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Abstract: The composition of volatile organic compounds (VOCs) in large-scale livestock farms is
complex, which seriously affects the health of livestock and is difficult to evaluate. In order to quickly
analyze the pollution degree of VOCs in livestock farms, electronic nose technology was used in
this study to detect and analyze the gases in pig and chicken houses, respectively. Firstly, the gas
chromatography–mass spectrometry (GC–MS) and electronic nose were used to analyze the VOCs in
the pig and chicken houses at different time and locations. The types and relative contents of VOCs
were obtained from different livestock farms by GC–MS analysis. The sensor array response of the
electronic nose showed similar results. In addition, linear discriminant analysis (LDA), K nearest
neighbor (KNN) and support vector machine (SVM) analyses were performed on the electrical signal
that was generated by the sensors of electronic nose, respectively. Finally, the classification rate of
different odor sources in livestock farms was the highest (>85%), which indicates that SVM is a more
effective method suitable for volatile gases recognition in livestock farms. The results have shown
that the developed electronic nose sensor is a promising and feasible instrument for characterizing
volatile odors in livestock farms.

Keywords: electronic nose; livestock farms; VOC detection; odor identification

1. Introduction

In recent years, humans’ need for meat, eggs, and milk has shown an increasing
trend. The livestock breeding industry has expanded at a large scale and the degree of
intensification and standardization has become higher and higher. In the meantime, the
development of livestock breeding has promoted the agriculture progression and has
become an important part of China’s agricultural economy [1,2]. However, large-scale
livestock farms produce a series of environmental problems. For instance, the generated
gases such as ammonia, greenhouse gases, foul odors, particulate matter (PM), and volatile
organic compounds (VOCs) are released into the atmosphere, which seriously affects
air quality and harms the health of livestock and surrounding residents [3]. Volatile
substances in livestock farms mainly come from the livestock themselves, livestock manure,
bedding, and feed, etc. [4], and the composition is complex. Under low-concentration
environmental conditions, the odor presents a high degree of variability, and its evaluation
faces major challenges.

Gas chromatography–mass spectrometry (GC–MS) can obtain the qualitative and
quantitative information of VOCs in complex chemical mixtures [5]. GC–MS has the
advantages of strong robustness, low detection limit, and high accuracy, and can identify
single substances in the mixture. Some researchers have successfully measured the odor of
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livestock houses using GC–MS [6]. However, it lacks portability, has a long analysis period,
and is costly. Currently, it can only be used in the laboratory and cannot realize real-time
online monitoring [7,8]. An electronic nose is an instrument that mimics the mammalian
olfactory system in sensory response and information processing, and it can be used for
mixed gas evaluation [9]. The electronic nose system mainly includes a sensor array, a
signal conditioning circuit, and a pattern recognition system that can recognize odors. It
obtains multiple features from the dynamic response of each sensor and extracts the main
characteristics of the odor under study. Finally, obtained information can be identified
and judged through the pattern recognition system, and then a unique response will be
generated for a specific odor sample [10].

In recent decades, electronic nose technology has developed rapidly and has been
applied in many fields. According to the investigations, the research has been focused on
food [11], medicine [12], and environmental detection [13,14]. The electronic nose exhibits
an excellent performance in distinguishing volatile organic compounds (VOCs) and volatile
organic compound (VOC) mixtures [15]. Sohn established an electronic nose model based
on 24 metal oxide semiconductor sensors (MOSs), which can be used to predict the odor
concentration in broiler sheds [16]. Abdullah created an odor distribution map of a chicken
farm using electronic nose technology and distinguished the odor concentration in different
sampling points in the chicken house and the farm [17]. Romain used an electronic nose
to continuously monitor the odor of a fattening pig house [18]. The electronic nose is
a low-cost, safe and fast detection technique, which does not damage the integrity of
the sample. It is one of the most promising technologies for gas detection in livestock
farms. However, the current research on volatile substances in livestock farms is mostly
focused on the detection of single or several gas concentrations [19], the source of volatile
substances [20], the law of odor pollution diffusion [21], protection distance and pollution
control [22], etc. There are few rapid detections and comprehensive evaluations of volatile
substances in different times and spaces of different livestock farms. Our previous studies
have found that the e-nose can effectively identify gases from inside and outside a pigsty
at different times, but we have not studied the odor from different locations in the piggery
and the chicken house [23].

