

Appl. Sci. 2021, 11, 2319. https://doi.org/10.3390/app11052319 www.mdpi.com/journal/applsci

Article

Model-Driven Design and Development of Flexible Automated
Production Control Configurations for Industry 4.0
Unai Gangoiti 1, Alejandro López 1, Aintzane Armentia 1, Elisabet Estévez 2,* and Marga Marcos 1

1 Automatic Control and Systems Engineering Department, University of the Basque Country,
48013 Bilbao, Spain; unai.gangoiti@ehu.eus (U.G.); alejandro.lopez@ehu.eus (A.L.);
aintzane.armentia@ehu.eus (A.A.); marga.marcos@ehu.eus (M.M.)

2 Electronic and Automation Engineering Department, University of Jaén, 23071 Jaén, Spain
* Correspondence: eestevez@ujaen.es; Tel.: +34-95-321-2167

Abstract: The continuous changes of the market and customer demands have forced modern
automation systems to provide stricter Quality of service (QoS) requirements. This work is centered
in automation production system flexibility, understood as the ability to shift from one controller
configuration to a different one, in the most quick and cost-effective way, without disrupting its
normal operation. In the manufacturing field, this allows to deal with non-functional requirements
such as assuring control system availability or workload balancing, even in the case of failure of a
machine, components, network or controllers. Concretely, this work focuses on flexible applications
at production level, using Programmable Logic Controllers (PLCs) as primary controllers. The
reconfiguration of the control system is not always possible as it depends on the process state. Thus,
an analysis of the system state is necessary to make a decision. In this sense, architectures based on
industrial Multi Agent Systems (MAS) have been used to provide this support at runtime.
Additionally, the introduction of these mechanisms makes the design and the implementation of
the control system more complex. This work aims at supporting the design and development of
such flexible automation production systems, through the proposed model-based framework. The
framework consists of a set of tools that, based on models, automate the generation of control code
extensions that add flexibility to the automation production system, according to industry 4.0
paradigm.

Keywords: flexible automation production systems; model driven engineering; multi agent system;
I4.0 components

1. Introduction
In the last years, there is an increasing interest in making manufacturing systems

more competitive. Some countries use different terms to refer to this phenomenon, for
example it is known as Advanced Manufacturing in U.S., Industrie 4.0 in Germany and
Factory of the Future in other European Countries [1–3]. Basically, this evolution consists
in integrating all production systems to pass from long batches, which seek costs
reduction through scale economies, to a flexible and personalized production [4]. In other
words, all these initiatives have a common goal: achieving high quality production with
zero defects [5,6]. For this, they base on the so-called smart factory, composed by adaptive
and smart manufacturing equipment and systems, which enables the automation, control
and optimization of high-tech manufacturing processes while assuring the availability of
the plant. The smart factories control all their processes, but at the same time, they should
also be connected to the market, the supply, and the demand. This paradigm, generally
referred as Industry 4.0, has countless applications both in academia and in Industry [7–9]
since the birth of the term in 2011 [10,11].

Citation: Gangoiti, U.; López, A.;

Armentia, A.; Estévez, E.; Marcos,

M. Model-Driven Design and

Development of Flexible Automated

Production Control Configurations

for Industry 4.0. Appl. Sci. 2021, 11,

2319. https://doi.org/

10.3390/app11052319

Academic Editor: Yaniv Mordecai

Received: 13 January 2021

Accepted: 2 March 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

Appl. Sci. 2021, 11, 2319 2 of 27

Dynamic reconfiguration is being adopted by current automation systems in order
to ensure Quality of Service (QoS) requirements. In a production system the QoS
requirements (also called non-functional requirements) can be regarded as those
properties that improve product attractiveness, usability, accuracy, safety or reliability
without modifying product functionality. Non-functional requirements demand specific
behavior to the manufacturing system such as, for instance, reliability, availability, power
consumption or response time optimization. In particular, the experience of large
industrial companies has shown that two of the main qualities of advanced manufacturing
systems are: flexibility and adaptability, which characterize systems with the ability to
quickly adapt to environment [12]. In general, all these reconfiguration mechanisms
enable to switch in the most quick and cost-effective way from one configuration to
another at runtime. As a result, the system response to sudden changes on customer
demands or even to unpredictable events (e.g., failures or disruptions) is improved. This
work is centered in automation production system flexibility, understood as the way to
deal with non-functional requirements such as assuring control system availability under
failure of a machine, components, network or controllers.

According to different reviews and surveys [13–15] the term ‘reconfiguration’ may
make reference to: (1) product reconfiguration, as the flexibility to change or modify the
final product. (2) Schedule reconfiguration, which is commonly understood as the
capability to modify the execution order of plant operation, for enhancing efficiency or
productivity [16,17] or overcoming machine failures [18]. (3) Sometimes it also refers to
machine operation reconfiguration. That is, modifying the functionality of a machine to
enable it to perform other operations [12,19,20]. Finally, (4) control system reconfiguration
refers to the relocation of the different functionalities within a distributed control system,
for improving the controller performance [21] or battery consumption [22], or even
avoiding service disruption in case of failures at controller or network [23–25].

These works provide a custom solution as they are focused on assuring a specific QoS
(e.g., optimization of the production, fault tolerance at process or controller level and
workload balance). Additionally, the majority make use of programming languages, like
C/C++ or Java, which are not widely used in the factory automation area. Therefore, they
are ad hoc solutions and/or they are not easily adopted in industrial environments.

The goal of this work is twofold. On the one hand, it proposes a generic
implementation of reconfigurable automation applications to be executed under the
control of the so-called Flexible Automation Middleware (FAM) presented in [26]. This is
a generic Multi-Agent System (MAS) that can be particularized for the supervision of a
concrete set of system QoS, launching a system reconfiguration in case of QoS loss. On the
other hand, it presents a flexible model-based framework, which, based on well-spread
and accepted standards, helps the designer to define the information needed to achieve
dynamic reconfiguration of the automation system.

Hence, this paper contributes: (1) A modeling approach that collects information
about the production process and the distributed automation system, which is relevant
for the management platform that makes use of it. (2) Application templates for the
runtime agent-based platform. (3) A tool suite that implements the approach, aimed at
adding flexibility to the original distributed automation system, supporting dynamic
reconfiguration of the control system due to controller’s fault or work balance.

The remainder of the paper is as follows: Section 2 details the meaning of Flexible
Automation Production Systems and a brief description of the FAM agent-based
architecture. This section also justifies why Model Driven Engineering (MDE) is useful for
designing and developing complex automation systems. Section 3 presents a framework
that has as main goal the automatic generation of the so-called flexible automation
projects. Additionally, this framework also gives support to the automatic generation of
the sets of agents that are application. Section 4 is devoted to assessing the system
flexibility through a case study. Finally, Section 5 outlines the most important conclusions
and future works.

Appl. Sci. 2021, 11, 2319 3 of 27

2. Materials and Methods
The Industry 4.0 paradigm frames the technologies and conventions required to

achieve the reconfiguration of the control systems. Based on Industry 4.0 principles,
specifically in the Reference Architecture Model for Industry 4.0 (RAMI 4.0) [27], first
subsection characterizes the Flexible Automation Production System (FAPS) in which
reconfiguration can take place, switching from one controller configuration to a different
one, in the quickest and cost-effective way, without disrupting its normal operation.

The implementation of FAPS is a complex task, and requires analysis, decision-
making and negotiation abilities, which can be achieved by means of agent-based
solutions. In this sense, an architecture based on industrial Multi Agent Systems can
provide this support at runtime. In the literature, there are some MA-based approaches
for manufacturing, e.g., [25,28,29] which agents can be deployed in some very different
devices, providing support to a certain QoS parameters. Nevertheless, as far as authors
know, only the agent-based architecture proposed in [26] supports the controller fault,
launching a reconfiguration of the control system when this QoS loss is detected. The main
ideas of this Flexible Automation Middleware (FAM) are presented in Section 2.2.

Furthermore, in order to enable reconfiguration of the control systems assuring
normal operation to continue, it is required to model the possible states of the
manufacturing process. Thus, Section 2.3. discusses how MDE can be a helpful alternative
for modeling the industrial agents of the FAPS in such way.

