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Abstract: In the present era, the global need for food is increasing rapidly; nanomaterials are a useful
tool for improving crop production and yield. The application of nanomaterials can improve plant
growth parameters. Biotic stress is induced by many microbes in crops and causes disease and high
yield loss. Every year, approximately 20–40% of crop yield is lost due to plant diseases caused by
various pests and pathogens. Current plant disease or biotic stress management mainly relies on toxic
fungicides and pesticides that are potentially harmful to the environment. Nanotechnology emerged
as an alternative for the sustainable and eco-friendly management of biotic stress induced by pests
and pathogens on crops. In this review article, we assess the role and impact of different nanoparticles
in plant disease management, and this review explores the direction in which nanoparticles can be
utilized for improving plant growth and crop yield.

Keywords: plant diseases; nanoparticles; diseases; biotic stress; management; silver nanoparticles;
zinc nanoparticles

1. Introduction

Crop cultivators suffer from high yield loss caused by various diseases. Biotic stress
induced by microbes on crop plants reduces the crop yield and decreases the quality. Biotic
stress causes disease in crops, which leads to the suffering of the plant. Diseases of the
plant need to be controlled to maintain the abundance of food produced by farmers around
the world. The management of crop diseases is very necessary to fulfill the food demand.
Potato blight disease caused by plant pathogenic fungus Phytopthora caused more than
one million deaths in Ireland [1]. Around 20–40% of agricultural crop yield losses occur
globally due to various diseases caused by phytopathogenic bacteria, phytopathogenic
fungi, pests, and weeds [2].
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It is estimated that in 2050 the world’s human population will reach around 10 billion,
and around 800 million people in the world will be hungry and around 653 million people
in the world will be undernourished in 2030, thus fulfilling the food demand will remain
a huge challenge. The current research progress and disease management strategies are
not enough to fulfill the food demand by 2050 [3]. The first green revolution made a huge
difference in yield and food production, but in the last few years’ crop production has
been stagnant and food demand is increasing sharply, so now we need a second green
revolution to fulfill the food demand of the population.

Different approaches are used by farmers to mitigate the impact of plant diseases.
The agriculture system mainly relies on chemicals to manage crop diseases and inhibit the
growth of phytopathogens, which cause diseases before and after crop harvesting. The ex-
cessive use of chemical pesticides, herbicides, and fungicides that are mainly used to control
plant diseases causes harmful environmental and human health consequences. Tilman
et al. [4] observed that the high use of chemical pesticides increases resistance in pathogens
and pests, reduces nitrogen fixation, and the bioaccumulation of toxic pesticides occurs.

An example is the synthetic chemical pesticide DDT, dichlorodiphenyltrichloroethane,
which was extensively used in agriculture for controlling plant pathogens and was found
to be genotoxic in humans, causing endocrine disorders [5]. Water and soil pollution is also
caused by the excessive use and misuse of these chemicals. There is an increasing demand
day by day to reduce the use of synthetic chemicals. Consequently, the harmful effects of
chemicals on wildlife, the environment, and human health have increased the need for
alternative measures in the control of plant pathogens, so that some phytopathologists
have focused their research on developing a new alternative that should replace the use of
chemicals in controlling plant diseases.

Nanotechnology has revolutionized agriculture and can control plant diseases, although
the field of nanotechnology is still in the nascent stage and needs more research anal-
ysis [6].The use of nanomaterials in agriculture will reduce the excessive use of toxic
chemicals used for plant disease management (Figures 1 and 2).

“Nano” denotes one-billionth part, thus nanotechnology deals with small things.
The word nano is used for materials with a size range of 0.1 to 100 nanometers [7,8].
The first time the term nanotechnology was used was by Taniguchi in 1974 to the science
that largely deals with particles of nano size (1.0 × 10−9 m). When a bulk material is
reduced to nano size, it has a high surface-to-volume ratio that may increase its reactivity
and express some new properties [7,9]. The control of plant diseases and improving
plant growth by the use of nanomaterials are some of the possible key applications in
the area of plant pathology. Approximately 260,000–309,000 metric tons of nanoparticles
were produced in 2010 globally, and the worldwide consumption of nanomaterials was
approximately from 225,060 metric tons to 585,000 metric tons in 2014 to 2019 [10,11].

In this review article, recent research progress and the application of various nanopar-
ticles for the sustainable management of the biotic stress of crop systems and impact
on plant growth have been discussed. We try to cover the various problems associated
with crop cultivation and plant diseases and the use of different nanomaterials to control
phytopathogens and improve plant growth.



