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Abstract: The anthropogenic pollution of lake ecosystems by human activities (e.g., mining industries)
is recognized as a serious issue. The Osisko urban lake located in Rouyn-Noranda (Quebec, Canada)
was used partially as a waste disposal facility for many decades, causing a heavy pollution. The
main undertakings of this study are (i) assessing the mineralogical and geochemical properties
of lake Osisko sediments, and (ii) studying the pollution that occurred within lake water due to
the sediments’ reactivity. Water and sediments across the lake were collected in different sensitive
locations. Within the sediment samples, two parts were distinguished: a small layer of black vase
over grey sediments. The black vase resembled organic matter while the gray sediment seemed close
to clean lake sediments. The collected samples were characterized for their physical (particle size
distribution, specific gravity and specific surface area), chemical (minor and major elements as well
as total sulfur and carbon) and mineralogical (X-ray diffraction and scanning electron microscope)
properties. Additionally, the reactivity of sediments was studied using weathering cells to quantify
chemical species leaching and their releasing rates. The results showed that the vase was the only
contaminated part with high concentrations of sulfur and metals such as copper, zinc and iron.
Geochemical data showed that the composite sample and the vase potentially cause contaminated
acid drainage if they are exposed to atmospheric conditions. Indeed, the pH values of the leachates
from both samples were between 4 and 6, while those corresponding to sediments remained around
circumneutral values. Quantitatively, the contaminant release from the tested samples was variable.
Indeed, the Fe cumulative concentrations were around 200, 80 and 20 mg/kg for the vase, composite
and sediment samples, respectively. Similarly, the Zn cumulative concentrations were around 4500,
4200, and below the detection limit for vase, composite and sediment samples, respectively. The
same tendency was observed for Cu, S, and Fe. Thus, sediments within Osisko lake present a risk for
water contamination if they are resuspended or dredged out of the lake. Consequently, they should
be stabilized before their disposal. The samples’ high Cu contents also offer the possibility of their
reprocessing.

Keywords: lake sediments; acid mine drainage; sulfide oxidation; stabilization; geochemistry

1. Introduction

Uncontrolled metal(oid)s inputs from various sources, such as industrial, mining,
municipal sewage and agricultural activities, have contributed to the increased pollution
in aquatic ecosystems [1–6]. The metal(oid)s are generally accumulated in the sediments,
which become a source of water pollution. The lake system acts as a receiving body of the
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sediments transported by rivers or wastewaters [7]. The contaminants are spread in water
by the resuspension and reactivity of sediments. Consequently, the chemical quality of lake
water is altered and may present a serious risk for the lake ecosystems [8]. If the toxic levels
are reached, metal(oid)s can affect benthic organisms and can affect human health via the
food chain [4,9–11]. Accordingly, quantifying the environmental impact of lake sediments
on the aquatic environment will help to design the best sediment management strategy to
prevent the contamination of lake ecosystems. The environmental impact of sediments is
greatly influenced by their chemical and mineralogical properties [12]. The reactivity of
sediments is determined by the type of their forming minerals and their concentrations [13].
Additionally, the profiles of pore water and water sediment are often used to determine the
contamination history of an aquatic system [14–16].

In this study, the sediments and the water of Osisko Lake, located in the city of Rouyn-
Noranda (Abitibi-Temiscamingue, Quebec, Canada), were characterized for their chemical
and mineralogical qualities. This lake was used as a deposit for many years [17]. The metals
concentration measured in 1976 are ten times higher than those of an uncontaminated lake.
The pollution being so high led to the disappearance of the aquatic fauna, and bathing
was not recommended [18]. The lake is now mainly metal-contaminated through the
sediments and vase. The metals can be released into the column due to a reworking of the
contaminated sediments, which enhances the eutrophication phenomenon in the lake [19].
Sediments possess a biogeochemical reactivity responsible for the oxidation of organic
matter and/or sulfides [20]. Oxidation reactions may be responsible for the direct and/or
indirect dispersion of contaminants into the underlying soil and aquifers. Thus, sediments
of Osisko Lake require an adequate management plan. One of the most used techniques
for lake sediment management is dredging. The management of these sediments is of
environmental and societal importance, and can also be an economic opportunity. Indeed,
these sediments could contain valuable elements (e.g., Cu-bearing minerals) that can be
efficiently recovered by flotation and/or gravity methods [21,22].

Sediment dredging is planned. It is thus necessary to consider a management scheme
adapted to the collected sediments. Sediment management will depend on the level of
toxicity in the sediments based on the soil protection and contaminated site remediation
policy developed by the Canadian Department of the Environment and Climate Change
(MEL), and their environmental behavior. If the sediments are not polluted, their disposal
in open water is allowed. For slightly contaminated sediments, their discharge into open
water can be done in low volumes. For the medium scale, it is necessary to study the
environmental impact of sediment injection into open water. Finally, for significant amounts
of sediments, land disposal is the most suitable. Heavily contaminated sediment must be
land-disposed. The discharge into open water impacts the quality of the water, the quality
of the receiving sediments and the fauna. The particles are suspended during rejection.
Land disposal can cause contamination of the water system (groundwater runoff, wells
and water intakes) and induces occupation of the territory. Compared to management in
open water discharge, the disposal management costs can be two to five times higher for
good quality sediments, and up to seven times higher for slightly contaminated sediments.
The accurate characterization of sediments is therefore essential in order to determine the
best management method.