This paper takes pig and chicken houses as representatives. To analyze the character-
istics of VOCs in livestock farms comprehensively and quickly, first, GC–MS was used to
obtain the types and relative contents of VOCs in nursery piggeries and chicken houses
at different time and locations. At the same time, the developed electronic nose system
detected the target gas. The determination of relative content will provide support and
verification for the electronic nose test. Then, according to the response of the sensor
array of the electronic nose system, three pattern recognition methods—linear discriminant
analysis (LDA), K nearest neighbor (KNN), and support vector machine (SVM)—were used
to identify and classify the gas samples. Finally, the distribution and content of volatile
substances were further analyzed combined with the results of GC–MS analysis, which
provided theoretical and technical support for the characterization of livestock farm odor.

2. Materials and Methods
2.1. Experimental Samples

Two farms (one pig farm and one chicken farm) were selected as the test site, which
located at the City of Panshi, Jilin Province, China. To study the distribution and change
law of the gas in the house in time and space, the sampling locations selected were the
exhaust outlet and the middle position in the pregnant pig house and the middle position
and window in the nursery pig house. The sampling point was 1 m away from the ground,
which was close to the breathing area of the pig; in this way, it could protect the sampling
device from damage. Manure was cleaned at 6:00, feeding was being performed at 13:00,
and the house was quiet at 18:00. So, gas collections were performed at 6:00, 13:00, and
18:00, which were recorded as morning, afternoon, and evening, respectively. The chicken
house was selected as the sampling location in the middle and window of the house.
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The sample collection times were 8:00 and 16:00, which were recorded as morning and
afternoon, respectively. The manure removal was completed during the gas collection in
the morning, and the food was provided during the afternoon gas collection.

The QC-1S air sampler (Beijing Institute of Labor Protection Science) was used for gas
collection, and the sampling flow rate was set to 1.5 L/min. Four sampling points in the
two pig houses were sampled for three consecutive days, and a total 36 gas samples of
30 L were collected. At the same time, 2 L gas samples were collected at 6:00 and 13:00 in
the middle position of the nursery pig house and in the window position of the nursery
pig house, respectively. Two sampling points in the chicken house were sampled for two
consecutive days, and a total 8 gas samples of 30L were collected. At the same time, 2 L gas
samples were collected at 6:00 and 14:00 in the middle position of the chicken house and
14:00 in the window position of the chicken house, respectively. The gases that were col-
lected from different sampling positions and times were named nursery-middle-morning,
nursery-middle-afternoon, nursery-middle-evening, nursery-window-morning, nursery-
window-afternoon, nursery-window-evening, pregnancy-middle-morning, pregnancy-
middle-afternoon, pregnancy-middle-evening, pregnancy-exhaust-morning, pregnancy-
exhaust-afternoon, pregnancy-exhaust-evening, chicken-middle-morning, chicken-middle-
afternoon, chicken-window-morning and chicken-window-afternoon, respectively. The
30 L sample was used for the electronic nose test, and the 2 L sample was used for gas
chromatography. After the gas was collected, the samples were taken back immediately to
the laboratory in the dark for testing.

2.2. Gas Chromatographic Mass Spectrometry

For the gas chromatography–mass spectrometry test, an Agilent 7890A/5975 (Agilent
Corporation, Palo Alto, CA, USA) and a HP-INNO Wax capillary column (Agilent Corpora-
tion, Palo Alto, CA, USA) were used. The gas sample was pretreated with a PDMS100 µm
extraction head (Supelco, Bellefonte, PA, USA) before use. The extraction head needed to
be activated in the forward sample port at 260 ◦C for one hour before use in order to ensure
a good working condition.

Chromatographic working parameters: the inlet temperature was 250 ◦C, the desorp-
tion time was 15 s, and the gas to be measured was separated on the chromatographic
column. Oven heating program: the initial temperature was 60 ◦C, which was maintained
for 4 min, increased to 80 ◦C at 5 ◦C/min, and then increased to 240 ◦C at 5 ◦C/min, which
was maintained for 15 min; the total time of heating program is 34 min. The carrier gas
was high-purity helium (99.999%), with a flow rate of 1ml/min, and a splitless mode.

