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Abstract: In this work, we put forward a prescription of achieving spin selective electron transfer
by means of light irradiation through a tight-binding (TB) magnetic chain whose site energies are
modulated in the form of well known Aubry–Andre–Harper (AAH) model. The interaction of
itinerant electrons with local magnetic moments in the magnetic system provides a misalignment
between up and down spin channels which leads to a finite spin polarization (SP) upon locating
the Fermi energy in a suitable energy zone. Both the energy channels are significantly affected
by the irradiation which is directly reflected in degree of spin polarization as well as in its phase.
We include the irradiation effect through Floquet ansatz and compute spin polarization coefficient
by evaluating transmission probabilities using Green’s function prescription. Our analysis can be
utilized to investigate spin dependent transport phenomena in any driven magnetic system with
quasiperiodic modulations.

Keywords: spin polarization; magnetic chain with AAH modulation; light irradiation

1. Introduction

“Spintronics” has been an emerging field of research during the last two decades
which involves manipulation of electron spin along with its charge [1–10]. Unlike conven-
tional electronic devices, where spin degree of freedom is neglected, spin based ones are
much superior in the context of functionalities, new applications, operations and power
consumption. Nowadays, spintronics can be applied almost everywhere, from data storage
to robotics, speed control and navigation, designing of single as well as parallel logic gates,
computer and mobile games and precise detection of defective cells, to name only a few.
For most of these functionalities, spin injection across an interface is one of the important
prerequisites. However, the fact is that the injection efficiency is remarkably low in most of
the cases [11,12]. Though the efficiency can be improved by some mechanisms, still it is
far away from the desired limit. One possible route to circumvent this issue is the use of a
“spin filter” [13–20].

The basic concept to have filtration effect or in a more simple way to say to get
polarized spin current from a completely unpolarized one, relies on the misalignment of
up and down spin channels. That can be made possible by considering any kind of spin
dependent scattering factor. One of the most common scattering mechanisms is associated
with spin-orbit (SO) coupling [21–31]. In usual solid state materials SO coupling gets two
different functional forms, known as Rashba [32] and Dresselhaus [33] SO couplings. The
first one is involved with asymmetry in confining potential and hence can be regulated
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externally, whereas the other one is associated with the bulk inversion asymmetry of
the material and its strength cannot be monitored. Different SO coupled systems like
molecules, semiconducting materials, tailor made systems etc., with two-, three- and
even multi-terminal junction configurations have been taken into account to explore the
characteristics of polarized currents [34–47]. For all these cases, especially for molecular
systems the key limitation is that the SO coupling is too weak [48]. Because of this fact,
large mismatch among the two spin channels is not possible which prohibits to have higher
SP in a reasonable bias window.

On the other hand, due to the existence of large spin dependent scattering, magnetic
materials exhibit high degree of SP compared to the SO coupled ones. Most commonly
ferromagnetic (FM) materials [49,50] are used, though nowadays attention has also been
paid in different kinds of antiferromagnetic (AFM) materials [51–56] for spin filtration.
For efficient functioning, tuning of spin polarized current is extremely crucial and that is
usually done by applying a magnetic field. However, it has several limitations especially for
small size systems where confining a magnetic field is a challenging task. To eliminate this
prescription some alternative proposals have been put forward by a few groups, including
us. Placing the functional element within a suitable gate electrode, the degree of SP and
its phase can be tuned selectively, and the gate controlled transport phenomena have also
been discussed in some other contexts.

In the present work we follow a different scheme, probably not explored so far in
literature, where SP is engineered by means of light irradiation [57–63]. To substantiate
this fact we consider a one-dimensional (1D) FM system which is irradiated by an arbitrary
polarized light (see Figure 1). Each site of the magnetic chain is associated with a local
magnetic moment that interacts with the injected electron spin [64–69]. Because of this,
interaction electrons get scattered. The up and down spin energy channels are largely
modified due to irradiation as it renormalizes the hopping strength, and this fact is directly
reflected into the transport behavior. To make the system more realistic we introduce disor-
der in the proposed model. Instead of “uncorrelated” disorder, we consider a “correlated”
one in the form of Aubry–Andre–Harper model [70–77] since the later one exhibits several
atypical signatures. Both diagonal, off-diagonal and generalized AAH systems have been
extensively studied in literature exploiting several unusual phenomena, especially along
the line of electronic localization, due to unique and diverse characteristic features of AAH
models, and here in our present work we concentrate only on diagonal AAH system as a
first attempt and discuss the interplay between the AAH potential and irradiation on spin
selective electron transmission.