The reactivity of the sediments due to the change in physicochemical conditions
must be considered. When the sediments are dredged from the lake, the geochemical
conditions are modified. The sediments are desaturated by evaporation and gravity flow.
The sediments become exposed to oxidizing agents such as oxygen and water. The reduced
phases such as pyrite can then undergo direct or indirect oxidation and thus result in
the release of associated metals. The direct oxidation formula of pyrite is as follows in
Equation (1) [23]:

2FeS2 + 7O2 + 2H2O→ 2Fe2+ + 4SO4
2− + 4H+ (1)
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Many intermediates are actually formed, including, for example, native sulfur (S0),
sulfites (SO3

2−) or thiosalts, which are partially oxidized compounds that are metastable
under aqueous conditions and conditions wherein acid generators are delayed. Taking into
account the oxidation of Fe(II) to Fe(III) and the precipitation of Fe(III), the overall reaction
of the direct oxidation of pyrite can be written as in Equation (2):

FeS2 + 15/4Fe3+ + 7/2H2O→ Fe(OH)3 + 2H2SO4 (2)

The indirect oxidation of pyrite occurs when the pH is sufficiently low (pH < 3),
whereat Fe (III) becomes the main electron acceptor of the reaction (Equation (3)):

FeS2 + 14Fe3+ + 8H2O→ 15Fe2+ + 2SO4
2− + 16H+ (3)

Similarly, the acid generation is then accelerated. The oxidation of chalcopyrite is as
follows (Equations (4) and (5)):

CuFeS2 + 4O2 → Cu2+ + 2SO4
2− + Fe2+ (4)

CuFeS2 + 16Fe3+ +8H2O→ 17Fe2+ + Cu2+ + 2SO4
2− + 16H+ (5)

The acidity produced by sulfide oxidation can be neutralized if carbonates are present
(behaving like pH buffers). The neutralization reaction can be written as follows in
Equation (6):

MCO3 + H+ →M2+ + HCO3
− (6)

Organic compounds are soluble and mobile and their effects on the complexation of
metal elements will promote the sorption of the metals during sediment dredging [24].
Soil organic matter forms complexes with metals by ion exchange, surface adsorption, or
chelation [25]. However, the release of organic matter is influenced by pH variation. Metals
bound to dissolved organic matter can be found in solutions [26].

This study was undertaken with the following objectives: (i) to determine the extent
and levels of the contamination of the sediments of Lake Osisko by physical, chemical
and mineralogical characterization; (ii) to perform a first evaluation of the quality of the
water and sediments; (iii) to carry out leaching tests mimicking the exposure of dredged
sediments to oxidizing agents in order to quantify the sediments’ reactivity.

2. Materials and Methods
2.1. Lake History

As early as 1927, the Horne mine discharged wastewater from the processing plant
and mine waste storage. In 1949, the Quémont and Donalda mines also discharged part
of their waste rock piles drainage into the northern part of the lake. Finally, the lake
received wastewater from both cities. Osisko Lake was then divided into three parts by
dikes in 1972. The northern part received the acidic waters of the mines, the east received
the sewers of the city of Noranda and the south had to be recovered for recreational
purposes. A previous study [27] showed that it is the surface of the sediments (the first
5 cm) that contains the highest concentrations of heavy metals. These first few centimeters
of sediments correspond to a black vase of fine particle size without consistency. The
chemical and mineralogical analysis showed a high content of metals of which 1% was
copper, predominantly as chalcopyrite and bornite. The gray sediments appear naturally,
and are of silt and gray type containing clay minerals. Their metal contents were also found
to be high and could be attributed either to contamination during sampling, or a metal
migration of vase to sediments through the top centimeters. In this lake, most of the trace
elements showed high concentrations, which can potentially affect benthic organisms [27].
The concentrations of trace elements in the surface sediments (0–5 cm) would have changed
very little since the 1970s. These concentrations would also be above the concentration of
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naturally occurring trace elements in the lake. These trace elements (with the exception of
Zn and Se) seem, however, to be not very bioavailable.

2.2. Sampling and Samples Preparation

Sediment and water samples were collected during winter (water glaciation). Sam-
pling locations (Figure 1) were chosen to consider different sectors of the lake. The sampling
was then done across two perpendicular lines close to the shore of the peninsula and the
nearby area of the city, and the hospital. The samples were collected using polyvinyl
chloride (PVC) tubes of 5 cm diameter and 3 m height. After making a hole in the ice with
an ice drill, the tube was driven into the sediment (Figure 2). One or more tubes can be
added to reach the desired depth. A cap closes the top to create suction to keep the samples
inside the tubes when removed. A blackish vase was observed at the interface of the water
column and fine gray sediment. In this way, several types of samples were recovered: cores
ranging from 40 to 60 cm with vase and sediment and with vase only. To retrieve only
the vase, a bin/excavator was used to take only the very first few centimeters of surface
sample. A sample of water from the column was also taken to compare the water in the
column with the pore water. In total, 14 solid samples and a sample of lake water were
collected. Moreover, pore water of the solid samples was also collected by filtration. The
solid samples were collected in hermitically sealed bags and shipped to a laboratory where
they were preserved in a cold room (4 ◦C).

2.3. Methods
2.3.1. Physical and Chemical Characterizations

The particle size distribution of the samples was analyzed using a Malvern Mastersizer
S laser analyzer (0.05 to 880 µm). The specific surface area was measured by micrometrics
implementing the Brunauer–Emmett–Teller (B.E.T) method [28] and the relative density
was measured by a helium pycnometer (AccuPyc 1330, Rouyn-Noranda, QC, Canada).
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Figure 2. Pictures illustrating sample collection during winter, (A) Osisko Lake frozen, (B) driving the
polyvinyl chloride (PVC) tube into the hole made in the ice, (C) PVC tube once retrieved containing
the sample core, and (D) core sample, with black vase on the first few cm.