Appl. Sci. 2021, 11, 2282 3 of 16Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 16 
 

Nanomaterials

Agricultural use

Optimum dose

Improve plant 

growth Reduce diseases
Regulate 

metabolism

Sustainable Agriculture and 

Sustainable Environment
 

Figure 1. Schematic presentation of nanomaterials in agriculture. [12] 

 

Figure 2. Various applications of nanotechnology in agriculture taken from [12] 

2. Nanomaterials in Improving Plant Growth and Yield 

Currently, around 1300 nanomaterials, with widespread potential applications, are 

available [13,14]. Nanoparticles can penetrate the cell wall because the cell wall is porous 

to 3.5–20 nm macromolecules. Nanoparticles can enter through stomatal openings. When 

stomata are present at the lower surface of leaves, the entry of nanoparticles (NPs) be-

comes difficult [15]. It is reported that nanoparticles of size ≤43 nm can penetrate and 

enter into stomata [16,17]. 

The effect of nanoparticles on crop plants is concentration-based. Many plant pro-

cesses such as seed germination and plant growth are affected by NP concentration [18]. 

Many NPs have been reported to be beneficial for plant growth. Mahmoud et al. [19] 

used Zn, B, Si, zeolite NPs on a potato plant and found that these nanoparticles have a 

Figure 1. Schematic presentation of nanomaterials in agriculture [12].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 16 
 

Nanomaterials

Agricultural use

Optimum dose

Improve plant 

growth Reduce diseases
Regulate 

metabolism

Sustainable Agriculture and 

Sustainable Environment
 

Figure 1. Schematic presentation of nanomaterials in agriculture. [12] 

 

Figure 2. Various applications of nanotechnology in agriculture taken from [12] 

2. Nanomaterials in Improving Plant Growth and Yield 

Currently, around 1300 nanomaterials, with widespread potential applications, are 

available [13,14]. Nanoparticles can penetrate the cell wall because the cell wall is porous 

to 3.5–20 nm macromolecules. Nanoparticles can enter through stomatal openings. When 

stomata are present at the lower surface of leaves, the entry of nanoparticles (NPs) be-

comes difficult [15]. It is reported that nanoparticles of size ≤43 nm can penetrate and 

enter into stomata [16,17]. 

The effect of nanoparticles on crop plants is concentration-based. Many plant pro-

cesses such as seed germination and plant growth are affected by NP concentration [18]. 

Many NPs have been reported to be beneficial for plant growth. Mahmoud et al. [19] 

used Zn, B, Si, zeolite NPs on a potato plant and found that these nanoparticles have a 

Figure 2. Various applications of nanotechnology in agriculture taken from [12].

2. Nanomaterials in Improving Plant Growth and Yield

Currently, around 1300 nanomaterials, with widespread potential applications, are
available [13,14]. Nanoparticles can penetrate the cell wall because the cell wall is porous
to 3.5–20 nm macromolecules. Nanoparticles can enter through stomatal openings. When
stomata are present at the lower surface of leaves, the entry of nanoparticles (NPs) becomes
difficult [15]. It is reported that nanoparticles of size ≤43 nm can penetrate and enter into
stomata [16,17].

The effect of nanoparticles on crop plants is concentration-based. Many plant pro-
cesses such as seed germination and plant growth are affected by NP concentration [18].
Many NPs have been reported to be beneficial for plant growth. Mahmoud et al. [19] used
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Zn, B, Si, zeolite NPs on a potato plant and found that these nanoparticles have a positive
effect on potato plants and they improve the plant growth. Khan and Siddiqui [20] treated
eggplant with ZnONPs and found a foliar spray of ZnONPs causes the highest improve-
ment in eggplant growth. Awasthi et al. [21] reported that ZnONPs have a positive effect
on seed germination in the Triticum aestivum plant. Zinc oxide nanoparticles (ZnONPs) can
enhance plant biomass and agriculture production [22]. Sabir et al. [23] also showed that
nanocalcite (CaCO3) application with Fe2O3, nano SiO2, and MgO improved the uptake
of Mg, Ca, and Fe, and also notably enhanced the intake of P with micronutrients Zn and
Mn. Venkatachalam et al. [24] found that ZnONPs increase in photosynthetic pigment
in the Leucaena leucocephala plant. Narendhran et al. [25] reported high chlorophyll-a’,
chlorophyll-‘b’ and total chlorophyll content in the Sesamum indicum plant when treated
with ZnO NPs. Taheri et al. [26] observed that treatment of ZnONPs increases the increase
in shoot dry matter in Zea mays. Tarafdar et al. [27] found that ZnONPs enhanced shoot
and grain yield in the Pennisetum glaucum plant.