Figure 1. Spin polarized setup where a one-dimensional magnetic chain is coupled to non-magnetic
source and drain electrodes. The magnetic chain is subjected to light irradiation which controls spin
transfer through the junction.

Describing the quantum system within a tight-binding framework where irradiation
effect is incorporated via the usual Floquet prescription [59,60], we determine spin depen-
dent transmission probabilities following the Green’s function formalism [78–82]. Using
the transmission probabilities, we evaluate spin polarization coefficient. From the results,
we find that the degree along with the phase of SP can be tuned in a wide range by means
of irradiation. Several interesting features are emerged and our results might be useful in
designing spin based electronic devices in near future.

The rest of the work is arranged as follows: In Section 2 we illustrate the spin polarized
setup and TB Hamiltonian, and then give an outline of theoretical prescription for studying
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spin dependent transport phenomena. All the results are presented and critically analyzed
in Section 3. Finally, we summarize our essential findings in Section 4.

2. Magnetic Junction, TB Hamiltonian and Theoretical Formulation
2.1. Junction Setup and the Hamiltonian

Let us begin with the spin polarized setup, shown in Figure 1, where a magnetic
chain having N lattice sites (filled red balls) is clamped between two non-magnetic (NM)
electrodes, commonly referred as source (S) and drain (D). Each site of the magnetic chain
contains a finite magnetic moment which interacts with the injected spin σ (σ =↑, ↓). The
magnetic chain is subjected to light irradiation (yellow arrows) that plays the central role
for engineering spin polarization in our analysis.

The Hamiltonian of the magnetic nanojunction can be written as

H = Hmag + HS + HD + Htun (1)

where different sub-Hamiltonians are associated with different parts of the junction. We
describe explicitly all these terms one by one in TB framework as follows.

The sub-Hamiltonian Hmag reads as

Hmag = ∑
i

c†
i

(
εi −~hi.~σ

)
ci + ∑

i

(
c†

i+1 t̃ci + h.c.
)

(2)

where c†
i =

(
c†

i↑ c†
i↓

)
. c†

iσ (ciσ) is the usual fermionic creation (annihilation) operator.
εi = diag(εi↑, εi↓) where εiσ represents the site energy. In the presence of AAH modulation,
the site energies are expressed as [71–73] εi↑ = εi↓ = W cos(2πbi + φν), where W measures
the strength of the cosine modulation, b is an irrational number and φν is the AAH phase
factor. In our calculations, we set b = (1 +

√
5)/2 without loss of any generality. With

a suitable setup, one can regulate the phase factor φν, and here we discuss its effect on
SP. The term ~hi.~σ is responsible for spin dependent scattering [64–69], where ~hi is the
spin-flip scattering factor and~σ denotes the Pauli spin vector. It is a well known scattering
phenomenon and has been elaborately studied in literature (see Refs. [64–69], and the
references therein). The strength hi is usually very large and in some cases it becomes
an order of magnitude higher than the SO coupling [64]. Because of this fact, we get
large mismatch between the two spin channels. The orientation of the spin flip vector is
described by the conventional polar and azimuthal angles, θi and ϕi, respectively. Here, it is
relevant to note that, in the present formulation we ignore the effect of interaction among the
neighboring magnetic moments. It is well established that the moment–moment interaction
can be expreesed as an effective Zeeman like term which represents the interaction of
localized magnetic moments with an effective B-field (commonly referred as the “molecular
field”). Compared to the interaction of itinerant electrons with local moments, as the
Zeeman coupling is too weak, due to the existance of the factor µB, no appreciable change
is expected in SP even when the magnetic field is too high.

The rest part of Hmag is associated with the hopping of an electron from one site to its
neighboring sites. t̃ = diag(t̃, t̃). In the presence of light irradiation, the nearest-neighbor
hopping (NNH) strength t gets renormalized and it takes the form [59,60]

t̃ = t
1
T

T∫
0

ej(p−q)Ωτe~A.~a dτ

= tJ(p−q)(Λ) (3)

where J(p−q) is the (p− q)th order Bessel function of the first kind.
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To include the effect of irradiation we follow the Floquet ansatz. Within the mini-
mal coupling scheme the irradiation can be simplified through a vector potential ~A(τ)
like [59,60]

~A(τ) =
{

Ax sin(Ωτ), Ay sin(Ωτ + φ)
}

(4)

where Ax and Ay represent the amplitudes and φ corresponds to the phase. Depending
on these parameters we get linear, elliptical and circularly polarized lights. The vector
potential satisfies the relation ~A(T + τ) = ~A(τ) where T (=2π/Ω) is the time period of
the driving field. ~a is the lattice vector and j =

√
−1. As we are working with a strictly

1D system, Λ simplifies to Λ = Axa, and, Ay and φ do not have any explicit roles in
our analysis.

