reputation
below a threshold value. An extended sequential CSS scheme was proposed based on the
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value of each SU [33]. A critical analysis of the MU attack, i.e., always yes, always no, and
random attack, was studied by the authors of [34]. An onion peeling approach based on
the calculation of suspicious levels was proposed by the authors of [35], which used belief
propagation as the detection method. Protection of the CSS method, mentioned by the
authors of [32], was reduced in the case of a large number of MUs.

In this paper, we propose a correlation-based scheme at the FC to detect the outlier
and its behavior. In the proposed scheme, the FC first collects sensing information from
all individual SUs, and then applies the correlation tool in the difference of the result of
each SU, with the collective sensing results of all the SUs. The proposed scheme at the
FC detects the results of the normal SUs, which are dissimilar from those of the MUs. In
the proposed scheme, the box-whisker plot is utilized to classify the outlier and normal
SUs. The box-whisker plot defines the upper and lower quartile limits of the normal SUs.
Through the proposed scheme, the outlier and normal SUs are classified. The proposed
scheme is tested for the existence of opposite malicious users (OMUs) and random opposite
malicious users (ROMUs). The OMUs always send a high-energy signal when the PU is
absent and a low-energy signal when PU is present. The ROMU is more dangerous and
difficult to cope with. The ROMU’s behavior is unpredictable, it behaves as a normal SU,
while appearing as MU with opposite behavior at random intervals of time. Unlike always
yes and always no, both the OMU and ROMU increase the probability of a false alarm and
misdetection, which both degrades the bandwidth utilization and increases the interference
to the PU network. Through the simulation study, we demonstrated that the proposed
scheme can successfully classify the response of both OMUs and ROMUs from the normal
SUs in a delicate manner.

The remaining sections of this paper are organized as follows. In Section 2, a detailed
description of the system model is presented. In Section 3, we discuss the proposed scheme
and describe the steps required for the classification of the outlier from the normal users.
The performance evaluation and discussion are presented in Section 4. Finally, the paper is
concluded in Section 5.

2. System Model

We considered a cooperative spectrum sensing scenario in a cognitive radio network.
We assumed that the total number of outliers/MUs in the network was less than the total
number of normal SUs. The system model for the proposed scheme is shown in Figure 1.
The SUs performed spectrum sensing and sent the report to the FC, for the presence of
the PU in the network. The SUs forwarded a hard-binary decision 1 if the spectrum was
occupied by the PU, and -1 if the spectrum was not occupied by the PU. The FC received
the local sensing reports from all SUs. The FC then employed the proposed scheme on
these reports to identify the SU as an outlier on the basis of the history of each SU energy
report. Once the outliers were identified and removed, the FC then employed a simple rule
to declare a global decision about the presence of the PU in the network.
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The information received at the receiver SU in a particular band for the presence or
absence of the PU was represented as a binary hypothesis given as

yj(l) =


nj(l) ; H0

hjs(l) + nj(l) ; H1

, (1)

where H0 is the absence hypothesis, H1 represents the presence hypothesis of the PU in
the network, yj(l) shows the received signal from the jth SU, nj(l) is the additive white
Gaussian noise (AWGN) in the lth time slot for the jth SU, s(l) is the signal transmitted by
the PU, and hj is the channel gain value between the PU and the SU in the lthtime slot.

According to the hypotheses H0 and H1, the received signal energy of the channel by
the jth SU at the ith sensing interval is

Ej(i) =



li+K−1
∑

l=li

∣∣nj(l)
∣∣2 ; H0

li+K−1
∑

l=li

∣∣hjs(l) + nj(l)
∣∣2 ; H1

, (2)

where K denotes the number of samples in the ith sensing interval. According to central
limit theorem (CLT), when the value of K is large enough, then the energy reported by each
SU converges to a Gaussian random variable under H0 and H1 , which can be formulated
as [28]:

Ej ∼


N(µ0 = K, σ2

0 = 2K) ; H0

N
(
µ1 = K

(
ηj + 1

)
, σ2

1 = 2K
(
ηj + 1

))
; H1

, (3)

where ηjis the signal-to-noise ratio (SNR) between the jth SU and the PU, (µ0, σ2
0) is the

mean and variance under H0, and (µ1, σ2
1) are the mean and variance under H1.