2.1. Modeling of Flexible Automation Production Systems
Reference Architecture Model for Industry 4.0 (RAMI 4.0) [27] offers a structured

description of the fundamental requirements of I4.0-compliant systems, exploring: (1)
hierarchical levels of a manufacturing system networked via the Internet; (2) the lifecycle
of systems and products; and (3) the Information Technology management layers of I4.0
project implementation. In RAMI 4.0, any technical asset of the factory has a digital
representation as an I4.0 component, which are provided with digital interfaces to interact
with other I4.0 components. Hence, the I4.0 component is the combination of objects from
both the physical world and the information world, offering dedicated functionalities and
flexible services to other I4.0 Components [30]. As stated in [27], I4.0 components have
two main features:
1. The Asset is a physical or a logical object owned by or under the custodial duties of

an organization, having either a perceived or actual value to the organization.
2. The Asset Administration Shell (AAS) is the digitalization of an asset. In other words,

and AAS is the interface that connects the physical asset through I4.0 communications
such as OPC Unified Architecture (OPC UA) [31]. It is also in charge of offering the I4.0
component’s services to the Industry 4.0 (e.g., [32] presents an AAS model able to
represent International Electrotechnical Commission (IEC) 61131-3 standard
compliant programs and the relevant relationships with Programmable Logic
Controllers and each device of the controlled plant). According to the glossary of
Platform Industrie 4.0 [33], the AAS concept can be directly related to the concept of
Digital Twin (DT). However, several works in the literature apply the DT concept to
refer exclusively to highly accurate simulation models. In the authors’
understanding, both meanings are correct as both, in different ways, are related to
the Asset behavior. In this work, the first one applies.
Following this concept, Automation Production Systems (APSs) could be viewed as

a set of two types of I4.0 connected Components: (1) Controller and (2) Plant, which offer
production services. Their main features are the following:
• Controller I4.0 Component:

o Asset (ControllerAsset): The Programmable Logic Controller (PLC), the primary
controller for such type of systems, and the I/O boards;

Appl. Sci. 2021, 11, 2319 4 of 27

o AAS (AAS_Controller): automatizes the production by means of its I/Os.
• Plant I4.0 Component:

o Asset (PlantAsset): physical station and the sensors and actuators connected to
controller’s I/Os;

o AAS (AAS_Plant): offers a production service (which contains the control logic
and data).

This work goes a step further, and it defines Flexible Automation Production Systems
(FAPSs) as those APSs that support flexibility through reconfiguration according to QoS
parameters, such as control system availability in the event of controller failure or
workload balancing. Hence, this work provides support for developing flexible
applications at production level, using PLCs as primary controllers. To achieve this,
during the design of the FAPSs it must be stated which controllers can potentially
automate the production of every PlantAsset in order to download the corresponding
Control Logic Software Module (a Program Organization Unit—POU- if IEC 61131-3
standard [34] is used). The runtime platform manages the execution of every control
software module (henceforth Production Service-PS-), ensuring that it is only running in
a unique controller of the system (active controller), and the others acting as tracking
controllers. Besides, applying dynamic reconfiguration to assure specific QoS (e.g.,
availability of the control system, efficient use of resources or any other QoS), implies both
QoS supervision (by means of mechanisms like heartbeat or workload, respectively, in all
controllers) and guaranteeing reconfiguration feasibility, avoiding unpredictable effects
in the manufacturing process. Therefore, during the design phase, it is also necessary to
define those critical situations in which the state of the PlantAsset is not known and thus,
the reconfiguration is not possible.

Figure 1 depicts the general scenario of a FAPS in terms of I4.0 Components. This
seeks to prove the capability to assure work balance among the distributed controllers
(AAS_Controller1...AAS_Controller3) comprising the automation system for a flexible
manufacturing cell which is composed by three stations (PlantAsset_S1...PlantAsset_S3).
As observed, AAS_Controllers, as composed AASs, contain a set of AAS_Plants. In this
example, the software control code of S1 (AASPlant_S1) can be run in either controller 1
or controller 2, but it is only active in controller 1.

Figure 1. A Flexible Automation Production System with the following I4.0 Components: multiple Asset Administration
Shell (AAS) of different assets (Controllers and Plant) are interconnected via a message exchange middleware, depicted
as a message bus.

Appl. Sci. 2021, 11, 2319 5 of 27

The structure of AASs is defined in [35]. Following this recommendation, Figure 2.
illustrates the general structure proposed for the AAS_Controller, which has two main
parts: Header and Body. The Body has two submodels per AAS_Plant contained
(ProductionService and ProductionService Availability) and the
ActiveProductionServices submodel that collects the list of ProductionServices which are
being executed in the corresponding ControllerAsset.

Figure 2. Structure of a generic AAS_Controller: the figure follows the concept of an AAS from
Platform Industrie 4.0 [35] to define the AAS of a controller implemented as a Markup Language.
Three Sub-Models are defined, the first two related to the set of Plant Assets it can control
(AAS_Plant) and the third that informs about the Plant Assets it actually controls. Every sub-model
has properties that specify the actions and/or information it provides. This graphic was generated
using Altova XMLSpy Version 2020.sp1.

Production Service submodels are characterized by four properties: The service
offered by the corresponding AAS_Plant (ProductionService); a set of variables that
characterize the state of such production service (Service State); and two functions to send
or receive the values of the variables that collect the execution state. Active controllers
send at the end of the execution cycle the current execution state (SendStateService) and
those controllers which are tracking receive this state (ReceiveStateService). Hence, if an
active controller fails all tracking controllers have the last known state.

Production Service Availability submodels have a unique property for runtime
diagnosis. Thus, this function indicates if the current state of the PlantAsset can be derived
from the current values of the controller variables or not. To perform such diagnosis this
function processes the set of critical situations detailed during the design phase. At
runtime, a PlantAsset could be in the following states or situations:
• non-critical situations: the automation system is aware of the current process state.

Therefore, it is possible to activate ProductionServices in another PLC (after de-
activation in the current controller or after a controller failure), using as their initial
state the last known state of the interrupted ProductionService;

• critical situations: the automation system does not know exactly the current state of
the ProductionServices. Therefore, as it can lead to unpredictable process behavior,
the activation/de-activation of ProductionServices is inhibited in critical situations.
For example, when a controller fails, it has to be analyzed if all its active
ProductionServices can be recovered, on a tracking controller, in a previous known
state (checkpoint). In the case of a non-recoverable situation, it is analyzed if the
ProductionService must be safely stopped and the operator warned. Figure 3 depicts
a simple but illustrative example of a ProductionService for the movement of a piece
by a crane. While the crane is lifting, transporting or placing the piece, the
ProductionService cannot be de-activated as the piece may be released which
prevents the production from continuing. Therefore, the state of the
ProductionService during these operations is denoted as critical and in such case,
reconfiguration cannot be performed. The rest of the states are denoted as non-critical.

Appl. Sci. 2021, 11, 2319 6 of 27

Figure 3. Example of ProductionService to illustrate the concept of critical situation: the figure
depicts the manufacturing sequence of a crane. The steps 42 to 44 are critical situations because the
state of the system is uncertain during their execution (in case of failure there is no information
about the exact position of the piece). Therefore, reconfiguration cannot be performed during such
steps.

2.2. Flexible Automation Middleware (FAM)
This subsection summarizes the agent-based middleware architecture for flexible

automation production systems proposed by the authors in [26]. The general scenario is
illustrated in Figure 4.

Figure 4. General Scenario of the FAM (customization of [26]): the Middleware Manager and the QoS Manager
(comprising the QoS Monitor Agent and the Diagnosis & Decision Agent) constitute the core of the middleware. The
former is in charge of managing the execution and maintaining the state of Controllers and Plant AAS Agents. The latter
is in charge of supervising the availability of the overall control system, detecting controller faults and, if possible,
recovering the Plant AASs of the failed controller.

FAM includes four agent types: two are part of the generic and basic architecture,
whereas the other two are application dependent. Generic agents are able of managing
different QoS:
1. The Middleware Manager (MM) is the main orchestrator. It is a unique agent in charge

of managing the System Repository (SR): a dynamic model that contains information
about the current state of the automation application, which changes over time.

2. The QoS Manager comprises a set of agents responsible for QoS fulfilment.

Appl. Sci. 2021, 11, 2319 7 of 27

a. QoS Monitor (QM) agents are responsible for monitoring the specific QoS to be
handled, generating triggers if they detect QoS losses. Hence, there are as many
QMs as QoS to be met.

b. The Diagnosis & Decision (D&D) agent is unique in the system and it is responsible
for launching diagnosis and decision algorithms as well as reconfiguration events.

As commented above, the rest of agents in the system depend on the automation
application. Applied to this work they implement both Plant_AAS and Controller_AAS
assuring the availability. These agents guarantee the distributed intelligence, as their role
is to collect information from the current state of the automation system as well as
performing reconfiguration decided by the D&D:
3. The Plant_AAS Agent (APlant_AAS) manages the execution of the corresponding

ProductionService’s actions as well as collects, transmits, stores and makes diagnosis
on the current state of this. The Component Manager of a APlant_AAS is implemented
by a Finite State Machine that represents the possible states of the ProductionService
lifecycle (detailed description can be found in [26]). Although each ProductionService
can be replicated in a number of controllers, at runtime only one controller will be
executing the ProductionService and its corresponding APlant_AAS will be in active
state. For the rest of the controllers, the ProductionService is not executing and their
corresponding APlant_AASs will be in tracking state.