The other three sub-Hamiltonians of Equation (1) can be written in a much simpler
way as they do not include any kind of magnetic interaction and irradiation. They are
expressed as:

HS = ∑
i≤−1

a†
i ε0ai + ∑

i≤−1

(
a†

i+1t0ai + h.c.
)

(5)

HD = ∑
i≥N+1

b†
i ε0bi + ∑

i≥N+1

(
b†

i+1t0bi + h.c.
)

(6)

Htun = c†
1tSa−1 + c†

NtDbN+1 + h.c. (7)

where ai and bi are of the similar form like ci, and they contain usual fermionic creation
and annihilation operators. The electrodes S and D are parametrized by on-site energy ε0
and t0, respectively. The parameters tS and tD represent the coupling strengths of S and D
with the magnetic chain, respectively.

2.2. Theoretical Formulation

The spin polarization coefficient of the above Hamiltonian (Equation (1)) is obtained
by determining the spin dependent transmission probabilities which we compute by using
Green’s function formalism where the effects of S and D are incorporated through self-
energy corrections. For comprehensive analysis of this formalism, we recommend the
general readers to see the Refs. [78,79]. The effective Green’s function of the magnetic chain
reads as [78,79]

Gr = (Ga)† =
(
EI − Hmag − ΣS − ΣD

)−1 (8)

where E is the energy of the incoming electron from the source end and I is the identity
matrix having dimension (2N× 2N). ΣS and ΣD are the self-energy matrices of the S and D,
respectively. From this Green’s function, we determine the transmission probabilities using
the Fisher–Lee expression [78–82]

Tσσ′ = Tr
[
Γσ

SGrΓσ′
D Ga

]
(9)

where Γσ
S and Γσ′

D are the coupling matrices. These coupling matrices are found from the
self-energy matrices via the relations

Γσ(σ′)
S(D)

= i
[

Σσ(σ′)
S(D)
−
(

Σσ(σ′)
S(D)

)†
]

. (10)

Using Equation (9) we get both pure (σ = σ′) and spin flip (σ 6= σ′) transmissions
through the magnetic junction. With these co-efficients we get the net up and down spin
transmission probabilities as

T↑ = T↑↑ + T↓↑, (11)

T↓ = T↓↓ + T↑↓. (12)
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Determining T↑ and T↓, we evaluate the spin polarization coefficient P with the
relation [83–87]

P =
T↑ − T↓
T↑ + T↓

. (13)

P = ±1 represents complete up (down) spin polarization, while P = 0 denotes
vanishing polarization.

3. Numerical Results and Discussion

Based on the above theoretical framework now we present the results. Our primary
goal is to achieve a high degree of spin polarization and tuning its phase by means of
irradiation. All the results are worked out in the high frequency limit which is defined as
h̄Ω >> t, and in this limiting condition only the lowest order Floquet band, i.e., p = q = 0
contributes. For the chosen parameter values, the frequency becomes Ω ≥ 1015 Hz which
denotes the far-infrared (FIR) region. The intensity of the irradiation is of the order of
107 W/m2 which is within the experimental limit. The corresponding electric (E ) and
magnetic (B = E/c) fields are 105 V/m and 10−4 Tesla, respectively.

The other common set of parameter values that we choose for our calculations are as
follows. In the electrodes S and D we take ε0 = 0 and t0 = 2 eV, and they are coupled to
the magnetic chain via the coupling strengths tS = tD = 1 eV. In the magnetic chain we
choose t = 1 eV, AAH modulation strength W = 1 eV, spin flip parameter hi = 1 eV ∀ i,
ϕi = 0 ∀ i. Unless specified, we fix the total number of sites in the magnetic chain N = 30.
The parameter values those are not constant are given in the appropriate places, and all
the other energies are also measured in unit of eV. Throughout the calculations we restrict
ourselves in the zero temperature limit. This is a realistic approximation as long as the
average energy level spacing is higher than the thermal energy, and for small scale systems
(even for N < 200) this condition can be easily achieved. It is also important to note that
one cannot increase the chain length as much as it is possible, since we need to confine
the system size within the spin coherence length. Otherwise no such phenomenon will
be observed.