The total sulfur and carbon were analyzed by an induction furnace (ELTRA CS-2000,
Rouyn-Noranda, QC, Canada) with a detection limit of ±0.09 wt. %. The samples were
pulverized to 74 µm and 130 mg was analyzed by the furnace. The blank samples within
this analysis consisted of a sample containing tungsten and iron. The organic matter was
analyzed by loss on ignition by heating the samples to 375 ◦C for 16 h [29]. The bulk
chemical composition of the solid samples was determined by inductively coupled plasma
atomic emission (ICP-AES, Perkin Elmer 3000 DV, Rouyn-Noranda, QC, Canada) after
a total digestion of the solid samples using HNO3/Br2/Hf/HCl (HF and HCl added to
dissolved silicate, and HNO3 and Br2 to oxidize the sulfur) at the URSTM (Rouyn-Noranda,
QC, Canada). The ICP-AES is calibrated using SY-4 which is an international rock standard.
Moreover, a duplicate was analyzed for each of the six samples [22]. Major elements
contents (Al2O3, CaO, Cr2O3, K2O, MgO, MnO, Na2O, P2O5, Fe2O3, SiO2, TiO2 and LOI)
were analyzed using X-ray fluorescence in the whole rock at SGS (Canada). The detection
limit of X-ray fluorescence (XRF) analysis is 0.1 wt. %. The pH, conductivity and redox
potential, as well as the alkalinity and the acidity and dissolved metals, are measured on
the pore waters after filtration.

The acid generation potential (AP) is a measure of the total acidity that can be gen-
erated by a sample’s oxidation. It is determined for a sample of vase and a sample of
sediment by the following calculation: AP (kgCaCO3/t) = 31.25 × %Ssulfide [30]. Sulfides
are considered to behave like pyrite. The main sources of acid are the oxidation of sulfurous
minerals (especially pyrite and pyrrhotite), the dissolution of acidic salts and the hydrolysis
of metal (Fe, Al).

The neutralization potential (NP) is a measure of the amount of acid that can be
consumed by a sample. It can be determined using chemical or mineralogical tests. The
chemical tests consist of calculating the NP based on total carbonate (NP (kgCaCO3/t) =
83.3 × %Cinorg) and the mineralogical method [31] is based on the classification of minerals
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according to their neutralization capacity. The NP is then the sum of each mineral’s NP
given by its proportion:

NP = (1000 kg/t ÷ 100%) ×MCaCO3 ×∑i=1
n(RiCi ÷Mi) (7)

With Ri being the relative reactivity of the mineral “i”, Ci its concentration (%), Mi its
molar mass and MCaCO3 the molar mass of calcite.

The interpretation of these static tests uses the acid balance and consists of comparing
the AP and the NP in two ways, as follows.

Net neutralization potential (NNP): NNP = neutralization potential (NP) − acid
generation potential (AP)

If NNP < −20 kg CaCO3/t to acidic drainage generator
If NNP > 20 kg CaCO3/t to non-acid drainage generator
Uncertain if NNP between −20 and + 20 kg CaCO3/t

NP/AP ratio (NPR): NPR = NP/AP

If NPR < 1 to acid drainage generator
If NPR > 3 to non-acid drainage generator
Uncertain if NP/AP between 1 and 3

2.3.2. Mineralogical Characterization

The mineralogical composition of the sediments was determined by X-ray diffraction
(XRD) using a Bruker AXS D8 Advance X-ray diffractometer equipped with an anticathode
of Cu. The scans were performed over a diffraction angle (2θ) ranging between 5 and 70◦.
Crystallized mineral species were identified using Diffract Eva software (v.9.0 rel. 2003) and
their quantification was performed by TOPAS software (v 2.2) implementing the Rietveld
method [32]. Additionally, a scanning electron microscope (SEM, SDD X-Max 20 mm2)
was used for the determination of minerals stoichiometries using energy-dispersive X-ray
spectroscopy (EDS).

2.3.3. Environmental Leaching Tests

The leaching procedures were reproduced according to the methodology developed by
Cruz et al. (2005) in order to promote the natural alteration of the sample. [33]. Weathering
cells involves placing 67 g of dry sample on a Buchner polyethylene funnel with a filter at
the bottom in order to retain the sample. Each sample is flushed with 100 mL of deionized
water two times per week, in order to obtain enough leachate for the analysis. The sample
is allowed to react with deionized water for 3 to 4 h under oxidizing condition and then
the leachates are collected for further analysis. The pH, Eh and electrical conductivity (EC)
were analyzed using pH/Eh/EC meters. The chemical composition of the leachates was
analyzed by ICP-AES on filtered (0.45 um) and acidified (2% v/v HNO3) samples.

The leaching tests was performed on a lake sediment sample (number 81,872, sample
point 1), a vase sample (number 81,850, sample point 5) and a composite sample (50%
sediments:50% vase). These three tests allow us to evaluate the reactivity of those materials
separately from each other and mixed. At the end of weathering the cells, the samples were
dismantled and analyzed for their chemical composition and mineralogical properties. The
mineralogical observations post-weathering allow the identification of the mineralogical
changes that occurred during sample weathering (e.g., formation of secondary minerals,
dissolution of primary minerals).

3. Results
3.1. Physical Characteristics

The results of particle size distribution, specific gravity (Gs) and specific surface area
(SSA) are presented in Table 1 and Table S1. The particle size distribution of sediments
belongs to the category of clays or silts according to the unified soil classification system
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(USCS classification [34]). Their D90, which corresponds to 90% passing over the cumulative
particle size distribution curve, varied between 12.83 and 28.04 µm. Their particle size
distributions are within the typical particle size of tailings from copper mines. The specific
gravity of sediments varied between 2.49 and 2.64 g/cm3, while that of vase was around
2.42 g/cm3. The average specific surface area of sediments was 19.85 m2/g and the vase
was characterized by higher SSA (27 m2/g) (Table 1). Specific surface area is inversely
proportional to the grain size of soil. The high average value for the vase (27 m2/g),
which is much higher than the values observed for sulfurous tailings (<2 m2/g), could be
explained by the presence of organic matter.

Table 1. Specific surface area, specific gravity and particle size distribution of studied samples (NA =
not analyzed, SSA = specific surface area).