4. The Controller_AAS Agent (AController_AAS) registers its corresponding controller
and the associated resources in the System Repository when the controller joins the
system. It also registers itself in the Directory Facilitator of JADE offering as services
the set of ProductionServices that can run in the controller. Finally, it launches its
corresponding APlant_AASs. There are as many AController_AAS as controllers in the
system.

2.3. Model Driven Engineering for Modeling Flexible Automation Production Systems
This subsection illustrates how Model Driven Design has been adopted for designing

and developing automation systems. In fact, it has been used for both characterization
purposes (from the definition of system parts, such as QoS requirements, to the overall
system description) and implementation purposes. In the concrete case of industrial
automation field, model-based techniques are integrated into the development process.
Several works base on the use of the Unified Modeling Language (UML [36]) to describe
control systems based on the IEC 61131 [37,38] and the IEC 61499 [39,40] standards. The
Systems Modeling Language (SysML [41]) has been also applied [39,42], whereas other
works also use modeling techniques and design patterns [43] or aspects [44]. Furthermore,
the worldwide PLCopen association, which is vendor and product-independent, has
specified a common representation format for the software model of the IEC 61131-3
standard [45,46]. The objective is twofold. On the one hand, it is aimed at achieving
programming tools interoperability. On the other hand, it also supports a model-based
definition of the application software of automation systems.

Other authors go a step further and make use of modeling techniques for supporting
the development of the overall automation system. The “3 + 1” architecture proposed by
Thramboulidis [47] allows the system design based on three models (software
engineering, mechanical engineering and electrical engineering) linked through the “+1”
model, which in the end conforms the whole system. Another example is the MDD
approach proposed in [37,48], which uses the UML profile technique to define domain
languages. Additionally, it also allows the automatic generation of the software
architecture in PLCopen XML format, using functional code imported from PLC libraries.
Similarly, authors in [49] define the so-called SysML-AT, a specialized profile that is
integrated into the German commercial tool CoDeSys, and that allows the definition of
the hardware and software of the automation and control systems.

Appl. Sci. 2021, 11, 2319 8 of 27

Models have been also used to consider system reconfiguration as an extension of
the definition of system elements, such as Function Blocks (FB), machines, controllers or
components. This is the case of the Functional Application Design for Distributed
Automation Systems (FAVA) research project [43,50], which proposes including resource
demands within the software view (amount of memory and number of bytes exchanged
with other FBs) with the aim to be used at the deployment of the FBs.

The model-based approach presented in [51] considers both functional and non-
functional requirements in terms of constraints related to the different views of the
production automation system. It covers from sensors or actuators to the whole plant,
including a tolerance model with traceability purposes. In fact, the information contained
in this model is used by an agent system for analyzing if reliability demands can be
maintained, and whether the needed probability of a concrete quality will be reached.
Non-functional requirements are also tackled at the AMoDE-RT approach [44], but as an
aspect-based characterization related to the functional components. As a result, non-
functional demands can be supervised at runtime, being possible to reconfigure the
system in the event of non-fulfillment. The approach is applied in [42] to embedded
control systems.

The holonic architecture at the SOCRADES project [52] performs runtime
distribution of machine job, through a model-based definition of the functionalities of a
machine. The modeling approach described in [53] allows the specification of the
operations performed by the machines within a plant as well as the operations required
for a product manufacturing. This information is used to automatically derive an optimal
operation sequence.

All research works commented above demonstrate the usefulness of MDE in
automation field for different purposes, as all of them have in common that the use of
models helps managing the complex automation systems [54,55]. This work uses MDE in
order to design and develop Flexible Automation Production Systems, which are complex
systems due to their size, functionality and distribution. In fact, MDE relies on models and
model transformations for automating the software development process. More precisely,
there are Model to Model (M2M) transformations as well as Model to Text (M2T)
transformations. In both cases, the input refers to a model that conforms to a meta-model
whereas the generated output is related to a new model conforming to another meta-
model or source code, respectively.

The authors propose the Meta-Model illustrated in Figure 5, which collects all the
information for defining FAPSs. The framework proposed by the authors implements this
Meta-Model in a Markup Language file. This model is the input of the: (1) M2M
transformation rules to generate as many flexible automation projects as controllers in the
system, in PLCopen XML format; (2) M2T transformation rules to generate the code of
APlant_AASs and AController_AASs in PLCopen XML format. The Technical Committee
six of PLCopen defines a meta-model in a ML notation (XML Schema) for the IEC 61131-
3 standard software model. This ensures that the M2M transformation produces models
following the PLCopen meta-model.

Appl. Sci. 2021, 11, 2319 9 of 27

Figure 5. Flexible Automation Production System Meta-Model: this Meta-Model represents both,
the formal expression of the software in charge of controlling a Plant Asset (on the left side) as well
as the information needed in order to analyze if the control of a Plant Asset might be recoverable
under a controller fault/workload balancing (on the right side). The corresponding code resides in
every controller which potentially can control the Plant Asset.

3. Results
This section presents a MDE based framework that generates: (1) a flexible

automation project per PLC of the FAPS; and (2) a set of application dependent agents
(APlant_AASs and AController_AASs). Additionally, in order to make FAM generic and
customizable, this work defines the templates for these types of agents which are
customized with application dependent information. As commented above, these results
are achieved applying a set of M2M and M2T transformation rules to a Model that must
be specified since the design phase following the meta-model depicted in Figure 5.

The general scenario of the proposed framework is illustrated in Figure 6. It is based
on two automation standards: PLCopen [46] and AutomationML [56,57]. FAM is
composed of two core elements: (1) The FAPS Model Editor, and (2) the code generator.
As previously commented, two different outcomes are obtained from code generation: on
the one hand, the Flexible Automation Projects, which are composed by the set of
ProductionServices the PLC can run, as well as the activation/de-activation code and the
recovery actions; on the other hand, the code corresponding to the application agents.

The following subsections detail the FAPS Model Editor as well as the code
generators, which are based upon M2M and M2T transformations, respectively. As the
input for these transformations (i.e., the outcome from the FAPS Model Editor) is in XML,

Appl. Sci. 2021, 11, 2319 10 of 27

the identified transformation rules will be implemented by using XML stylesheet
technology [58].

Figure 6. General Scenario of Flexible Automation Framework.

3.1. FAPS Model Editor
The design and development of the automation system must be structured in

Production Services, which, by means of I/Os and their control logic as a set of POUs and
variables, control different stages of the process. The POUs of the control logic can be
generated directly in a PLC programming tool or following the guidelines provided in
[48] or [49]. ProductionServices are duplicated in different controllers (replicatedIn in
Figure 5). Moreover, each AAS_Plant is characterized by a set of critical situations that
refer to situations at which ProductionService cannot be reconfigured. Critical situations
are defined by a condition to be met, which is defined as logical expressions of
ProductionService variables. For instance, in the event of a controller failure, the
continuity of the automation system execution must be analyzed, resulting in two
alternative outcomes: (1) the normal execution can be restored by means of recovery
actions, taking the system to a known previous state (checkpoint); (2) the failure is not
recoverable, and thus a safe stop action is required.

The FAPS Model Editor provides support to developers for designing automation
systems. This tool follows the guidelines of [59] to implement the meta-model of Figure 5
using the Computer Aided Engineering eXchange (CAEX) [60] libraries of
AutomationML:
• The System Unit Class Library indicates the concepts required to define a flexible

automation system. It comprises the so-called System Unit Classes (SUC), which
represent the elements of the meta-model. The SUCs are characterized by their
attributes. As the elements in the system can be simple or complex (i.e., composed of
internal elements), the SUCs representing them can be either simple or complex. The
complex SUCs comprise instances of other previously defined SUCs.

• The Interface Class Library offers interfaces that enable the association of a SUC
(simple or complex) to an element on an external file. This library provides a
PLCopen interface included in AML which grants access to the POUs and variables
within a PLCopen automation project. It also includes the hardware interface, a new

Appl. Sci. 2021, 11, 2319 11 of 27

interface added to allow the definition of the controllers and automation projects in
PLCopen.

• The Role Class Library provides the different roles by which the elements can be
organized in the model (choice, sequence, each and every role). The ramifications of
the structures based on these roles is settled by means of their attributes minOccurs
and maxOccurs.
Further details regarding these libraries and their specifications can be checked in

[59].
These libraries are integrated into the AML editor (see FlexibleAutomationSystem SUC

library in Figure 7). This allows to use this tool to define FAPS models. Every Internal
Element (IE in Figure 7) is an object whose Class corresponds to another SUC of the
library. The basic attributes of the AAS_Plant are its id, asset_id and the reference to the
controller in which the control logic is active (activeIn) as well as the latent controllers
(replicatedIn). This definition is completed with links to POUs and global variables. This
latter is a sequence of critical situations which are defined making use of expressions
involving variables.