The application of titanium dioxide (TiO2) on crops promotes plant growth parameters
and can enhance the photosynthetic rate. Siddiqui et al. [28] usedTiO2 and ZnONPs on
beet root plants. They found that both NPs increased chlorophyll and carotenoid content,
improved plant growth, and also improved super oxide dismutase (SOD), catalase (CAT),
H2O2, and proline content in plants. ZnONPs were found to be better than TiO2NPs on
beetroot plants. Raliya et al. [29] reported that TiO2NPs treatment improved shoots in the
Vigna radiate plant. Lawre and Raskar [30] observed that TiO2NPs at a lower concentration
enhanced seed germination and seedling growth in onion plants. Rafique et al. [31] found a
positive effect of TiO2NPs on the Triticum aestivum plant. Mahmoodzadeh et al. [32] found a
positive effect of TiO2NPs on the seed germination of the Brassica napus plant. Qi et al. [33]
reported that treatment of TiO2NPs promotes photosynthetic rate in tomato plants.

Silicon is an important element that plays a key role in several metabolic and phys-
iological activities in plants [34]. SiO2nanoparticles have the potential to enhance the
germination and seedling growth of Agropyron elongatum [35]. Nano-SiO2 can be used
to produce effective fertilizers for crops and to minimize the loss of fertilizer through
slow and controlled release, allowing for regulated, responsive, and timely delivery [36].
Siddiqui et al. [37] found improved seed germination in the Cucurbita pepo plant after
treatment with Nano SiO2. Haghighi and Pessarakli [38] reported that Nano Si treatment
on the tomato plant improves photosynthetic rate in treated plants.

Copper is an essential element for plant growth and development. Copper plays a
key role in the activity of many plant enzymes. Copper nanoparticles (Cu NP) are used
as antimicrobial agents, gas sensors, catalysts, electronics, etc. [39]. Wang et al. [40] found
that CuO NPs improved photosynthesis in the Spinacia oleracea plant. Zhao et al. [41] re-
ported that Cu(OH)2NPs improved the antioxidant system of the Lactuca sativa plant.
Shinde et al. [42] found that Mg(OH)2NP treatment promotes seed germination and
seedling growth in the Zea mays plant. Hussain et al. [43] reported that MgO NPs im-
prove the antioxidant system in Raphanus sativus plants. Cai et al. [44] observed that MgO
NPs can promote the plant growth of the Tobacco plant. Imada et al. [45] found that MgO
NPs can induce resistance in the tomato plant.

Iqbal et al. [46] reported that AgNP treatment improved plant growth and tolerance
to heat stress in the Triticum aestivum plant. Mehta et al. [47] found that AgNPs’ foliar
application enhanced growth and biomass in the Vigna sinensis plant. Pilon et al. [48]
observed that chitosan NPs protect apple plants after post-harvest. Van et al. [49] found
that chitosan NPs improve plant growth in Robusta coffee.

Das et al. [50] found that FeS2 NPs improved seed germination in Cicer arietinum,
Daucus carota, pinacia oleracea, Brassica juncea, and Sesamum indicum crops. The effects of
various nanomaterials have been summarized in the following table (Table 1).
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Table 1. Effect of various nanomaterials on plant physiology and growth parameters.

Nanoparticles Plant Effect on Plants in a Dose-Dependent Manner Reference

Zn, B, Si, Zeolite NPs Potato Improve plant growth [19]

ZnO NPs Eggplant Increase plant growth attributes [20]

ZnO NPs Triticum aestivum Positive effect on seed germination [21]

SiO2 & TiO2 NPs Rice Improve plant growth attributes [22]

Nano-size calcite product
[CaCO3(40%), SiO2(4%), MgO

(1%), and Fe2O3(1%)]
Grapevine Increase plant growth attributes and

photosynthetic pigment [23]

ZnO NPs Leucaena leucocephala Increase in photosynthetic pigment and total
soluble protein contents [24]

ZnO NPs Sesamum indicum High chlorophyll‘a’, chlorophyll‘b’, and total
chlorophyll content level [25]

ZnO NPs Zea mays Increased shoot dry matter and leaf area indexes. [26]

ZnO NPs Pennisetum glaucum ZnO NPs enhanced shoot and grain yield [27]

TiO2 & ZnO NPs Beetroot Increased plant growth and shoot dry matter [28]

TiO2 NPs Vigna radiata L. Improvement was observed in shoot length [29]

TiO2 NPs Onion Lower concentration of TiO2 NPs enhanced seed
germination and seedlings growth [30]

TiO2 NPs Triticum aestivum L. Increase in the plant’s root and shoot lengths [31]

TiO2 NPs Brassica napus Promoted seed germination and seedling
vigor improved [32]

TiO2 NPs Tomato Promote the photosynthetic rate [33]

SiO2NPs Larix olgensis Increase in plant height, root length,
and chlorophyll content [34]

SiO2NPs Agropyron elongatum L. Improve seed germination [35]