Parameters Units

Values

Sediment Vase

81,844 81,848 81,838 81,854 81,872 81,874 81,850

SSA m2/g 17.90 17.06 14.86 17.17 26.41 20.54 35.72
Gs g/cc 2.55 2.49 2.52 2.54 2.64 2.33 2.51
D10 (µm) 1.50 1.68 1.44 1.40 1.15 NA NA
D50 (µm) 6.85 7.99 6.73 6.67 3.77 NA NA
D90 (µm) 26.20 25.65 26.53 28.04 12.83 NA NA

3.2. Chemical Characteristics of Pore Waters, Lake Water and Solid Samples
3.2.1. Pore Water and Lake Water

Results of the chemical compositions of sediments and vase pore waters, as well
as lake water (sampled at point 5), are presented in Table 2 and Table S2. The liquid
samples analyzed were mainly composed of Na, Ca, Mg and S. Na concentrations exceeded
19 mg/L, those of S varied between 1.98 and 42 mg/L, and those of Ca ranged between
11 and 36 mg/L. The sediments’ pore water showed near neutral pH values and low ion
contents (electrical conductivity of drinking water). Leachate hardness did not exceed
120 mg CaCO3/L for all the samples except the one at 130 mg CaCO3/L (number 81,852,
sample point 6). Pore water and lake water can thus be classified as soft to moderately
hard, and the water from sample point 6 is classified as hard. In terms of metals such as Zn,
Se, Pb and Cu, their concentrations did not exceed 1 mg/L. Sulfur was detected at variable
concentrations within liquid samples. Its concentrations were higher than 7 mg/L for lake
water and between 2 and 42 mg/L for the sediments and vase pore waters. The chemical
quality of pore water and lake water suggest the low reactivity of sediments and vases in
saturated conditions.
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Table 2. Results of chemical composition of lake water, sediments and vase pore waters (DL = detection limit, n/d = not defined).

Lake
Water Sediment Pore Water Vase Pore Water

Unit 81,830 81,833 81,835 81,837 81,841 81,843 81,847 81,853 81,871 81,873 81,875 81,839 81,845 81,849 81,851

Conductivity µS/cm 265 318 254 190.4 261 164.4 188.6 337 175 250 190.9 193.6 380 306 178
pH - 7.79 8.01 7.84 7.36 7.4 7.56 7.32 7.71 7.72 7.59 7.53 7.55 6.86 7.61 7.61
Eh mV 526 603 476 513 538 513 517 487 494 498 647 518 580 469 512

Alkalinity mgCaCO3/eq 54.24 66.32 74.48 55.92 61.44 68.88 42.88 130.64 54.64 76.16 34.56 38.56 4.48 74.72 35.84
Acidity mgCaCO3/eq 0.64 5.04 2.52 5.24 7.8 3.96 7.04 5.2 1.36 8.36 1.44 0.84 10.04 9.24 0.92

Element DL—mg/L Chemical composition—mg/L

Al 0.01 0.214 0.225 0.242 0.237 0.539 0.343 1.03 0.255 0.151 0.198 0.182 0.079 0.228 0.218 0.208
Si 0.04 0.137 6.61 7.11 10.9 15.4 15.2 18 7.15 2.78 4.35 1.37 2.84 4.89 2.19 0.582
K n/d 1.29 4.76 2.77 1.9 2.18 1.91 1.95 3.06 2.29 2.09 1.43 1.81 1.79 1.94 1.33

Na n/d 24.3 28.1 28 19.6 28.2 19.9 24.5 25 22.9 23.1 26.7 22.7 26.6 33 23.4
Ca 0.03 22.8 49.8 18.9 17.8 14.5 15.4 10.8 36.3 20.6 22.5 19.5 18.1 35 24.3 18.1
Mg 0.001 4.31 7.8 3.82 4.21 2.92 3.38 2.11 7.15 5.01 4.18 3.73 3.45 5.73 4.55 4.01
Mn 0.002 0.005 0.89 0.374 1.03 0.521 0.77 0.276 1.58 0.539 0.774 0.118 0.773 0.728 0.804 0.063
Fe 0.006 <0.006 <0.006 0.05 0.281 0.204 0.113 0.564 0.015 <0.006 0.38 <0.006 0.14 <0.006 <0.006 <0.006
S 0.09 7.67 41.6 13.9 5.65 12.6 1.98 11.7 6.15 9.39 2.67 8.99 9.62 42.1 3.95 8.22

Ba 0.001 0.027 0.047 0.017 0.03 0.025 0.026 0.028 0.05 0.037 0.038 0.036 0.055 0.205 0.04 0.026
Cu 0.003 0.031 0.01 0.008 <0.003 0.021 0.003 0.015 <0.003 <0.003 <0.003 <0.003 <0.003 0.048 <0.003 <0.003
Ni 0.004 0.005 0.009 0.004 <0.004 0.005 <0.004 <0.004 0.006 <0.004 <0.004 <0.004 <0.004 0.052 <0.004 <0.004
Sr n/d 0.072 0.464 0.128 0.071 0.074 0.072 0.04 0.155 0.093 0.081 0.061 0.059 0.122 0.083 0.057
Zn 0.005 0.064 0.03 0.009 0.019 0.03 0.024 0.03 0.047 0.005 0.024 0.068 0.034 7.5 0.016 0.036
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3.2.2. Chemical Characteristics of Sediments and Vase

The total S and C analysis highlighted the presence of sulfide in the vase in addition
to organic matter in considerable quantities (Table 3, Table S3). Loss on ignition confirmed
the presence of organic matter in the vase samples, which presented an average of loss on
ignition (LOI) of 24 wt. % against 7.8 wt. % for sediments (Table 3, Table S4). All the oxides
analyzed are present in a greater quantity in the sediments, except for Fe2O3 and P2O5,
which are respectively at 26.15 wt. % and 1.03 wt. % on average in the vases, compared to
6.62 wt. % and 0.18 wt. % on average in the sediments. The vases are therefore enriched
in iron oxides. The presence of phosphorus oxide at remarkable quantities in the vases
may come from the spillage of fertilizers in lake water. Table 3 and Table S5 present the
ICP-AES result in mg/kg of metal(oid)s contents within solid samples. The solid samples
are enriched in Al, Ca, Fe, Mg, K, Si, and Ti compared to the other elements. All the
analyzed major elements’ concentrations were higher within sediments than in vase except
Fe and S. However, trace elements such as As, Ba, Cd, Co, Mo, Ni, Pb and Zn were more
enriched in the vase. This may be explained by the high capacity of the organic matter
contained in the vase to absorb several metal(oid)s.