Figure 7. CAEX libraries for Flexible Automation Systems: excerpt of a SystemUnitClassLib with
AutomationML Editor. It comprises multiple System Unit Class (SUC) to define the lexicon
participating in the definition of a Flexible Automation System (FAPS, AAS_Controllers,
Hardware...).

As an example, the definition of the AAS_Plant named ST1 is depicted in Figure 8.

Appl. Sci. 2021, 11, 2319 12 of 27

Figure 8. Flexible Automation control system design example with AutomationML Editor: (a) General Structure composed
by three stations (ST1...ST3) controlled by two Controllers; (b) Characterization of the CheckPointState of the first critical
situation identfied in ST1; (c) Characterization of an atomic Expression: Control_ST1.Sequence1_1.E23.Q1 = 1 AND
Control_ST1.Insert_P1.E73.Q1 = 1; and (d) Characterization of an Action.

Besides, the FAPS Model Editor allows the characterization of the critical situations
of PSs. To that end, the developers must conform boolean expressions to evaluate
checkpoint or unrecoverable critical situations from arithmetic and logical operations with
the available variables. In the same way, the recovery actions to be performed at each
checkpoint state (i.e., the values of the variables that define the checkpoint state), can be
declared at this point, if needed. Figure 8 presents the definition of the expression:
“(Control_ST1.Sequence1_1.E23.Q1 = 1 AND Control_ST1.Insert_P1.E73.Q1 = 1)” using
the AML editor.

3.2. Flexible Automation Projects Code Generator
The code generation of Flexible Automation Project covers normal operation as well

as reconfiguration needs. As current IEC 61131-3 standard execution environments do not
support dynamic code deployment, the reconfiguration requires the de-activation of a
Production Service in a controller and its activation in another one. Therefore, the
generated automation projects not only contain all the Production Service POUs that the
controller can run, but they are enhanced with a wrapper that allows the APlant_AASs to
activate/deactivate their execution. In addition, these projects also include the code to
read/write the state of the Production Service of each APlant_AAS.

The APlant_AAS interacts with its associated Production Service through a
predefined area of the controller memory. To that end, specific libraries are required
depending on the manufacturer (e.g., S7-300 controllers from the German manufacturer
Siemens require from libnodave and s7netplus libraries to enable an external access
[61,62], whereas the Automation Device Specification, or ADS, is required in Beckhoff
controllers for that purpose [63]).

To sum up, the Flexible Automation Projects include both the code endorsing the
Production Services and the control code that supports their flexibility (see
ProductionService submodel in Figure 2. Hence, each Production Service (PS) module is
composed of three different POUs:
• ProductionService_id: a program to control the execution of the Production Service

(PS_id);

Appl. Sci. 2021, 11, 2319 13 of 27

• SendStateService_id: a program that reads and serializes the state variables of the
production service;

• ReceiveStateService_id: a program that de-serializes the received information and
updates de state variables of the production service with new initialization values in
case it changes from tracking to active in a controller.

3.2.1. Production Service Program
Thanks to this program, the APlant_AAS can manage its corresponding PS, as it

provides the external access required to activate/deactivate the execution of the logic and
recovery/stop actions.

The program structure and the templates to be fulfilled by the generator are depicted
in Figure 9. The program interface is a set of application dependent variables and other
local static variables that allow APlant_AAS to manage it. These local variables are:
• isActive and wasActive: these boolean variables determine the activation/deactivation

of the logic.
Two further local variables are included to support the availability:

• recoveryAction: it is related to the coded actions required to manage a concrete critical
situation if necessary.

• Action_CriticalSituationID: it identifies a specific recovery code (POU instance).

Figure 9. General structure of a ProductionService_id program: the interface collects the parameters
to configure the program. The body illustrates the skeleton of the program in ST programming
language of the IEC 61131-3 standard and different sequences of actions to perform depending on
the type of critical situation.

Appl. Sci. 2021, 11, 2319 14 of 27

This program is automatically generated from FAPS model by M2M transformation
rules. Three transformation rules have been developed: one for generating the Interface
of such POU; other for its functionality (Body) and the third for the recovery actions:
• Rule 1—Interface definition: It is applied to every InternalElement having

RefBaseSystemUnitPath property with AAS_Plant value. The rule starts adding the
common part with the fixed local variables at their initial values. After, it adds as
many POU instance variables as actions defined in the CriticalSituation elements. For
this, it searches those inherited InternalElements that have RefBaseSystemUnitPath
property with Action, getting the value of its ExternalInterface. This will be the type of
the new added variable. The name will be the same as the InternalElement’s name.

• Rule 2—Body: It is applied to every InternalElement having RefBaseSystemUnitPath
property with AAS_Plant value. The common minimal structure is initially added
(See Figure 9), changing PS_id() by the name of the ExternalElement in a
POUInstance. Furthermore, this template applies Rule 3 to complete the list of the
possible causes related to the activation of a Production Service.

• Rule 3—Recovery Actions: It is applied to InternalElements that have
RefBaseSystemUnitPath property with CriticalSituation value. The code to add
depends on the value of the recoveryType property (see Figure 9). The PS_id() is
customized following the procedure commented above.
Figure 10 exemplifies the generation process for the control program corresponding

of a Production Service (CL1_ST_Control). The left side of the figure presents the flexible
model through which the developer defines the flexible manufacturing system, while the
right one shows the resultant program, ProductionService_id, in PLCopen XML format.

Figure 10. Example of the execution control program generation: the upper-right part of the figure
shows the interface of the program. The lower-right part of the figure shows the body of the
program in ST programming language of the IEC 61131-3 standard. The statements 1 and 2 of the
case structure use the designated code sections for the recoveryType of actions 1 and 2.

Appl. Sci. 2021, 11, 2319 15 of 27

3.2.2. Serialization Programs
The serialization program (SendStateService_id) collects the values of the state

variables into a byte array, which is accessible by the APlant_AAS. Byte array is selected
due to most IEC 61131-3 environments endorse transformation functions to cast any data
type to byte (e.g., INT_TO_BYTE, BOOL_TO_BYTE, etc.).

On the contrary, the de-serialization program (ReceiveStateService_id) process the
array sent by the APlant_AAS and updates the state of the production service.

The structure and the templates to be fulfilled by the generator are depicted in order
to generate SendStateService_id and ReceiveStateService_id programs are depicted in
Figure 11.

Figure 11. General structure of SendStateService_id and ReceiveStateService_id programs: the
interface box shows the parameters to configure the program (in this case, the number of bytes of
the array). The body box presents the code of the serialization and deserialization programs in ST
programming language of the IEC 61131-3 standard.

These programs are automatically generated from FAPS model by M2M
transformation rules. Three transformation rules have been developed: one for generating
the Interface of such POUs; other for serialization functionality (Body) and the third for
the de-serialization body:
• Rule1—Interface Definition: It is applied to every InternalElement having

RefBaseSystemUnitPath property with POUInstance. It initially calculates the number
of bytes needed for defining the state (NumberOfBytes of Figure 11). For this, local
and global variables as well as input and output parameters of the POU that
implements the control logic of Production Service are identified. This POU is located
in the name of the ExternalElement. Then, Rule 2 and Rule 3 are applied in order to
generate the body of serialize or deserialize, respectively.

• Rule 2—Serialize Body. It requires the Production Service’s state and its
corresponding variables (see Figure 11).

• Rule 3—De-Serialize Body: It also requires the state and the related variables,
resulting in the writing of the new state (see Figure 11).
An example of FAP generation containing the POUs, data types, global variables and

tasks associated to three Production Services (ST1–ST3) is presented in Figure 12.

Appl. Sci. 2021, 11, 2319 16 of 27

Figure 12. Example of a Flexible Automation Project containing the POUs, data types, global variables and tasks associated
to three Production Services (ST1–ST3).

3.3. Application Dependant Agents Code Generator
In order to make FAM generic and customizable, this paper proposes templates for

the application agents, that can be customized for specific processes. The following
subsections detail such templates and the automatic generation of APlant_AASs and
AController_AASs.

3.3.1. APlant_AAS Template
Each APlant_AAS is associated to several Production Services hosted in different

PLCs and it performs state diagnosis, when required, for determining if the current state
indicates a critical situation. The APlant_AAS template (AAS_PTemplate) proposed by
the authors, presented in Figure 13, addresses this issue offering a generic and
customizable solution.