MS working parameters: GC–MS interface temperature was 260 ◦C, electron bom-
bardment ion source, ion source temperature was 230 ◦C, quadrupole temperature was
150 ◦C, and mass range was 20–500 mass units.

The GC–MS volatile components were qualitatively determined by NIST and Wiley
libraries. After the gas was detected, the retention time and peak area were obtained. The
retention time was used for qualitative analysis of substances. The peak height was related
to the perceived intensity of these gases. The peak area normalization method was used to
calculate the relative content of each volatile compound.

2.3. Electronic Nose System

This research uses the self-developed electronic nose system, including air pump, gas
mass flow controller, electronic nose chamber and gas sensor array, signal conditioning
circuit, data acquisition instrument, computer, etc. Additionally, TGS metal oxide gas
sensors which were produced by Figaro, Japan were selected in our electronic nose system
as gas detection components. The model and characteristics are shown in Table 1. The
resistance signal generated by the sensor was converted into a voltage signal by a signal
conditioning circuit, which was a voltage divider circuit recommended by sensor producer.
A WS-U60116-c data collector (Beijing Bopu Century Technology Development Co., Ltd,
Beijing, China) was used for analog to digital conversion (A/D). The cleaning function of
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the data collector should be applied when A/D conversion is performed. The developed
electronic nose system is shown in Figure 1.

Table 1. Sensor models and characteristics of electronic nose.

Sensor Model Main Sensitive Substances Sensitive Range

TGS826 Ammonia 30–300 ppm
TGS2611 Methane, Natural gas 500–10,000 ppm
TGS2603 Trimethylamine, Methyl mercaptan 1–10 ppm
TGS2602 VOC, Ammonia, Hydrogen sulfide 1–30 ppm
TGS2600 Ethanol, Hydrogen 1–30 ppm
TGS2610 Butane, Propane 500–10,000 ppm
TGS2620 Organic solvent, Ethanol 50–5000 ppm
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2.4. Data Processing

The change trend of sensor response is related to the composition and concentration
of odor. The response curve of electronic nose sensors are shown in Figure 2 (pig farm
gas as an example). The collection time of the sensor was 80 s. Except for sensor TGS2602,
other sensors tend to be stable after exposing to the sample gas for a period of time. The
maximum and average values are important information of sensor response, which are
the most used as feature in electronic nose analysis [24,25]. So, the maximum and average
values were used as the feature of the sensor response in this paper. First, the original data
and mark the serial number were classified. MATLAB software was used to acquire two
feature value sets, which are the maximum feature value set and the average feature value
set. The features in each feature set are features composed of 7 sensors.

Pattern recognition was based on the characteristics of the research object, using
statistical methods to process and analyze the information that characterizes things or
phenomena, to describe, classify and explain the things or phenomena under study [26].
The pattern recognition method has a great impact on the performance of the electronic
nose and is a very important part of the electronic nose. In this paper, LDA, KNN and
SVM are used to classify the gas in the livestock farms, and the most suitable pattern
recognition method for the VOC gas in the livestock farms was obtained by comparing the
recognition rates.
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3. Results and Discuss
3.1. Quantitative Analysis of Volatile Organic Compounds in Livestock House

In order to quantitatively characterize the volatile components in different times and
spaces of the livestock house, the gas samples from the four sampling points (nursery-
middle-morning, nursery-middle-afternoon, nursery-window-afternoon, chicken-middle-
morning, chicken-middle-afternoon, and chicken-window-afternoon) were detected by
GC–MS. The relative contents of volatile compounds were calculated by the peak area
normalization method.

More than 70 kinds of VOCs were detected in the nursery piggery, including alka-
nes, aldehydes, ketones, alcohols, esters, amides, naphthalene, alkynes, indene, benzene,
alkenes, etc. More than 30 kinds of VOCs were detected in the chicken house, including
alkanes, aldehydes, amides, indene, esters, alcohols, mercaptans, naphthalene, alkenes,
benzene, alkynes, etc. Figure 2 shows the classification and relative content of VOCs in
six samples.