Table 3. Inductively coupled plasma atomic emission (ICP-AES), total S and C, and X-ray fluorescence (XRF) results of
sediments and vase samples (DL = detection limit, n/d = not defined and NA = not analyzed).

Methods Elements Unit DL
Sediments Vases

81,838 81,844 81,848 81,854 81,872 81,874 81,850

ICP-AES

Al mg/kg 60.0 76,080 76,430 76,540 76,320 80,800 46,630 38,880
As mg/kg 5.00 106 114 118 151 106 326 334
Ba mg/kg 5.00 540 551 558 566 639 384 270
Ca mg/kg 60.0 17,100 17,430 14,730 28,060 21,450 12,120 9122
Cd mg/kg 5.00 <5 <5 <5 <5 <5 77.4 107
Co mg/kg 5.00 11.7 8.02 8.79 5.18 7.32 73.3 71.3
Cr mg/kg 5.00 159 126 120 124 129 92.2 66.8
Cu mg/kg 10.00 764 111 260 192 214 12,130 9764
Fe mg/kg 10.00 42,300 40,190 40,100 40,440 41,600 146,200 222,300
K mg/kg n/d 18,460 18,830 19,320 19,650 22,280 10,140 8124

Mg mg/kg 15.0 15,960 16,060 15,310 16,830 19,840 8972 7414
Mn mg/kg 5.00 739 737 599 758 867 795 609
Mo mg/kg 5.00 6.40 5.59 5.21 6.36 6.02 13.6 12.6
Na mg/kg n/d 18,100 18,230 17,610 18,870 22,640 11,420 8821
Ni mg/kg 5.00 73.0 55.4 54.0 55.9 57.9 105 98.0
Pb mg/kg 5.00 51.9 14.3 15.5 15.1 21.0 1392 1445
S mg/kg 200 2379 794 2046 2229 1351 53,340 48,430
Si mg/kg n/d 245,100 240,900 245,300 234,900 242,500 155,300 119,500
Ti mg/kg 25.0 3358 3488 3035 3256 3085 1791 1404
Zn mg/kg 55.0 301 114 171 119 169 9096 11,400

Ctotal Wt.% 0.05 1.95 1.94 2.43 2.42 0.53 8.08 6.77
Corg Wt.% cal NA NA NA NA 0.29 NA 6.61

Cinorg Wt.% 0.05 NA NA NA NA 0.233 NA 0.160
Ssulfide Wt.% NA NA NA NA 0.04 NA 3.73
Ssulfate Wt.% NA NA NA NA 0.04 NA 1.16

Stotal Wt.% 0.009 0.163 0.054 0.181 0.214 0.098 4.913 4.380

XRF
Whole

rock

LOI % −10 8.19 8.07 9.96 9.27 5.24 24.1 24
SiO2 % 0.01 58.2 58 57.3 55.2 57.7 34.4 26.5

Al2O3 % 0.01 14.8 15.1 15 14.8 15.9 9.06 7.66
Fe2O3 % 0.01 6.56 6.39 6.27 6.39 6.53 20.6 31.7
MgO % 0.01 2.84 2.87 2.67 2.95 3.5 1.52 1.3
CaO % 0.01 2.56 2.65 2.19 4.17 3.22 1.77 1.34
K2O % 0.01 2.43 2.54 2.52 2.55 2.92 1.29 1.04
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The heavy metal contents analyzed within the vase samples almost exceed the fre-
quent effect concentration criteria (CFE) (Table 4), i.e., the concentration at which harmful
effects are apprehended for the majority of benthic species. For the sediments, the As,
Cr and Ni contents exceeded the CFE and the Cu contents exceeded the concentration
producing a probable effect (CPE) criterion. The vase can be considered as a highly heavy
metals-contaminated material, and the heavy metals contents have not decreased since
the first analyses in 1976. In addition to the previous metals, the barium (Ba), cobalt (Co),
molybdenum (Mo) and sulfur (S) contents within the vases were higher than the generic
criteria for soils, given by the MEL (2019) [35]. These criteria for the contamination of
excavated soil provide information on the management method to be undertaken. The
limiting contents are given in the Table S6. The C and B contents within vases exceeded
the criteria. Thus, if the vases are removed from the lake by dredging, they will require
appropriate management.

Table 4. Quality criteria for freshwater sediment (REC: rare effect concentration; TCE: threshold
concentration producing an effect; COE: concentration of occasional effects; CPE: concentration
producing a probable effect; CFE: concentration of frequent effects).

Criteria for Assessing the Quality of Freshwater Sediments

Concentrations (mg/kg)

Groups Substances REC TSE COE CPE CFE

Metals and
metalloids

Arsenic 4.1 5.9 7.6 17 23
Cadmium 0.33 0.6 1.7 3.5 12
Chromium 25 37 57 90 120

Copper 22 36 63 200 700
Mercury 0.094 0.17 0.25 0.49 0.87
Nickel ND ND 47 ND ND
Lead 25 35 52 91 150
Zinc 80 120 170 310 770

3.3. Mineralogical Characterization

The observation of the polished sections under an optical microscope enabled the
rapid identification of the sulfurous minerals contained in the solid unreacted samples.
Using optical microscope observations, the vase was determined to be characterized by the
presence of large amounts of pyrite (FeS2), chalcopyrite (CuFeS2), iron oxides and traces
of covellite (Figure 3). Chalcopyrite was present in circular form, which would indicate
that the mineral has undergone a mineralurgical treatment. Pyrite was in the form of an
angular fragment, but mainly in the form of framboïdal pyrite (Figure 3), composed of
micro-cubes of pyrite, which is the most common form of pyrite in anoxic environments
and also the most reactive one [36]. The sediments contained traces of sulfides such as
pyrite and iron oxides.