Figure 13. (a) Template of an AASPlant (AAS_PTemplate) in UML Class Diagram with detail of its methods and the states
defined in its FSM and (b) Example of use of the AAS_PTemplate in Java. The characterization method of the AASPlant
element allows the customization of the parameters PS_ID and recoveryInfo for different AASPlant instances.

Appl. Sci. 2021, 11, 2319 17 of 27

The template can be customized by means of two parameters:
• PS_ID: this parameter contains an identifier that can match the identifier of the

automation project, and that identifies each Program Organization Unit.
• recoveryInfo: it contains the set of masks to be applied to each component to

determine which type of operation must be applied at any moment. These masks,
defined following the meta-model presented in Figure 14, allow to identify the
critical situations of the Production System (e.g., the manufacturing steps 42–44 from
Figure 3 are identified as critical situations based on the information in the
recoveryInfo parameter). The Diagnosis XML file has been conceived to ease the
generation and storage of such information with a predefined structure. This file
stores information about the state variables (name and type), and the masks to
perform both the diagnosis and the checkpoint. Note, that the diagnosis masks
determine if it is a critical state type (checkpoint or unrecoverable) by filtering the
state variables related to the condition to be diagnosed.

Figure 14. General Structure of the Diagnosis.xml file: Recovery information comprises the set of state variables to be
analyzed as well as the set of critical situation masks. These masks allow to diagnose either recovery or non-recovery
situations under controller failures/workloads balancing. This is performed by filtering a concrete set of state variables
related to the condition to be diagnosed. This graphic was generated using Altova XMLSpy Version 2020.sp1.

The Component Manager of APlant_AAS has been implemented in a FSM as
established in [26], which consists of the Boot, Active, Tracking, Wait decision and End
states. This FSM is implemented as a JADE FSM. There are two JADE behaviors (Simple
Behaviour) associated to each FSM state: one that manages the message exchange with the
middleware agents (Message_Queue), and another one to implement the specific
functionality of each state (Boot, Active, Tracking, WaitDecision and End). Meanwhile, access
provides access to the PS’s code in the PLC.

3.3.2. APlant_AAS Generation
The transformation of critical situations related information into a set of masks to

diagnose the Production Service is a major issue in APlant_AAS generation.
To generate PSid_Diagnosis.xml file from FAPS model the following transformation

rules are required:
• Rule 1—State characterization: It generates the set of variables conforming the state.

To do this, every InternalElement having RefBaseSystemUnitPath property with
RefVariable and the InternalElement having RefBaseSystemUnitPath property with
POUinstance in AAS_Plant are processed.

• Rule 2—Critical Situation: It applies to the InternalElements that have
RefBaseSystemUnitPath property with CriticalSituation in an AAS_Plant. As a result,
the Critical Situation information stored in diagnosis XML file is generated.

• Rule 3—Diagnosis: It processes the Condition to identify which the state variables
are required to determine the type of critical state at that situation. This rule applies
to every InternalElement with RefBaseSystemUnitPath property having an Expression
in a CriticalSituation.

Appl. Sci. 2021, 11, 2319 18 of 27

• Rule 4—Checkpoint: It processes the CheckpointState to determine at which condition
the AAS_Plant must be restarted. This rule applies to each InternalElement that have
RefBaseSystemUnitPath property with CheckPointVariable in a Critical Interval.

3.3.3. AController_AAS Template
The AController_AAS updates the information related to the state of the controller

resources required by QoS Monitor agents. They can participate in negotiation processes
when needed. Negotiation criterion depends on the specific QoS. For instance, in
Availability and after a controller failure, the D&D agent will require a negotiation process
among controllers able to run the affected Production Services, being the specific criterion,
for example, the minimum execution cycle.

In order to offer a generic and customizable solution, the AController_AAS template
(AAS_CTemplate) illustrated in Figure 15 is proposed. The template has a set of
customizable parameters:

• ID, which identifies the agent in the system;
• A textual Description;
• CPUfactor, with respect to a reference controller;
• Memory resources;
• IP address;
• AssignedPS: a list of Production Services, whose control logic is executed in the

controller.

Figure 15. (a) Template of an AAS_Controller (AAS_CTemplate) in UML Class Diagram with detail
of its methods and the states defined in its FSM and (b) Example of the use of the AAS_CTemplate
in Java. The characterization method of the AAS_Controller element allows the customization of the
parameters ID, description, IP, CPUfactor, memory and assignedPS for different AAS_Controller
instances.

The Class Diagram presented in Figure 15 defines the template for the design and
parameterization of every AController_AAS of the system. The basic functionality of the
AController_AAS, which manages the messages from the middleware agents, is
implemented in a cyclic behavior (functionality). These messages can be either negotiation
messages or queries about the controller resources. Each time a negotiation message is
received, a new negotiation behavior is instantiated. This behavior is deleted once the
negotiation process, it was related to, is concluded. Furthermore, the AController_AAS
can also implement resource monitoring behaviors. These behaviors allow monitoring a
specific resource of the controller as part of the QoS monitoring process.

The registration of the AController_AAS and the creation of resource monitoring and
functionality behaviors are performed during the setup method of the AController_AAS.

Appl. Sci. 2021, 11, 2319 19 of 27

4. Assessment
The modeling approach and the application agents presented in the previous section

have been implemented in a demonstrator located at the Department of Automatic
Control and Systems Engineering of the University of the Basque Country, Bilbao, Spain.
This case study seeks to prove the capability to assure work balance among the distributed
controllers comprising the automation system for the flexible manufacturing cell FMS-
200.

The manufacturing cell comprises four stations, connected by a conveyor system, that
assemble a product from a set of four parts: base, bearing, shaft and lid. The first station
validates the orientation of the base, which is provided from a buffer. If the position is
wrong, the base is discarded, and a new one is provided. Otherwise, the base is transferred
to the conveyor system. In the second one, a robotic arm inserts the bearing and shaft in
the base, whereas the lid is placed in the third station. The fourth station acts as a
warehouse, where the assembled products fed by the conveyor system are stored.

The cell is organized in five PlantAssets, corresponding to the four stations and the
transfer system, respectively. Nevertheless, for simplicity, this assessment only considers
the PlantAssets associated to the first three stations. Besides the manufacturing cell, the
demonstrator includes two CX1020 Soft PLCs from the German manufacturer Beckhoff.
These devices are characterized for their ability to run a Windows Embedded CE
operating system in parallel with the Beckhoff PLC runtime. The demonstrator also
contains a supervisor PC hosting the Middleware Manager and the QoS Manager.

In the first station, once the orientation of the base has been checked, a pneumatic
suction gripper is responsible of picking the base and placing it in the conveyor system.
Any interruption during the execution of this task implies a loss of reference of the current
state, and therefore, it is considered a critical operation. The reconfiguration actions to be
considered will differ depending on the position of the gripper when the incident occurs.
Thus, two different critical situations have been defined. In case the base falls during the
initial lifting (i.e., before the gripper starts moving towards the conveyor system), it is
retired from the station and a new base is supplied. On the other hand, if the gripper is
already moving towards the conveyor system when the failure arises, the system cannot
assure the return to a previous known state by itself. Thus, the system goes to a safe stop
state, triggering an alarm to warn the operator of the problem.

The second station uses a robot arm to place the bearing and shaft on the base. The
communication with the robot arm generates six critical situations, in which the PLC that
holds the corresponding production service, does not know the position of the robot.
These situations are defined as checkpoint situations in which the connection to the robot
needs to be recovered and the execution of the code resumed.

The third station completes the assembly of the product by placing the lid. The
composition of the lids can vary in terms of color, material, and height. Hence, this station
has different actuators to introduce lids in the station, to place them in the product, or to
remove them in case they do not match the product to be assembled. These actuators can
perform their operations in parallel, as they are allocated around a rotary table, and they
are considered critical operations. Up to five critical situations have been identified, with
their subsequent actions to resume a normal execution. It must be noted that each critical
situation must consider the execution states of all the actuators performing parallel
operations.

The minimal POUs of the control code, generated following the methodology
presented in [48], are stored in a model-oriented database (see Figure 6). On the other
hand, developers with AML-based editor design Flexible Automation Production System
as a set of Production Services. They also specify the identified critical situations. Part of
the complete model is presented in Figure 8.

The application of the transformation rules generates the flexible automation project
of each PLC in the system containing the POUs, data types and global variables related to
the production services it can offer. The code includes the POU that manages the

Appl. Sci. 2021, 11, 2319 20 of 27

activation/de-activation of the Control Logic (CL), as wells as state serialization FBs. The
different parts of the Production Services contained in the flexible automation project for
controller 1 are presented in Figures 10 and 12.