It can be seen from Figure 3 that the VOC contents in different times and spaces of
livestock house are quite different. The VOCs of the nursery piggery house are more com-
plex than that of the chicken house. From Figure 3a–c, it can be seen that the percentages of
alkanes and aldehydes were the highest, which indicates that alkanes and aldehydes were
the most important types of VOC pollution in nursery pigs and should be paid attention
to because those were of great significance for understanding emission characteristics of
the VOCs in the nursery piggeries. The content of alkanes in the chicken house was the
highest, and alkanes were the main type of VOC pollution in the chicken house. It can be
noted from Figure 3e that chickens ate, indicated by more kinds of VOCs, which indicated
that eating had a significant impact on the content of VOCs in the chicken house.

3.2. Response Analysis of Electronic Nose Sensor Array

The electronic nose can obtain the overall information of the sample smells, and the
subtle differences in volatile compounds affect the response of the sensor array. From the
collected gas samples, we conducted a total of 244 electronic nose tests for the pig houses
and 110 electronic nose tests for the chicken houses, as shown in Tables 2 and 3. Figure 4
shows the sensor’s response to six odor sources. The bar graph amplitude is the average
and standard deviation of the maximum voltage (Vmax) calculated from the electronic
nose test for all odor samples test at each sampling location. The TGS2602 sensor was used
to detect ammonia, hydrogen sulfide, and volatile organic compounds. It can be seen from
Figure 4 that TGS2602 had a high average in response to samples; this is because there is
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more hydrogen sulfide and ammonia in the pig house and chicken house. The response of
TGS2602 in the chicken house was larger than that in the pig house, which indicated that
the ammonia and hydrogen sulfide content in the chicken house was larger than that in
the pig house. The results of this study were consistent with that of Gui-Hwan [27]. The
TGS2603 sensor was the second most sensitive sensor in the pregnant pig house, while the
TGS2620 sensor was the second most sensitive sensor in the nursery pig house. Among
them, TGS2603 was highly sensitive to amine series and sulfur-containing odors, while
TGS2620 was more sensitive to organic solvents, which indicated that there were differences
in odor components between the two houses, and the main VOCs were different, which is
related to the pig age and feeding methods.
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Table 2. Gas sample information and number of electronic nose tests for pig house.

Days of
Experiments

Morning Afternoon Evening

Number of
Gas Bags

Number of
Tests

Number of
Gas Bags

Number of
Tests

Number of
Gas Bags

Number of
Tests

Pregnancy-exhaust 3 3 21 3 20 3 21
Pregnancy-middle 3 3 20 3 20 3 20
Nursery-middle 3 3 21 3 20 3 21

Nursery-window 3 3 20 3 20 3 20

Table 3. Gas sample information and number of electronic nose tests for chicken house.

Days of
Experiments

Morning Afternoon

Number of Gas Bags Number of Tests Number of Gas Bags Number of Tests

Chicken-middle 2 3 40 1 15
Chicken-window 2 2 28 2 27
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3.3. Odor Identification of Livestock Farms

In order to further explore the response of the sensor array, odor identification of
livestock farm was carried out. The average value and maximum value of the sensor
response were selected as features, and the linear classification method (LDA) and nonlinear
classification method (KNN, SVM) were used, respectively, to identify the gas in different
times and spaces of livestock farms. The classification results were compared to find the
most suitable pattern recognition method for VOCs in livestock farms.

(1) LDA
Figures 5 and 6 show the LDA of gas at different times in the piggery when the

features were at the average value and the maximum value. The cumulative contribution
rate of the horizontal and vertical coordinates was 100%, which can fully represent the
characteristics of sample information. When the features were at an average value, only
the nursery-window-morning overlapped. When the features were the maximum value,
they more or less overlapped in the three periods of gas. In summary, LDA is more suitable
for piggery gas identification when the features are at average values.



Appl. Sci. 2021, 11, 2337 8 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

different times and spaces of livestock farms. The classification results were compared to 
find the most suitable pattern recognition method for VOCs in livestock farms. 

(1) LDA  
Figures 5 and 6 show the LDA of gas at different times in the piggery when the 

features were at the average value and the maximum value. The cumulative contribution 
rate of the horizontal and vertical coordinates was 100%, which can fully represent the 
characteristics of sample information. When the features were at an average value, only 
the nursery-window-morning overlapped. When the features were the maximum value, 
they more or less overlapped in the three periods of gas. In summary, LDA is more 
suitable for piggery gas identification when the features are at average values. 