Quantitatively, in the sediments, the main occurring minerals were quartz (14–28 wt. %),
epidote (3–7 wt. %), albite (19–30 wt. %), augite (2–5 wt. %), hornblende (4–8 wt. %),
chlorite (9–14 wt. %) and traces of hematite (Figure 3 and Figure S1). Carbonate minerals,
which are responsible for acidity buffering, were below the detection limit of XRD. Addi-
tionally, the mineralogical composition of the vases was similar to that of the sediments.
The vases were mainly composed of silicates (quartz: 9–26 wt. %; epidote: 7 wt. %),
feldspars (albite: 5–21 wt. %) and pyroxene (augite, enstatite), micas (chlorite) and oxides,
such as hematite and traces of sulfides (arsenopyrite). Scanning electron microscope (SEM)
observations of the rounded grains of sulfide (Figures 4 and 5) allowed their identifications
as isochalcopyrite, a mineral close to isocuprite, formed at more than 200 ◦C. Three phases
can be distinguished (Figure 5): a rounded phase surrounded by a halo of iron oxide,
which is also surrounded by an exsolution phase of the same nature as the grain. The iron
oxides and the exsolution texture highlighted by the X-mapping may result from the first
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alteration of the mineral. Iron oxides are also visible in some places of the grain, mainly on
the inner periphery, a sign of oxidation.

The observation of a larger area on the polished section allowed us to highlight that
copper and zinc are not only contained in sulfurous minerals, but they are also associated
with the vases (on organic matter). Zinc is not always concentrated in the places where
copper is. Their large dispersion suggests that they are attached to the small grain size, and
thus readily available for oxidation.
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Figure 5. Elemental SEM mapping of oxygen (O), sulfur (S), iron (Fe), and copper (Cu) in an isochalcopyrite grain from
vase sample number 81,850.

3.4. Environmental Behavior of Sediments, Vase and a Composite Sample
3.4.1. Acidity and Neutralization Potentials

Results of the neutralization potential (NP) and acid generation potential (AP) calcu-
lations based on Ssulfide and total inorganic carbon are shown in Table 5. The AP of the
sediments and vase was 1.25 and 116.56 kg CaCO3/t. The neutralization potential of the
sediments was higher than that of the vase for the two methods presented before. Via
the first method using the values of inorganic carbon, the NP value for the sediment was
19.44 kg CaCO3/t, compared to 13.29 kg CaCO3/t for the vase. Via the second method
(mineralogical approach), the NP values for sediment and vase were 203.88 and 53.64 Kg
CaCO3/t, respectively. For the vase, the net neutralization potential (NNP) calculated by
the two methods was below −20 kg CaCO3/t, and the NPR was below 1 (Table 5). The
two methods allow us to conclude that the vase will behave as an acid drainage generator
material. For the sediment, the NNP calculated via the second method was higher than
20 kg CaCO3/t, implying that the sediment is a non-acid drainage generator, but the NNP
calculated by the first method was between−20 and 20 kg CaCO3/t, implying an uncertain
geochemical behavior. However, the NPR calculated by the two methods was higher than
3 (Table 5), allowing us to conclude that the sediments are non-acid generating.
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Table 5. Stotal, Ssulfide, Ssulfate, Ctotal, Cinorganic, and Corganic of vase sample number 81,850 and sediment sample
number 81,872. AP, PN, NNP and NPR calculated by the 2 methods (NP by Cinorganic, and NP by Lawrence method).

Element AP %Ssulfide
NP

%Cinorganic

NP
Lawrence–

Scheske

NNP
(Ssulfide,

Lawrence)

NPR (Ssulfide,
Lawrence)

NNP
(Ssulfide,

Cinorganic)

NPR (Ssulfide,
Cinorganic)

Units kg CaCO3/t kg CaCO3/t

Vase (81,850) 116.56 13.29 53.64 −62.92 0.46 −103.27 0.11

Sediment
(81,872) 1.25 19.44 203.88 202.63 163.10 18.19 15.55

3.4.2. Weathering Cells Results

The results of the geochemical behavior of the studied samples are presented in
Figures 6 and 7. The pH of the leachates from the sediment was circumneutral and varied
between 7 and 8.3 (Figure 6A). These circumneutral pH values can be attributed to the
low amounts of acid-producing minerals, such as pyrite and chalcopyrite, compared to the
acid-consuming minerals contents, such as of carbonates. The electrical conductivities of
the leachates from the sediment are relatively low, but tend to decrease slowly (3690 µS/cm
at the beginning of the tests and 90.6 µS/cm at 70 days (Figure 6B)). The high values of
electrical conductivity analyzed at the beginning of the process of weathering the cells can
be attributed to the pre-oxidized and exchangeable elements.