3. Proposed Scheme

In this paper, we proposed a correlation-based approach to identify the legitimate
SUs and outliers. The box-whisker plot was introduced to classify the legitimate SUs
from the outliers. In the proposed scheme, each SU senses the spectrum by utilizing the
energy-detection technique and compares the received signal strength with a threshold
value. On the basis of the sensing results, the SUs send a hard decision of 1 or −1 to the FC,
which can be given as

Zj(i) =


1 ; i f Ej(i) ≥ γj

−1 ; Otherwise
, (4)

where Ej(i) is the energy received by the jth SU in the ith sensing interval, γjis the value
of the threshold set for the jth SU, and Zj(i) is the jth SU decision of the PU signal in the
ith sensing interval, representing 1 if the Ej(i) is greater than the threshold value and −1
if energy of the received signal Ej(i) is smaller than the threshold value. The FC collects
spectrum sensing information of the individual SU results with its own local decision as

Z =


z11 z12 z13 z14 · · · z1M
z21 z22 z23 z24 · · · z2M
z31 z32 z33 z34 · · · z3M

...
...

...
...

...
...

zN1 zN2 zN3 zN4 · · · zNM

 , (5)
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where Z represents the sensing energy accumulated in the database of the FC by all the SUs’
hard-decision values. In Equation (5), the rows represent the sensing intervals, and the
columns represent the SUs’ energy responses under each sensing interval. M denotes the
total number of SUs including the normal SUs, the outlier/MU, and the FC information,
and N is the number of sensing intervals. Furthermore, correlation was used as a tool for
the detection of the most harmful and difficult detect OMU and ROMU users.

The correlation coefficients for the two samples X and Y can be determined as

rXY = rXY=
∑p(Xp−X)(Yp−Y)√

∑p(Xp−X)
2

∑(Yp−Y)
2 ,

−1 ≤ rXY ≤ +1
(6)

where X =
∑N

p=1 Xp

N and Y =
∑N

p=1 Yp

N are the mean values of the samples X and Y, respectively,
and Xp and Yp are the pth elements of samples X and Y, respectively. Equation (6) shows
that the correlation of variable X taken with Y is the same as the correlation of Y taken
with X.

Correlation is a statistical exercise that shows how intensely the pair of testers are
related to each other. Equation (6) shows the value of r from −1, when both variables are
in the opposite direction with a perfect negative correlation, to +1, when both variables are
in the same direction with a perfect positive correlation. Effective use of this correlation
process is a good measure of the relationship between the two variables when there is a
chance of outliers, no normality, no steady variance, and nonlinearity existing between the
two variables that are being examined.

3.1. Outlier Detection

All SUs send their sensing reports to the FC as shown in Equation (5). At the FC, a
relationship is verified by comparing each SU’s sensing decision with the other SUs, to
determine any abnormal SU, which sends spectrum sensing falsification data to the FC.
The FC is able to easily identify the both the OMU and ROMU category of outliers/MUs
by the following three steps.

3.1.1. Step One: Averaging Differences of the SUs

In this step, the FC determines the difference in the sensing results of the jth SU
with the rest of the SUs. First, the average of all the SUs’ sensing decisions is calculated
by neglecting the jth SU’s sensing result in the ith sensing interval to find the impact of
excluding this particular SU in the overall sensing result. The same process is performed
for all the M SUs during eachNthsensing interval to find the average of each SU in the FC,
determined as

M =


m11 m12 m13 m14 · · · m1M
m21 m2,2 m23 m24 · · · m2M
m31 m32 m33 m34 · · · m3M

...
...

...
...

...
...

mN1 mN2 mN3 mN4 · · · mNM

 ,

M =
[
mij
]

where mij =

{ (
∑M

j=1 zi,j

)
−zij

M−1

}
(7)

where M is the total number of SUs, N is the number of sensing intervals, mij is the average
value of the energy reports from all the other SUs in the ithsensing interval while ignoring
the jth SU result. As the energy responses of both the OMU and ROMU are different from
the rest, taking such outliers/MUs out of the average value calculation during each sensing
interval by the FC generates a dissimilar result for the OMU and ROMU users compared
with the normal SUs.
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In order to estimate how much the individual sensing results of each SU, zij, are
behaving differently from the average value of other users’ results, mij, we considered
the following

∆dij = zij − mij

∆dij =


∆d11 ∆d12 . . . ∆d1M
∆d21 ∆d22 . . . ∆d2M
. . . . . . . . . . . .

∆dN1 ∆dN2 . . . ∆dNM

 ,
(8)

where ∆dij is the difference in the sensing results of thejth SU in the ithsensing interval,zij is
the individual sensing result of the jth SU in the ith sensing interval, and mijis the average
sensing result of the SUs other than the jth SU.