  
(a) (b) 

  
(c) (d) 

Figure 5. LDA chart of different time at the same position in pig house with features of average values: (a) pregnan-
cy-exhaust; (b) pregnancy-middle; (c) nursery-middle; (d) nursery-window. 

  
(a) (b) 

Figure 5. LDA chart of different time at the same position in pig house with features of average values: (a) pregnancy-
exhaust; (b) pregnancy-middle; (c) nursery-middle; (d) nursery-window.

Figure 7 shows the recognition of gases in different spaces of the piggery by LDA
when the average value and the maximum value of the features were selected, respectively.
The cumulative contribution rates of the first and second discriminant factors in Figure 7a–c
are 98.93%, 98.46%, and 98%, respectively. In Figure 7d–f, the cumulative contribution rates
of the first and second discriminant factors are 99.74%, 98.36%, and 98.89%, respectively,
which can represent most of the characteristics of the sample information. It can be seen
from the figure that the samples at different locations overlap, and the distinguishing effect
is not good. This is caused by the insignificant gas difference between different locations.

Figure 8 shows the results of LDA’s recognition of the four samples of the chicken
house when the average value and the maximum value were selected, respectively. It
can be seen from the figure that LDA fails to distinguish the chicken house samples. In
general, LDA can only identify the odor characteristics of the piggery at different times,
and it is not effective in identifying samples from different locations in the pig house and
chicken house.

(2) KNN and SVM analyses
In order to verify the recognition of gas emission in different times and places from

the livestock house by the electronic nose, different recognition models and features were
compared. The 10-fold cross-validation was applied to deal with all sample data in the tests.
In this method, the data were divided into ten groups and nine groups were separately
used as training sets, and the rest were for validation. All electronic nose data obtained
from airbags were randomly divided into training sets and test sets for each fold of cross-
validation and this process of randomization was carried out 10 times, and the data for each
training set and test set are different. Finally, the average recognition rate was used to judge
the model; to some extent, this avoids the sample correlation caused by deliberate division.
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We carried out parameter optimization and established the KNN and SVM models with
the better parameter.

Table 4 shows the gas classification accuracy of KNN and SVM for the same sampling
location and different sampling times when the features were at the average value and
maximum value. The accuracy of KNN’s classification of odor in the same location in the
piggery for four periods is above 80%, and the correct rate of SVM classification is above
85%. This shows that SVM has a better correct rate of odor classification at different times
in the piggery, but the feature selection has no significant effect on the classification results.
Therefore, from comparing the three classification methods for the gas recognition results
at different times in the piggery, it can be concluded that SVM has the highest classification
accuracy, but the feature selection has little effect on the classification results, except for
nursery-window, KNN, and LDA, the latter of which had the worst effect.
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Table 4. The accuracy for odor classification in the same sampling location of piggery at different sampling times.

Features KNN/SVM Pregnancy-Exhaust Pregnancy-Middle Nursery-Middle Nursery-Window

Average KNN 91.94% 83.61% 82.26% 80.00%
SVM 95.16% 95.08% 93.55% 85.00%

Maximum
KNN 87.10% 88.52% 91.94% 83.33%
SVM 96.77% 95.08% 96.77% 95.00%

Table 5 shows the gas classification accuracy of KNN and SVM with the same sampling
time and different sampling locations. KNN has a classification accuracy rate of more than
69% for gas in different locations of the piggery, and the SVM classification accuracy rate is
more than 86%. Obviously, the classification accuracy rate of SVM is higher than KNN, but
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the feature selection has no significant impact on the classification accuracy rate. SVM is
more suitable for the identification of piggery gas.
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Table 5. The accuracy for odor classification in different sampling locations of piggery for the same
sampling time.

Features KNN/SVM Morning Afternoon Evening

Average KNN 69.51% 77.5% 82.93%
SVM 86.59% 92.5% 92.68%

Maximum
KNN 73.17% 85% 84.15%
SVM 89.02% 95% 89.02%

To summarize, the accuracy of KNN for the odor classification of the chicken houses
at different sampling times is shown in Table 6. Obviously, the correct rate of KNN for odor
classification of the chicken houses at different time is above 78%, and the correct rate of
SVM classification is above 92%. The accuracy of SVM classification is higher than that of
KNN, and the feature selection has no significant impact on the classification accuracy rate.
And SVM is more suitable for chicken house odor identification.