The pH of the vase leachate has gradually decreased; it initially remained close to
the pH of the deionized water, then gradually decreased until a minimum of 3.48 was
reached (Figure 6A). This decrease in pH suggests a release of metals and/or sulfide
oxidation reactions. Similarly, the electrical conductivity fluctuated significantly; it started
at 6500 µS/cm at 3 days, then reached 703 µS/cm after 30 days, then rose to 4040 µS/cm at
55 days when the pH decreased to attain acidic values (pH = 4) (Figure 6B). These electrical
conductivity fluctuations are linked to pH variations; when the pH decreases, it causes a
greater release of ions, thus increasing the conductivity of the leachate. Concerning the
composite sample, the pH was around 6.5 for about 30 days and then decreased to attain
acidic values ranging between 3.89 and 4.5 (Figure 6A). The electrical conductivity showed
a similar trend in the sediment and vase samples (Figure 6B). The Eh values for the three
studied samples ranged between 350 and 600 mV (Figure 6C).
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The visible peaks in acidity (Figure 6D) can be related to variations in pH; the pH of
the composite decreased at 30 days to reach a minimum of 3.89 at 42 days, and the acidity
measured reached its maximum of 1697 mgCaCO3/eq at the same time. In the same way,
for the vase, the pH gradually decreased to reach a minimum at 62 days, while its acidity
reached its highest value. These fluctuations are also supported by the concentrations of
Fe, Mg and Al obtained in the leachate (Figure 7).

The chemical quality of the leachates from the three studied samples is presented
in Figures 7 and 8. The concentrations are presented as cumulated mass normalized.
Ca and Mg were chosen to represent acid-consuming minerals dissolution (carbonate
dissolution), Fe and S indicate acid-producing minerals oxidation (sulfide oxidation), Al
indicates aluminosilicate minerals dissolution and Zn and Cu were chosen as examples of
metal-contamination. The composite sample was the most reactive one compared to the
vase and sediments. Almost all the analyzed elements were released at greater quantities
by the composite sample, except for Zn. The Ca normalized mass was about 1295, 2740 and
3808 mg/kg for the sediment, vase and composite samples, respectively. The Mg release
rates were higher than 1200 mg/kg for the composite sample and lower than 400 mg/kg
for the other samples. Zn was released at negligible concentrations by the sediments,
while it was released at concentrations higher than 4000 mg/kg by the vase and composite
samples. Similarly, the Fe release was about 14.5, 63.7 and 190.3 mg/kg for sediment, vase
and composite samples, respectively. Additionally, Al, S and Cu were released at high
concentrations by the composite sample. The rates of Al, S and Cu release by composite
samples were around 68, 11,000 and 721 mg/kg, respectively.

3.4.3. Dismantling

At the end of the weathering tests, the resulting solid samples were analyzed chem-
ically and mineralogically. The initially brown-colored vase turned orange, which is
evidence of sulfide oxidation and the precipitation of secondary iron oxides. The composite
sample showed a slightly orange color in the first centimeter, but remained overall brown–
gray. However, the sediment did not show any new coloration. The results of the total
sulfur and carbon and organic and inorganic carbon analyses of the three samples before
and after the weathering of the cells are available in Table S7. The quantity of organic
carbon clearly decreased within the studied samples, in particular in the vase. This is
explained by the oxidation of organic matter. The sulfur content also halved, which corrob-
orates the results obtained by the ICP examination of leachate (Figure 7). The observation
of the polished sections via optical microscope showed that the grains from the composite
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and the vase samples were characterized by the formation of a coating by the secondary
phases (e.g., Cu and Fe oxides) (Figure 9).
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Figure 9. Images of minerals from the polished section of the vase and composite sample at the end
of the weathering test, observed with an optical microscope.

4. Discussion
4.1. Geochemical Quality of Sediments and Lake Water

The lake water, sediments and vase pore waters showed a chemical quality that was
relatively similar. The pore water and lake water can be classified as soft to moderately hard,
and the water from sample point 6 is classified as hard. The metal(oid)s concentrations were
almost negligible (Table 2), with Zn, Se, Pb and Cu concentrations not exceeding 1 mg/L.
This can be explained by the low reactivity of the acid-forming minerals in saturated
conditions [37]. However, the lake water quality may be altered if the sediments and the
vase are resuspended, due to wind energy impacting swells or passing boats [38]. The lake
depth varies from 4 to 7 m in the sampled areas, but averages 2–3 m on the shores of the
lake, especially near the town. The vase rich in organic carbon and sulfides is also enriched
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in trace elements such as As, Ba, Cd, Co, Mo, Ni, Pb and Zn. The sulfurous minerals are
mainly pyrites and (iso)chalcopyrites. Consequently, this vase is considered as a highly
heavy metals-contaminated material.

Consequently, dredging the lake sediments and vase will remove the risk of water
contamination. Submitting sediment, vase and composite samples to alteration in weather-
ing cells simulates their natural weathering processes under atmospheric conditions after
their dredging. The sediment samples showed mineralogical compositions characterized
by low acid-forming minerals (e.g., sulfides). Sulfides were detected at negligible contents
and confirmed using a sulfur sulfide calculation based on the total sulfur and sulfates.
The acid generation potential of the sediments did not exceed 2 kg CaCO3/t. The low
sulfide content justifies the circumneutral pH values that were observed for sediments
during the kinetic tests. It can be concluded that sulfide oxidation rate within the sediment
samples is negligible, which is confirmed by the low Fe and S release rates (14.5 mg/kg
and 1208 mg/kg, respectively). Apparently, the organic matter contained in the vase and
composite samples is responsible for the short-term reactivity of the samples. The quantity
of organic matter in the vase greatly decreased, going from 6.61% before the weathering
cell test to 4.80% (Table S7). At the same time, as presented in Figure 10, Zn, Fe and Cu
depletion was faster within the composite and vase samples compared to the sediments,
which proves their high reactivity and chemical species release.
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Under these geochemical conditions, the precipitation of secondary minerals (Figure
S2) is favored, which may also reduce the mobility of metal(oid)s. the Fe–S pH/Eh diagrams
(Figure 11 suggest the precipitation of iron hydroxides under the geochemical conditions
analyzed within the sediment leachates. During secondary phase precipitation, several
chemical species are immobilized due to several mechanisms, such as co-precipitation and
sorption [39,40]. The vase sediments showed an acidic behavior with pH values ranging
between 4 and 6 during the weathering cell test duration. This is explained by their high
acid generation potential (117 kg CaCO3/t) compared to sediments. Additionally, the
oxidation of organic matter contributes to increasing the acidity of the leachates [41]. The
acid pH values increased the mobility of metal(oid)s. Consequently, the leaching rates
of Fe, Zn, S and Cu were about 64, 4400, 8410 and 160 mg/kg, respectively. The low Fe
release rate compared to S is explained by the precipitation of iron, as is suggested by the
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Fe pH/Eh diagrams (Figure 11). The composite sample, which is the most representative
scenario of dredging, showed an acidic quality, with pH values between 4 and 6. This
release of metals can be associated with the oxidation of the sulfides present in the vase
(pyrite, and (iso)chalcopyrite) (Figure 9), as presented by Equations (1) to (5), as well as
with the oxidation of organic matter [26].
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The oxidation–neutralization curves with the projection of the initial S and C (Figure
S3) allowed the classification of the geochemical behavior of the solid samples in the long-
term [42]. These projections also confirmed that the sediments are non-acid-generating,
but the vase was located between uncertainty and acid-generating. Considering the results
of the weathering cell tests, the vase is considered acid-generating. Based on the chemical,
mineralogical and weathering cells results, the dredging may present a serious risk of
contamination (e.g., Fe, SO4