Let us begin with Figure 2 where spin dependent transmission probabilities Tσ along
with spin polarization co-efficient P are shown as a function of energy E for some specific
values of Ax. Several key features are emerged those are analyzed as follows. At a first
glance we see that the transmission spectrum is highly fragmented and gapped in nature.
This is solely due to the cosine modulation in site energies, as gapped energy spectrum is
the generic feature of an AAH system. The transmission spectrum is a direct manifestation
of the energy values. Unlike the perfect magnetic chain where energy spectrum is not
gapped, for the AAH case we have a finite probability to get non-zero spin polarization
at different energy zones. More importantly, even near the energy band centre we can
get a reasonably large spin polarization. This feature is always desirable since one can
easily place the Fermi level close to the central region, apart from placing it near the energy
band edges. The role of irradiation is of course fascinating. For Ax = 0, a finite overlap
between up and down spin transmission probabilities takes place, following the up and
down spin energy channels, for a broad energy region. Therefore, for these energy zones
spin polarization becomes too small. Whereas, the transmission spectra start to get shifted
with Ax and they are almost separated for higher Ax, which is clearly visible by comparing
the spectra given in the left column of Figure 2.

The shifting of transmission probabilities with Ax is entirely due to the modification
of energy eigenvalues of the magnetic chain, since the NNH strength gets renormalized in
presence of the irradiation (see Equation (3)). As effective hopping decreases compared
to the irradiation free case, we get reduced allowed energy windows for up and down
spin electrons, and thus the transmission spectra. All the characteristic features are directly
reflected in the P-E spectra (see right column of Figure 2). Almost 100% spin polarization
can be achieved for the entire allowed energy zones by suitably adjusting the irradiation
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parameter. It gives a clear signature of achieving externally controlled spin polarization
through a magnetic nanojunction.
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Figure 2. Up and down spin transmission probabilities (T↑ → light green color and T↓ → black color)
and spin polarization coefficient P as a function of energy E at four typical values of Ax. Here we set
θi = 0 ∀ i and AAH phase φν = 0.

The above analysis gives rise to a very fundamental question that how the spin
polarization can vary if we tune Ax continuously, instead of fixing it at some typical values.
To demonstrate it, in Figure 3 we show the dependence of P as a function of Ax by varying
it in a wide range. The results are presented for two distinct energies, E = −1 eV and 1 eV.
Both for these two energies, P shows a large oscillation with increasing amplitude for lower
Ax, and eventually saturates exhibiting 100% polarization for higher Ax. At E = −1 eV
or 1 eV, there is a finite overlap between the two transmission functions when Ax = 0 and
thus P becomes very small. The spectral properties and thus the transmission spectra get
modified with the alteration of Ax. However, the fact is that the NNH strength t does not
monotonically decrease with Ax as it follows the zeroth order Bessel function of the first
kind (see Equation (3)). Due to this reason, in some cases we get finite overlap between
T↑ and T↓ which yields lesser P. On the other hand when the overlap is less, higher P is
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achieved. This is the underlying mechanism to have oscillatory behavior of P with Ax. For
large Ax, when T↑ and T↓ are practically separated we get the maximum SP. Depending on
the dominating factor among T↑ and T↓, we get either 100% up or down spin polarization.
These results clearly justify that the degree of SP can be tuned in a wide range by regulating
Ax, without altering any other physical parameters describing the system.

HaL E=-1

0 0.25 0.5 0.75 1

-0.5

0

0.5

1

Ax

P

HbL E=1

0 0.25 0.5 0.75 1

0.5

0

-0.5

-1

Ax

P

Figure 3. P-Ax characteristics at two distinct energies. All the other physical parameters kept
unchanged as taken in Figure 2.

The results discussed so far are computed for the magnetic chain where all the mag-
netic moments are aligned along +Z direction i.e., θ = 0 (we refer θi = θ as we assume
that all the moments are aligned in a particular direction). For θ = 0, there is no spin
flipping i.e., T↑↓ = T↓↑ = 0, since in this case σx and σy do not involve into the TB
Hamiltonian Equation (2) and it becomes exactly diagonal. However, finite spin flipping
occurs as long as the moments are aligned in a particular direction with respect to +Z
axis, and to reveal the θ dependence on SP, in Figure 4, we present P-θ characteristics
by changing θ in a wide range, for two different values of Ax, considering the identical
energy values as taken in Figure 3. Both for the orange and black curves, associated with
Ax = 0.5 and 1 respectively, the spin polarization co-efficient shows a complete phase
reversal under rotating the magnetic moments. For the two typical values of θ, SP drops
exactly to zero, as expected. With the change of θ spectral behavior gets changed and hence
the SP. Thus, the alignment of the magnetic moments has an important role in SP.