Concerning the application agents, the Flexible Automation Framework generates
the corresponding AController_AASs (see example in Figure 15), APlant_AASs (see
example in Figure 13) and their corresponding diagnosis files.

As a result of the automatic code generation, the Flexible Automation Projects, as
well as the AController_AAs, APlant_AASs and the diagnosis information files, are
deployed into the controllers.

The assessment process comprises the analysis of two different features: evaluation
of the reconfiguration capabilities using a concrete example, and the scalability of the
proposed approach.

The assessment of reconfiguration capabilities consisted of the following: initially,
there was a unique control system (controller 1) in charge of the execution of the
automation control software of the three APlant_Assets. At a certain point, a second
controller (controller 2) joined the system.

Figure 16 illustrates the sequence of interactions between agents in the assessed
scenario. The reconfiguration process is divided in three steps:
• Step 1—QoS Loss Detection: Registration of controller 2 unbalances the system as its

current workload is too low. When the workload monitoring of controller 2 detects
it, the AController_AAS2 (CA2 in Figure 16) triggers an event to notify the QM
(“QoS_Loss_Event(lowerLimit_reach;CA2)” in Figure 16), that eventually leads to
Production System reconfiguration (“QoS_Reconfiguration_Event
(systemLoad;lowerLimit_recovery;CA2)” in Figure 16).

• Step 2—Diagnosis and Decision: The D&D receives the reconfiguration event and
proceeds to initiate a negotiation among controllers to decide the new distribution.
For simplicity, this negotiation process is encapsulated in the “Workload
Optimization Process” block in Figure 16. The new distribution depends on the CPU
factors of the AController_AASs (CA1 and CA2 in Figure 16), current distribution of
the Production Services, and the CPU workload limits introduced by the Production
Service software modules. When the negotiation concludes, the D&D launches the
relocation of the Production Services).

• Step 3—Reconfiguration: Relocation is represented by the “for loop: PSs to be
relocated” in Figure 16, which consists of the following steps. Firstly, the D&D forces
the APlant_AASs (PSAi.j in Figure 16) of the affected production service software
modules to move to wait decision state (wait in Figure 13). Similarly, the D&D also
forces the former active APlant_AAS to stop in the next non-critical situation of the
control code (“change_State(waitDecision;nonCriticalStop)” in Figure 16). At this
point, the D&D commands the execution of the production service software modules
from the last known state in their new locations (“change_State(active;direct)” in
Figure 16).

Appl. Sci. 2021, 11, 2319 21 of 27

Figure 16. Sequence diagram detailing the triggering of the Workload Optimization process and
the redistribution of active PSs among the controllers: when Controller 2 joins the system, CA2
informs the QoS monitor that its workload is too low, and after confirmation, the QoS Monitor
sends a reconfiguration event to the D&D (Step 1). The D&D requests information to the MM and
after receiving it, it triggers the Workload Optimization Process (Step 2). As a result of this
optimization, the D&D stops PSA3.1 at the first non-critical situation, changes the state of PSA3.1
and PSA3.2 to “wait”, and later changes the state of PSA3.2 to “active” and the state of PSA3.1 to
“tracking” (Step 3).

After the reconfiguration process, the control software of station 1 and station 2
PlantAssets are running in controller 1 and the control software of station 3 is running in
controller 2. Figure 17 presents a graphic depicting the workload of the different
controllers before and after the introduction of controller 2.

Figure 17. Workload of controller 1 and controller 2 before and after the reconfiguration: the
orange box (reconfiguration process) corresponds to the for loop shadowed in blue in Figure 16.
As a result of the reconfiguration process, the workload of Controller 1 decreases (now it has two
active Production Services), and the workload of Controller 2 increases (it has one active
Production Service).

The scalability assessment evaluates the time the D&D takes to decide the new
distribution (Step 2) and the time needed by the architecture to reconfigure the system
(Step 3). This depends on the number of automation software modules to be reconfigured
as well as on the number of PLCs that may run the involved software modules. For this

Appl. Sci. 2021, 11, 2319 22 of 27

test, all need to be relocated and the reconfiguration is launched when the control software
modules operate in a non-critical state. Table 1 presents the results of this test. The first
column represents the time in milliseconds the D&D takes to calculate the new
distribution of the PlantAsset software module; while the following columns present the
time it takes to reconfigure each.

Table 1. Distribution algorithm and reconfiguration times.

PSAs
Dist.
Alg.

1st
Reconf

2nd
Reconf

3rd
Reconf

4th
Reconf

5th
Reconf

6th
Reconf

7th
Reconf

8th
Reconf

2 5.29 610.04 1214.79

3 6.14 610.66 1216.09 1822.70

4 8.36 612.20 1221.51 1830.35 2437.00

5 11.67 616.58 1236.59 1843.65 2450.43 3056.97

6 12.72 617.41 1222.53 1827.60 2432.38 3065.81 3687.38

7 16.98 625.51 1230.31 1837.61 2444.37 3050.74 3657.21 4262.64

8 17.49 622.99 1242.58 1851.25 2456.50 3062.99 3667.54 4275.75 4880.56

The following figures illustrate how the execution time of the re-distribution
algorithm (Figure 18) and the overall reconfiguration time (Figure 19) increase with the
number of software modules to be reconfigured. However, the time to make a decision is
negligible in comparison with the overall reconfiguration time, as it is computed within
the D&D and it does not include negotiation. It is also remarkable that the time for
reconfiguring each software module is approximately the same, around 615 ms.

Figure 18. Distribution Algorithm Time vs. Number of control software modules.

Figure 19. Reconfiguration Time vs. Number of control software modules.

Appl. Sci. 2021, 11, 2319 23 of 27

5. Conclusions
This paper presents an approach aiming at adding flexibility to automation

production systems following Industry 4.0 issues. It adds this flexibility by reconfiguring
the control system, i.e., relocating the different functionalities over the distributed control
system, assuring the execution despite controller failure.

The proposed approach defines FAPS as a set of Controller and Plant I4.0
interconnected components, which support reconfiguration according to QoS parameters.
It assumes that a MAS-based middleware provides QoS management at runtime but it
offers model-based support to specify flexibility needs of target systems and
automatically generate: (1) the flexible automation project for each controller in the
system, as well as; (2) the code of application dependent agents, being the AAS’s
component manager implementation for the system’s components. Furthermore, a
template for application dependent agents (controller and plant) has been defined to make
FAM generic and customizable. These templates can be customized for specific processes.

The core of the framework proposed by the authors is based on MDE that allows
managing complex systems. In fact, a Model Editor guides designers along the design of
automation production systems, offering means for characterizing the critical situations
of the production services, and collecting this information in a Model. The automatic
generation has been performed via M2M and M2T transformation rules having as input
the model generated by the Editor. This avoids manual programming errors, very
common in these such complex situations.

The execution of the assessment has allowed to put in practice the proposed
approach. As a result, several conclusions have been obtained:
• The definition of the critical intervals in the manufacturing process, which is essential

to manage flexibility properly, has proved to be a difficult task. To that end, it is
necessary to rely on someone with a great knowledge of the manufacturing process,
who has also taken part in the design process of the code for the controllers. As far
as authors know, other approaches do not contemplate this task, as they consider that
the state represents the whole process, and thus any situation should be recoverable.
Nevertheless, the reality is very different.

• The advantages of AutomationML for modeling and processing different types of
data have been demonstrated. Interoperability is ensured with AutomationML as
long as the integrators use PLCOpen, which is widely known and used by an
increasing number of engineers and suppliers (e.g., Siemens allows to export
hardware configuration to AutomationML). Despite it is a relatively new standard,
it is receiving an increasing attention as exportation format for different types of data
(information, code, etc.).

• The proposed approach eases the reconfiguration and scalability of the system,
allowing the reconfiguration of the control system (by adding or removing
controllers) without changing the configuration of the assets. In the same way,
changes in the control of the process can be easily implemented thanks to automated
code generation.
However, in case the target PLC is not PLCopen compliant, the proposed approach

could not be applied. That supposes a limitation in terms of scalability of the solution at
design time. Regarding future work, the use of accurate simulation models as a resource
to identify critical situations of the manufacturing process in a safe and controlled
environment, could allow to perform cost-opportunity analyses in order to decide
whether additional sensors should be included.

Author Contributions: Conceptualization, software, validation, writing—original draft
preparation, U.G.; software, validation, writing—original draft preparation, A.L.; methodology,
validation, writing—review and editing, A.A.; methodology, software, writing—review and

Appl. Sci. 2021, 11, 2319 24 of 27

editing, E.E.; conceptualization, supervision and writing—review and editing, M.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was financed by MCIU/AEI/FEDER, UE (grant number RTI2018-096116-B-I00)
and by GV/EJ (grant number IT1324-19).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The functionality of the flexible assembly cell FMS-200, located in the
Department of Automatic Control and System Engineering of the University of the Basque Country
is online available: https://youtu.be/7Ifp5jD3-4U (accessed on 11 January 2021). The availability of
the Control System is online available: https://youtu.be/uIK1w5p3_RQ (accessed on 11 January
2021).