3.1.2. Step Two: SUs’ Correlation

The FC measures the difference value of each SU with the rest of the SUs as in
Equation (8). Once the difference between the SUs was determined, we utilized the correla-
tion tool defined in Equation (6) for all SUs, which is measured as

rr∆dj∆dk
= r∆dk∆dj=

∑N
i=1

(
∆dij − ∆dj

)(
∆dik − ∆dk

)
√

∑N
i=1

(
∆dij − ∆dj

)2
∑N

i=1

(
∆dik − ∆dk

)2
, (9)

where ∆dijand∆dik are elements of the jth and kth user sample in the ithsensing interval,
and ∆djand ∆dk are the mean values calculated for the jthand kth SU samples.

C =


SU1 . . . SUM

SU1 r∆d1∆d1 . . . r∆d1∆dM
. . . . . . . . . . . .

SUM r∆dM∆d1 . . . r∆dM∆d2

. (10)

The data of the normal SUs are separated from those of the outliers or MUs by adding
all the correlation differences in (10) for each SU as follows.

Cij =

[
M

∑
i=1

r∆di∆d1

M

∑
i=1

r∆di∆d2

M

∑
i=1

r∆di∆d3

M

∑
i=1

r∆di∆d4 . . .
M

∑
i=1

r∆di∆dM

]
. (11)

Based on the results of Equation (10), the OMU had more negative values, followed
by the ROMU, when compared with normal SUs. From Equation (10), the behaviors of
all three categories of SUs, i.e., normal SUs, OMUs, and ROMUs, were identified. These
behaviors identify the outliers in the network. These outlier values were further identified
and classified in step three of the proposed scheme.

3.1.3. Step Three: Outlier Classification Using the Box-Whisker Plot

In the proposed scheme, we utilized the box-whisker plot to find both the OMU
and the ROMU as outliers in the result of Equation (11). A box-whisker plot divides
Equation (11) into four parts. First, the results are made in order form and they are divided
into an upper and lower half by the median. The median of the lower half is named as
the lower quartile, while the median of the upper half is stated as the upper quartile. The
lower and upper extremes are marked as the least and greatest values of the results. All the
SUs’ results of step two were arranged in ascending order from the lowest to the highest.
The median value of the results can be calculated as Med = median(C). The first quartile is
denoted as Q1Lower, which implies the value at the 25th percentile of C. The third quartile
is also calculated as Q3Lower, which implies the value at the 75th percentile of C, and thus,
the inter-quartile value is determined by IQR = Q3Lower − Q1Lower. The upper and the
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lower limits of the box-whisker plot were measured and marked for detection of the outlier
values as follows:

Lower Limit = Q1Lower − 1.5 ∗ IQR. (12)

Upper Limit = Q3Lower + 1.5 ∗ IQR. (13)

Once the lower and the upper quartile limits were defined by the box-whisker plot by
Equation (12) and Equation (13), an SU was declared as one of the outliers, i.e., OMU or
ROMU, on the basis of the following criteria:

SUj =

{
MU, ; i f Upper limit ≤ Data ≤ Lower Limit

Normal SU ; Otherwise
, (14)

Since the outliers have different responses in Equation (11) than the normal SUs, they
are classified as outliers with Equation (14). The overall flow chart of the proposed scheme
is shown in Figure 2.
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4. Numerical Evaluation

In this section, we numerically evaluate the performance of the proposed scheme
considering the parameters given in Table 1.

Table 1. Simulation parameters.

Parameters Values

Number of SUs 10
Number of OMUs 1

Number of ROMUs 1
Signal-to-noise ratio (SNR) [dB] −30 to −20

Number of iteration 10,000
Samples in each sensing interval 270

Sensing time 1 ms

To verify the effectiveness of the proposed scheme, we considered three scenarios. In
the first scenario, we considered the only existence of the OMU with the normal SUs in
the network. The OMUs are very sensitive to the performance of the network. Figure 3
shows the simulation results when the outlier behaves as an OMU. It can be observed
that the normal SUs lie in the range of the lower and the upper quartile limits defined by
the box-whisker plot, whereas the OMU lies outside the limits. These lower and upper
quartiles define the boundary of the normal SUs in the network. Table 2 presents the values
of the SNRs, the quartile, IQR and the lower and the upper quartile limits of the SUs in
the network.
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In the second scenario, we considered only the existence of the ROMU and the normal
SUs in the network. The ROMU behaves randomly with the probability p and appears as a
normal SU with the probability 1-p. Figure 4 shows the simulation results in this scenario.
The upper and lower quartile limits are defined in Table 3. It can be shown from Figure 4
that the box-whisker plot defines the limits of the lower and upper quartiles for the normal
SUs and the proposed scheme can easily classify the normal SUs in this limit, whereas
the ROMU response is different from the normal SUs, and easily identified in the system,
which shows the effectiveness of the proposed scheme.
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Table 2. Box-whisker plot data of the correlation results under OMU users only.