2−, Zn, Cu, Al) due to natural weathering. Consequently,
the dredged materials must be adequately managed to prevent contamination by sulfide
and organic matter oxidation. In the case of dredged sediments, several scenarios can be
feasible, and the economic cost will allow one to choose the final sediment management
plan.

4.2. Strategies to Mitigate the Risk Posed by Dredged Sediments

Stabilization/solidification is one of the most used techniques to reduce the risks
related to contaminated sediments [43–47]. Indeed, more than 24% of cases of contaminated
materials were treated using stabilization/solidification (S/S) technology between 2002
and 2005 [48]. This technique consists of adding cementitious materials to improve the
geomechanical properties of the contaminated sediments [49]. One of the most used
cementitious additives is Portland cement, which proved its efficiency in solidifying and
stabilizing contaminated sediment [45]. The dredged sediments may need thermal pre-
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treatment to remove organic matter and decrease their water content [50]. Adding cement
will improve the geomechanical properties and workability of the dredged sediments.
During the process of sediments cementation, the contaminants are immobilized due to
the physical and chemical processes that occur during cementation. Soluble inorganic
contaminants can be immobilized by physical mechanisms, including (i) the precipitation of
cement products, which reduce the free sediments’ pore water [51], (ii) and the precipitation
of cement hydration products at the surface of the reactive sulfide, which reduce their
exposure and reactivity [52]. Additionally, cements are characterized by a high acid-
buffering capacity, which will increase the pH of pore water to achieve neutral to alkaline
values [53]. Under these conditions, the precipitation of secondary iron oxyhydroxides is
favored [40]. The precipitation of secondary iron oxyhydroxides is often associated with
the removal of several contaminants from pore water [54].

Recently, the reprocessing of contaminated sediments to recover either acid-forming
and/or valuable minerals has been recognized as an innovative approach to the circular
economy [21,22]. The reprocessing of contaminated sediments may be done using flota-
tion techniques and/or gravity methods, depending on their mineralogical and physical
properties. Indeed, mineralogical observations showed the presence of Cu-sulfides (e.g.,
isochalcopyrite), which were circular and well crystallized (Figure 2). Additionally, the
chemical analysis of the sediments and vase showed that the Cu contents were up to
790 mg/kg for sediments and 12,120 mg/kg for vase, which encourages their reprocessing
for Cu recovery. Amar et al. (2021) showed that flotation combined with gravity methods
is an effective techniques for recovering valuable minerals (base metals bearing mineral)
from acid-generating mine wastes [21]. In the case of these contaminated lake sediments,
gravity methods can be applied efficiently to concentrate copper sulfides given that they
were identified as liberated minerals (Figure 3).

5. Conclusions

The chemical quality of the lake’s water showed negligible concentrations in terms
of metals and metalloids, confirming a good water quality. However, the solid samples
(vase and sediments) showed metal(oid)s contents that exceeded the frequent effect con-
centration criterion. Consequently, the reactivity of the sediments and vase will release
the contaminants into the lake water. The simulation of sediments and vase reactivity
using weathering cells showed that several contaminants can be released, such as Cu, Zn,
Fe and S. The main mechanisms responsible for contaminants release are sulfides and
organic matter oxidation. Sulfide (e.g., isochalcopyrite, pyrite) oxidation increases acidity
and metal(oid)s mobility. In the same way, organic matter dissolution releases the ad-
sorbed metal(oid)s. Thus, a thermal pretreatment to remove organic matter may reduce the
contamination level of the dredged sediments. Furthermore, the dredged sediments will
require an appropriate management plan (e.g., solidification/stabilization). Additionally,
the reprocessing of dredged sediments to recover valuable minerals (copper sulfide) may
be an option to partially cover the costs related to dredged sediment management.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/5/2298/s1, Figure S1: Sulfur Eh-pH diagram of the vase pore water sample number 81,845,
Figure S2: Zn-Fe Eh-pH diagram of vase pore water number 81,873 (left) and number 81,845 (right),
Figure S3: Oxidation-Neutralization curve comparing the initial chemistry of the sediment and vase
to the chemistry results of the weathering test.2, Table S1: Particle size distribution, specific gravity
and specific surface area of samples from Osisko Lake, Table S2: Results of chemical composition
of lake water, sediments and vase pore waters (DL = detection limit, n/d = not defined), Table S3:
Sulfur-Carbon results of sediments and vases samples from Osisko Lake, Table S4: XRF whole rock
results of sediment and vase samples, Table S5: Results of chemical composition of sediment and
vase samples, Table S6: Generic criteria for soils, Table S7: Results of total S and C, and Corg-inorg
analysis of the three samples before and after kinetic tests.
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