Acknowledgments: The authors would like to express gratitude to the Government of Spain for its
support to the research project in which this work is framed (grant number RTI2018-096116-B-I00),
as well as to the Government of the Basque Country Region (grant number IT1324-19). We would
also like to thank to the referees which provided us their feedback for the improvement of this
manuscript. A very special thank to Rafael Priego and Birgit Vogel for their collaboration in the
work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following tablecollects the acronyms and abbreviations used throughout the

paper.

AAS Asset Administration Shell
AML Automation ML
APS Automation Production Systems
CAEX Computer Aided Engineering eXchange
CL Control Logic
D&D Diagnosis & Decision
DT Digital Twin
FAM Flexible Automation Middleware
FAPS Flexible Automation Production System
FAVA Functional Application Design for Distributed Automation Systems
FB Function Blocks
FSM Finite State Machine
IE Internal Element
JADE Java Agent Development Framework
MM Middleware Manager
MDD Model Driven Design
MDE Model Driven Engineering
M2M Model to Model
M2T Model to Text
MAS Multi Agent Systems
PS Production Service
PLCs Programmable Logic Controllers
POU Program Organization Unit
QoS Quality of service
QM QoS Monitor
RAMI 4.0 Reference Architecture Model for Industry 4.0
SysML System Modeling Language
SR System Repository
SUC System Unit Classes
UML Unified Modeling Language
XML eXtensible Markup Language

Appl. Sci. 2021, 11, 2319 25 of 27

References
1. European Commission. Research and Innovation. Factories of the Future PPP: Towards Competitive EU Manufacturing.

Available online: https://ec.europa.eu/research/press/2013/pdf/ppp/fof_factsheet.pdf (accessed on 1 February 2021).
2. Blanchet, M.; Rinn, T.; Von Thaden, G.; de Thieulloy, G. Industry 4.0 The New Industrial Revolution How Europe Will Succeed.

Available online: http://www.iberglobal.com/files/Roland_Berger_Industry.pdf (accessed on 1 February 2021).
3. National Science and Technology Council. ADVANCED MANUFACTURING: A Snapshot of Priority Technology Areas Across

the Federal Government. Available online: https://www.mrs.org/docs/default-source/advocacy-policy/resources/advanced-
manufacturing---a-snapshot-of-priority-technology-areas.pdf?sfvrsn=fb15e811_6 (accessed on 1 February 2021).

4. Liao, Y.; Deschamps, F.; Loures, E.F.R.; Ramos, L.F.P. Past, present and future of Industry 4.0—A systematic literature review
and research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629, doi:10.1080/00207543.2017.1308576.

5. European Commission. European Factories of the Future Research Association (EFFRA). Factories of the Future. Multi-Annual
Roadmap for the Contractual PPP under Horizon 2020. Available online:
https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf (accessed on 1 February 2021).

6. Lindstrom, J.; Kyosti, P.; Birk, W.; Lejon, E. An initial model for zero defect manufacturing. Appl. Sci. 2020, 10, 4570,
doi:10.3390/app10134570.

7. Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res.
2020, 58, 1927–1949, doi:1080/00207543.2019.1636321.

8. Mourtzis, D.; Vlachou, E. A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based
maintenance. J. Manuf. Syst. 2018, 47, 179–198, doi: 10.1016/j.jmsy.2018.05.008.

9. Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation—A critical review of the standards and
envisioned scenarios. J. Manuf. Syst. 2020, 56, 312–325, doi: 10.1016/j.jmsy.2020.06.010.

10. Cotrino, A.; Sebastián, M.A.; González-Gaya, C. Industry 4.0 roadmap: Implementation for small and medium-sized
enterprises. Appl. Sci. 2020, 10, 8566, doi:10.3390/app10238566.

11. Tay, S.I.; Malaysia, T.H.O.; Raja, P.; Pahat, B.; Hamid, N.A.A.; Ahmad, A.N.A. An overview of industry 4.0: Definition,
components, and government initiatives. J. Adv. Res. Dyn. Control. Syst. 2018, 10, 1379–1387.

12. Florescu, A.; Barabas, S.A. Modeling and simulation of a flexible manufacturing system—A basic component of industry 4.0.
Appl. Sci. 2020, 10, 8300, doi:10.3390/app10228300.

13. Shen, W.; Wang, L.; Hao, Q. Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey.
IEEE Trans. Syst. Part. C 2006, 36, 563–577, doi:10.1109/TSMCC.2006.874022.

14. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Schiele, G.; Becker, C. A survey on engineering approaches for self-adaptive systems.
Pervasive Mob. Comput. 2015, 17, 184–206, doi: 10.1016/j.pmcj.2014.09.009.

15. Wang, L.; Adamson, G.; Holm, M.; Moore, P. A review of function blocks for process planning and control of manufacturing
equipment. J. Manuf. Syst. 2012, 31, 269–279, doi: 10.1016/j.jmsy.2012.02.004.

16. Nouri, H. Development of a comprehensive model and BFO algorithm for a dynamic cellular manufacturing system. Appl.
Math. Model. 2016, 40, 1514–1531, doi: 10.1016/j.apm.2015.09.004.

17. Urban, T.L.; Chiang, W.-C. Designing energy-efficient serial production lines: The unpaced synchronous line-balancing
problem. Eur. J. Oper. Res. 2016, 248, 789–801, doi: 10.1016/j.ejor.2015.07.015.

18. Legat, C.; Vogel-Heuser, B. A Multi-agent architecture for compensating unforeseen failures on field control level. In Service
Orientation in Holonic and Multi-Agent Manufacturing and Robotics. Studies in Computational Intelligence; Borangiu, T., Trentesaux,
D., Thomas, A., Eds.; Springer: Cham, Switzerland, 2014; Volume 544, pp. 195–208, doi:10.1007/978-3-319-04735-5_13.

19. Ribeiro, L.; Barata, J.; Onori, M.; Hoos, J. Industrial agents for the fast deployment of evolvable assembly systems. In Industrial
Agents; Leitão, P., Karnouskos, S., Eds.; Morgan Kaufmann: Boston, MA, USA, 2015; pp. 301–322, ISBN 9780128003411,
doi:10.1016/B978-0-12-800341-1.00017-6.

20. Rocha, A.; Di Orio, G.; Barata, J.; Antzoulatos, N.; Castro, E.; Scrimieri, D.; Ratchev, S. An agent based framework to support
plug and produce. In Proceedings of the 2014 12th IEEE International Conference on Industrial Informatics (INDIN 2014), Porto
Alegre, Brazil, 27–30 July 2014; pp. 504–510, doi:10.1109/INDIN.2014.6945565.

21. Botygin, I.A.; Tartakovsky, V.A. The development and simulation research of load balancing algorithm in network infra-
structures. In Proceedings of the 2014 International Conference on Mechanical Engineering, Automation and Control Systems
(MEACS 2014), Tomsk, Russia, 16–18 October 2014; pp. 1–5, doi:10.1109/MEACS.2014.6986904.

22. Guo, L.; Wang, B.; Wang, W. Research of energy-efficiency algorithm based on on-demand load balancing for wireless sensor
networks. In Proceedings of the 2009 International Conference on Test and Measurement, Hong Kong, China, 5–6 December
2009; pp. 22–26, doi:10.1109/ICTM.2009.5413071.

23. Merz, M.; Frank, T.; Vogel-Heuser, B. Dynamic redeployment of control software in distributed industrial automation systems
during runtime. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012),
Seoul, South Korea, 20–24 August 2012; pp. 863–868, doi:10.1109/CoASE.2012.6386445.

24. Streit, A.; Rösch, S.; Vogel-Heuser, B. Redeployment of control software during runtime for modular automation systems taking
real-time and distributed I/O into consideration. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA 2014), Barcelona, Spain, 16–19 September 2014; pp. 1–4, doi:10.1109/ETFA.2014.7005263.

25. Salazar, L.A.C.; Mayer, F.; Schütz, D.; Vogel-Heuser, B. Platform independent multi-agent system for robust networks of
production systems. IFAC PapersOnLine 2018, 51, 1261–1268, doi: 10.1016/j.ifacol.2018.08.359.

Appl. Sci. 2021, 11, 2319 26 of 27

26. Priego, R.; Iriondo, N.; Gangoiti, U.; Marcos, M. Agent Based Middleware Architecture for Reconfigurable Manufacturing
Systems. Int. J. Adv. Manuf. Technol. 2017, 92, 1579–1590, doi:10.1007/s00170-017-0154-z.