SNR (dB) Min Q1 Median Q3 Max IQR Lower
Limit

Upper
Limit

−30 −0.11872 0.027923 0.029733 0.033575 0.036673 0.005652 0.019445 0.042053
−28 −0.11368 0.024431 0.029003 0.032603 0.038683 0.008172 0.012172 0.044861
−26 −0.1143 0.023746 0.026274 0.033884 0.043767 0.010139 0.008538 0.049092
−24 −0.13541 0.028492 0.035867 0.040777 0.041255 0.012285 0.010063 0.059205
−22 −0.14429 0.03397 0.040021 0.042547 0.045457 0.008577 0.021104 0.055413
−20 −0.17651 0.04133 0.048643 0.052537 0.061966 0.011206 0.024521 0.069346
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Table 3. Box-whisker plot data of the correlation results under ROMU users only.

SNR
(dB) Min Q1 Median Q3 Max IQR Lower

Limit
Upper
Limit

−30 −0.04204 0.004687 0.00771 0.013285 0.020143 0.008598 −0.00821 0.026181
−28 −0.04186 0.006307 0.009428 0.011756 0.016341 0.005449 −0.00187 0.019929
−26 −0.05041 0.003967 0.010962 0.01545 0.021564 0.011483 −0.01326 0.032674
−24 −0.0499 0.01026 0.01173 0.013742 0.018565 0.003482 0.005036 0.018966
−22 −0.05722 0.007603 0.013448 0.017124 0.022818 0.009521 −0.00668 0.031406
−20 −0.06726 0.009589 0.017555 0.019618 0.021469 0.010028 −0.00545 0.03466

In the third scenario, we considered the existence of both the OMU and ROMU in
the network. Table 4 defines the upper and the lower quartile limits for the normal SUs.
Figure 5 shows the simulation results, when both the OMU and the ROMU are equally
distributed. From Figure 5, we can observe that the normal SUs lie within the range of the
upper and lower limits, whereas the OMU and ROMU are not in the range of the limits set
by the box-whisker plot. Figure 5 shows that the detection results of the OMU were more
negative compared to the ROMU. The ROMU behavior was closer to that of the normal
SUs and more sensitive care was required for the detection of such outliers or of the MUs.

In Figure 6, we show the receiver operator characteristics (ROC) comparison of the
proposed scheme with other existing schemes when the MU was present in the network,
and when the MU did not exist in the network. Figure 6 demonstrates that when no scheme
was applied, the probability of detection decreased and the probability of false alarm
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and probability of misdetection increased. Furthermore, when the proposed scheme was
applied in the presence of MU, the performance was better than other existing schemes.

Table 4. Box-whisker plot data of the correlation results under both OMU and ROMU users.

SNR (dB) Min Q1 Median Q3 Max IQR Lower Limit Upper Limit

−30 −0.1233 0.01559183 0.02097 0.023847249 0.025981888 0.008255 0.003209 0.03623
−28 −0.12418 0.01502566 0.02049 0.022928377 0.03319715 0.007903 0.003172 0.034782
−26 −0.12967 0.01767262 0.02225 0.0264105 0.029608583 0.008738 0.004566 0.039517
−24 −0.14605 0.02419445 0.02566 0.030521757 0.031995221 0.006327 0.014703 0.040013
−22 −0.15155 0.01600466 0.02709 0.031661185 0.035777566 0.015657 −0.00748 0.055146
−20 −0.1768 0.0300924 0.03288 0.033382178 0.038434105 0.00329 0.025158 0.038317
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Tabular and graphical results show that the proposed scheme was effective in detecting
the outliers or MUs in CSS environments. The proposed scheme had the ability to identify
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and classify both types of outliers, i.e., the OMU and the ROMU. By utilizing the box-
whisker plot, an SU was classified as an outlier by the FC if its result lay above the upper
quartile limit or below the lower quartile limit. Through the simulation results, we have
shown that the proposed scheme can easily detect the outlier of OMU and ROMU in nature.

5. Conclusions

SSDF attacks severely degrade the performance of CRNs. In this paper, we proposed
a correlation-based approach using the box-whisker plot for the detection of outliers in the
networks. In the proposed scheme, we considered the hard decision of each SU, and the
FC utilized correlation tools and calculated the correlation for finding the similarity of the
sensing results of the SUs and outliers. By utilizing the correlation-based approach, we
easily classified the outlier among the normal SUs. The outliers were further classified by
using the box-whisker plot. The box-whisker plot defined the lower and upper quartile
limits for the SUs. Finally, the normal user lay within the range, so the outliers were easily
classified from the normal SUs. Through intensive simulation studies, we verified that the
proposed scheme has the ability to classify the OMU and ROMU outliers in CRNs.
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