To explore the explicit dependance of SP on both θ and Ax, in Figure 5, we present a
density plot of P by varying these factors in a broad range fixing the energies at some spe-
cific values. From these spectra we get a clear hint about the range of physical parameters
for which large degree of spin polarization can be obtained for this magnetic junction. The
phase reversal is also clearly noticed.

Now we focus our attention to examine the critical role played by the AAH phase φν on
spin selective electron transfer. In Figure 6, we present the variation of spin polarization co-
efficient as a function of φν for two distinct energies. The orange curve is for E = −0.75 eV,
while the other one is for E = 0.75 eV. A reasonably large change is reflected from both
these two curves. Regulating φν, that can be done externally, we can change the available
energy channels between the electrodes as the effective site energies of the magnetic chain
are modified, and therefore, the degree of spin polarization can be tuned. Thus, along with
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the irradiation parameter, the AAH phase can also be considered as a suitable parameter
for regulating the spin transfer.

To have a more clear picture and to understand precisely the interplay between the
light parameter and the AAH phase, in Figure 7, we present a density plot of SP by varying
simultaneously Ax and φν in a broad range. Some typical energies are selected like what
we consider in Figure 5. Quite interestingly we find that, the degree of SP and its sign
can be monitored selectively by adjusting Ax and φν. The phenomenon persists for a
wide range of these parameters which suggests that extremely fine tuning is no longer
required. It certainly gives us a confidence that the present findings can be tested in a
suitable laboratory setup.
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0

0.5

1

Θ

P

Figure 4. P as a function of θ (θi = θ ∀ i) at two different energies, where the orange and black lines
correspond to Ax = 0.5 and 1, respectively. The AAH phase φν = 0.
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Figure 5. Simultaneous variation (density plot) of P with θ (θi = θ ∀ i) and Ax at some specific values
of energy. The AAH phase φν = 0.
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Figure 6. Spin polarization co-efficient P as a function of φν at two typical energies, where the orange
and black curves are for E = −0.75 eV and E = 0.75 eV, respectively. Here, we consider Ax = 0.75
and θi = 0 ∀ i.
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Figure 7. Simultaneous variation (density plot) of P with AAH phase φν and light parameter Ax at
some specific energies. Here we set θi = 0 ∀ i.

Finally, keeping in mind the possible experimental realization of our prescription it is
indeed required to investigate the effect of system size on spin dependent transmission
probabilities and the spin polarization co-efficient. To explore it, in Figure 8, we show the
dependence of these physical quantities on system size N by varying it in a wide range at
two typical energies. For both of these energies, Tσ and P exhibit large amplitude oscillation
with N. This is solely due to the effect of quantum interference among electronic waves,
and can be observed for other energies as well, which we confirm through our detailed
numerics. The crucial thing is that the oscillating nature persists even for a reasonably large
system size, and therefore, we can safely verify our proposal in a suitable laboratory setup.
In this context it is relevant to note that similar kind of oscillation in transport quantities by
varying system size has also been reported in different contemporary works, and for the
ordered systems it can be tested even analytically [65,88,89].
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Figure 8. Spin dependent transmission probabilities (T↑ → light green color and T↑ → black color)
and corresponding spin polarization co-efficient P as a function of system size N at two typical
energies. Here we set Ax = 0.25, φν = 0 and θi = 0 ∀ i.

4. Closing Remarks

A possible route of engineering spin polarization by means of light irradiation is pro-
posed considering a tight-binding magnetic chain with cosine modulation in site energies.
Each site of the magnetic system possesses a finite magnetic moment which interacts with
the itinerent electrons. Because of this interaction, up and down spin channels get mis-
aligned. Simulating the nanojunction, formed by placing the magnetic chain between two
non-magnetic contacts, within a tight-binding framework, we determine spin dependent
transmission probabilities using the Green’s function formalism. From the transmission
function we evaluate spin polarization co-efficient. The interplay between the irradiation,
included into the Hamiltonian following the standard Floquet prescription, and the AAH
potential has an important role and we investigate it critically on SP. Apart from achieving
a high degree of spin polarization we can also selectively tune its phase with the help of
irradiation. The peculiar gapped nature of up and down spin energy channels in pres-
ence of cosine modulation allows us to get higher filtration efficiency at multiple energy
zones, and most importantly, it is also possible near the energy band centre together with
other energy regions. Our analysis can be utilized to investigate spin dependent transport
phenomena in different driven magnetic systems with correlated impurities.
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