27. International Electrotechnical Commission. Smart Manufacturing—Reference Architecture Model Industry 4.0 (RAMI4.0); IEC
Standard PAS 63088: 2017(E). Available online: https://webstore.iec.ch/publication/30082 (accessed on 3 February 2021).

28. Wang, H. Dynamic Fault Handling and Reconfiguration for Industrial Automation Systems. Available online:
https://www.ias.uni-
stuttgart.de/dokumente/publikationen/2019_Dynamic_Fault_Handling_and_Reconfiguration_for_Industrial_Automation_Sys
tems.pdf (accessed on 3 February 2021).

29. Lyu, G.; Fazlirad, A.; Brennan, R.W. Multi-agent modeling of cyber-physical systems for IEC 61499 based distributed
automation. Procedia Manuf. 2020, 51, 1200–1206, doi: 10.1016/j.promfg.2020.10.168.

30. Fraile, F.; Sanchis, R.; Poler, R.; Ortiz, A. Reference models for digital manufacturing platforms. Appl. Sci. 2019, 9, 4433,
doi:10.3390/app9204433.

31. Cavalieri, S.; Salafia, M.G. Insights into mapping solutions based on OPC UA information model applied to the industry 4.0
asset administration shell. Computers 2020, 9, 28, doi:10.3390/computers9020028.

32. Cavalieri, S.; Giuseppe, M.G. Asset administration shell for PLC representation based on IEC 61131-3. IEEE Access 2020, 8,
142606–142621, doi:10.1109/ACCESS.2020.3013890.

33. Glossary. Available online: https://www.plattform-
i40.de/SiteGlobals/PI40/Forms/Listen/Glossar/EN/Glossary_Formular.html?queryResultId=null&pageNo=0&resourceId=1081
500&pageLocale=en&input_=1081494&titlePrefix=Alle (accessed on 13 February 2021).

34. International Electrotechnical Commission. IEC 61131–3:2013 Programmable Controllers—Part 3: Programming Languages.
Available online: https://webstore.iec.ch/publication/4552 (accessed on 3 February 2021).

35. The Structure of the Administration Shell: Trilateral Perspectives from France, Italy and Germany. Available online:
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-
coop.pdf?__blob=publicationFile&v=4 (accessed on 25 February 2021).

36. Booch, G.; Rumbaugh, J.; Jacobson, I. The Unified Modeling Language User Guide, 2nd ed.; Addison-Wesley Professional: Boston,
MA, USA, 2015; ISBN 0321267974.

37. Estevez, E.; Marcos, M.; Gangoiti, U.; Orive, D. A Tool Integration Framework for Industrial Distributed Control Systems. In
Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 8373–8378,
doi:10.1109/CDC.2005.1583518.

38. Hästbacka, D.; Vepsäläinen, T.; Kuikka, S. Model-driven development of industrial process control applications. J. Syst. Softw.
2011, 84, 1100–1113, doi: 10.1016/j.jss.2011.01.063.

39. Thramboulidis, K.; Frey, G. Towards a model-driven IEC 61131-based development process in industrial automation. J. Softw.
Eng. Appl. 2011, 4, 217–226, doi:10.4236/jsea.2011.44024.

40. Vyatkin, V.; Hanisch, H.-M.; Pang, C.; Yang, C.-H. Closed-loop modeling in future automation system engineering and
validation. IEEE Trans. Syst. Part. C 2009, 39, 17–28, doi:10.1109/TSMCC.2008.2005785.

41. SysML. The SysML Specification. Available online: http://www.sysml.org (accessed on 3 February 2021).
42. Schütz, D.; Obermeier, M.; Vogel-heuser, B. SysML-based approach for automation software development—Explorative

usability evaluation of the provided notation. In Design, User Experience, and Usability. Web, Mobile, and Product Design. DUXU
2013. Lecture Notes in Computer Science; Marcus, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8015, pp. 568–574,
doi:10.1007/978-3-642-39253-5_63.

43. Fay, A.; Vogel-Heuser, B.; Frank, T.; Eckert, K.; Hadlich, T.; Diedrich, C. Enhancing a model-based engineering approach for
distributed manufacturing automation systems with characteristics and design patterns. J. Syst. Softw. 2015, 101, 221–235, doi:
10.1016/j.jss.2014.12.028.

44. Wehrmeister, M.A.; de Freitas, E.P.; Binotto, A.P.D.; Pereira, C.E. Combining aspects and object-orientation in model-driven
engineering for distributed industrial mechatronics systems. Mechatronics 2014, 24, 844–865, doi:
10.1016/j.mechatronics.2013.12.008.

45. Marcos, M.; Estevez, E.; Perez, F.; Van der Wal, E. XML exchange of control programs. IEEE Ind. Electron. Mag. 2009, 3, 32–35,
doi:10.1109/MIE.2009.934794.

46. Van der Wal, E. PLCopen. IEEE Ind. Electron. Mag. 2009, 3, 25–25, doi:10.1109/MIE.2009.934799.
47. Thramboulidis, K. The 3+1 SysML view-model in model integrated mechatronics. J. Softw. Eng. Appl. 2010, 3, 109–118,

doi:10.4236/jsea.2010.32014.
48. Priego, R.; Armentia, A.; Estévez, E.; Marcos, M. Modeling techniques as applied to generating tool-independent automation

projects. Automatisierungstechnik 2016, 64, 325–340, doi:10.1515/auto-2015-0072.
49. Vogel-Heuser, B.; Schütz, D.; Frank, T.; Legat, C. Model-driven engineering of Manufacturing Automation Software Projects—

A SysML-based approach. Mechatronics 2014, 24, 883–897, doi: 10.1016/j.mechatronics.2014.05.003.
50. Institute of Automation and Information Systems. Functional Application Design for Distributed Automation Systems (FAVA).

Available online: https://www.ais.mw.tum.de/en/research/ (accessed on 3 February 2021).
51. Vogel-Heuser, B.; Rösch, S. Integrated modeling of complex production automation systems to increase dependability. In Risk—

A Multidisciplinary Introduction; Klüppelberg, C.; Straub, D.; Welpe, I., Eds.; Springer, Cham, Switzerland, 2014; pp. 363–385,
doi:10.1007/978-3-319-04486-6.

Appl. Sci. 2021, 11, 2319 27 of 27

52. Cândido, G.; Colombo, A.W.; Barata, J.; Jammes, F. Service-oriented infrastructure to support the deployment of evolvable
production systems. IEEE T. Ind. Inform. 2011, 7, 759–767, doi:10.1109/TII.2011.2166779.

53. Legat, C.; Schütz, D.; Vogel-Heuser, B. Automatic generation of field control strategies for supporting (re-)engineering of
manufacturing systems. J. Intell. Manuf. 2014, 25, 1101–1111, doi:10.1007/s10845-013-0744-z.

54. Selic, B. The pragmatics of model-driven development. IEEE Softw. 2003, 20, 19–25, doi:10.1109/MS.2003.1231146.
55. Binder, C.; Neureiter, C.; Lastro, G. Towards a MDA process for developing industry 4.0 applications. Int. J. Model. Opt. 2019,

9, 1–6, doi:10.7763/IJMO.2019.V9.674.
56. Lüder, A.; Estévez, E.; Hundt, L.; Marcos, M. Automatic transformation of logic models within engineering of embedded

mechatronical units. Int. J. Adv. Manuf. Technol. 2011, 54, 1077–1089, doi:10.1007/s00170-010-3010-y.
57. AutomationML. Available online: http://www.automationml.org/ (accessed on 3 February 2021).
58. Schmidt, D.C. Guest editor’s introduction: Model-driven engineering. Computer 2006, 39, 25–31, doi:10.1109/MC.2006.58.
59. Estévez, E.; Marcos, M. Model-based validation of industrial control systems. IEEE Trans. Ind. Inform. 2012, 8, 302–310,

doi:10.1109/TII.2011.2174248.
60. Fedai, M.; Drath, R. CAEX—A neutral data exchange format for engineering data. ATP Int. Autom. Technol. 2005, 1, 43–51.
61. Hergenhahn, T. LIBNODAVE—Exchange Data with Siemens PLCs. Available online: http://libnodave.sourceforge.net/

(accessed on 3 February 2021).
62. Heiser, D.; Croes, M.; Schlameuß, R. S7netplus. Available online: https://github.com/S7NetPlus/s7netplus (accessed on 11

January 2021).
63. Beckhoff. Automation Device Specification (ADS). Available online:

https://infosys.beckhoff.com/english.php?content=../content/1033/tcadscommon/html/tcadscommon_intro.htm&id= (accessed
on 3 February 2021).