Table 6. The accuracy for odor classification in the same sampling location of chicken house at
different sampling times.

Features KNN/SVM Chicken-Middle Chicken-Window

Average KNN 92.73% 78.46%
SVM 94.55% 92.31%

Maximum
KNN 90.91% 84.62%
SVM 96.36% 93.85%

To summarize the correct rate of KNN’s classification of odor in different sampling
locations of the chicken house in Table 7. Obviously, the correct rate of KNN’s classification
of odor in different locations of the chicken coop is above 85%, and the correct rate of SVM
classification is above 95%. Similarly, the feature selection has no significant impact on the
classification accuracy rate, and SVM is more suitable for chicken house odor recognition.

In summary, SVM has the highest classification accuracy rate for VOCs in the pig and
chicken houses, followed by KNN, while LDA have the worst classification results. This
may be because SVM could call nonlinear kernel functions to solve nonlinear classification
problems, while LDA has relatively weak nonlinear classification capabilities. Therefore,
SVM was more suitable for the recognition of gas in the chicken houses and piggeries, but
the features was the average value or the maximum value, the classification results were
not significantly different, and the selection of the feature value has no significant impact
on the recognition rate.
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Table 7. The accuracy for odor classification in different sampling locations of chicken house at the
same sampling time.

Features KNN/SVM Morning Afternoon

Average KNN 85.71% 98.72%
SVM 97.62% 98.72%

Maximum
KNN 85.71% 100.00%
SVM 95.24% 100.00%

Based on the recognition of different locations at a given sampling time and different
sampling times at a given location in the livestock house, gas recognition of different
locations at different times was carried out. The results are shown in Table 8. It can be
seen from the table that the results are consistent with the trend in Tables 4–7—that is,
the recognition effect of SVM is better than that of KNN, but the impact of feature on the
recognition result is small.

Table 8. The accuracy for odor classification in different sampling locations and different sampling
times of pig and chicken houses.

Features KNN/SVM Pig House Chicken House

Average KNN 60% 78.33%
SVM 74.29% 93.33%

Maximum
KNN 58.78% 83.33%
SVM 73.47% 93.33%

Through the comparison of different classification models and features, the electronic
nose recognition model for identifying the emission information of livestock and poultry
houses at different times and places was obtained. Rapid identification of VOCs in different
times and spaces will provide help for the treatment of livestock houses.

4. Conclusions

In this paper, GC–MS and electronic nose were used to explore odor identity in
livestock farms of Northeastern China. The types and distribution of VOCs in different
livestock houses have been analyzed. A total of more than 70 substances and 30 substances
have been detected by GC–MS in the nursery piggery and chicken house, respectively.
Moreover, the highest level of VOCs was obtained during the morning at the two localities.
Alkanes and aldehydes play the most important role of VOC pollution in nursery pigs
according to the measured results, and the release of alkanes makes up main VOC pollution
in the chicken houses. What is more, more types of gas will be produced when chickens
eat. Furthermore, the response of the electronic nose sensor array shows that the main
VOC components except ammonia and hydrogen sulfide in pregnancy houses and nursery
houses are also different. There are more amine series and sulfur-containing odors in
pregnancy houses, whereas nursery houses have more combustible gases. On the other
hand, the smell characteristics in the piggery are obviously more complicated than that
of the chicken house, but the proportion of ammonia and hydrogen sulfide in the chicken
house is greater than that of the piggery. The electronic nose can clearly distinguish the
fingerprints of pigs and chickens, as well as subtle differences between them. In addition,
the electronic nose combines with SVM can evaluate the VOC odor attributes of livestock
farms more comprehensively. The research results mentioned above can not only provide a
reference for the treatment of VOC pollution in livestock farms, but also can prove that the
electronic nose sensor we developed is a feasible instrument for characterizing the odor of
livestock farms, and it is very promising for applications in husbandry, chemical analysis
and the food industry.
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