Nano- SiO2 Cucurbita pepo L. Reduce the salt stress effect [37]

Nano Si Tomato Enhancement of germination rate and dry weight [38]

CuO NPs Spinacia oleracea Improved photosynthesis in treated plants [40]

MgO NPs Tobacco Promote plant growth [44]

MgO NPs Tomato Induce resistance in tomato plant [45]

AgNPs Wheat Regulate antioxidative defence system [46]

AgNPs soil bacterial diversity Regulate soil bacterial diversity [47]

Chitosan NPs Apples They reduce microbial growth [48]

Chitosan NPs Robusta cofee Improved growth parameters [49]

FeS2 NPs
Cicer arietinum; pinacia oleracea;
Daucus carota, Brassica juncea

and Sesamum indicum
Seed germination enhanced in tested crops [50]

Chitosan NPs Rice Reduces disease severity [51]

Chitosan NPs Strawberry Regulate defense response [52]

SiNPs Helianthus annuus Improved germination [53]

SilicaNPs Vicia faba L. Improved growth parameters [54]

SiO2NPs Pea Improved growth parameters and
chlorophyll content [55]

SiO2 & MoNPs Rice Regulate seed germination [56]

SiO2NPs Indocalamus barbatus Improved photosynthetic pigments [57]
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Table 1. Cont.

Nanoparticles Plant Effect on Plants in a Dose-Dependent Manner Reference

SilicaNPs Zea mays. L Improve silica content in plants [58]

SiO2NPs Maize Improved growth parameters and increased
seed stability [59]

SiO2and TiO2NPs Soybean Enhance germination of seeds [60]

Cu(OH)2 Lactuca sativa Improve antioxidant system [61]

Cu(OH)2 Spinach Improve the antioxidant system [62]

ZnO NPs Glycine max Enhanced Antioxidant system [63]

ZnO NPs Cabbage, cauliflower,
and tomato Enhance pigments, protein, and sugar contents [64]

ZnO NPs Arachis hypogaea Seed germination enhaced [65]

FeS2 NP Spinach Improve plant growth [66]

TiO2 NPs Glycine max L. Positive effect on the seed and oil yield and
component compared to the control [67]

TiO2 NPs Mentha Piperita Increased root length [68]

TiO2 NPs Agropyron desertorum Improves seed germination [69]

3. Nanomaterials in Various Diseases Management

Nanomaterials have antimicrobial activity. Silver nanoparticles have anti-bacterial
and anti-fungal properties. Kim et al. [70] have reported the fungicidal effects of nano-
silver against Alternaria alternata, A. brassicicola, A. solani, Botrytis cinerea, Cladosporium
cucumerinum, Corynespora cassiicola, Cylindrocarpon destructans, Didymella bryoniae, Fusarium
oxysporum f. sp. cucumerinum, F. oxysporum f. sp. lycopersici, F. oxysporum, F. solani, Fusarium
sp., Glomerella cingulata and a few other fungi. Gautam et al. [71] showed the antifungal and
antibacterial activity of AgNPs against Erwinia sp., Bacillus megaterium, Pseudomonas syringe,
Fusarium graminearum, F. avenaceum, and F. culmorum fungi. Rodríguez-Serrano et al. [72]
reported the antibacterial activity of AgNPs against E. coli. Husseinet al. [73] reported
the antibacterial activity of AgNPs against Staphylococcus aureus and Klebsiella pneumonia.
Shehzad et al. [74] reported that AgNPs have antibacterial activity against Gram-positive
(Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Mohanta et al. [75] reported
that AgNPs have antibacterial activity against food borne pathogens Pseudomonas aeruginosa,
Escherichia coli, and Bacillus subtilis. Abdelmale and Salaheldin [76] reported that AgNPs
show antifungal activity against Alternaria alternata, A. citri, and Penicillium digitatum fungi.
Krishnaraj et al. [77] found theantifungal activity of AgNPs against Alternaria alternata,
Macrophomina phaseolina, Botrytis cinerea, Sclerotinia sclerotiorum, Curvularia lunata, and
Rhizoctonia solani fungi. Jo et al. [78] described the antifungal activity of AgNPs against
Bipolaris sorokiniana and Magnaporthe grisea fungi.

Shahryari et al. [79] reported that AgNPs and a silver–chitoson composite show
antibacterial activity against Pseudomonas syringae pv. syringae bacteria. Divya et al. [80]
reported that chitoson NPs have antifungal activity against Macrophomia phaseolina and
Alternaria alterneta fungi. Xing et al. [81] reported that chitoson NPs have antifungal activity
against Fusarium solani and Aspergillus niger fungi. Dang et al. [82] reported that AuNPs
have antibacterial activity against E. coli bacteria. Attar and Yapaoz [83] observed that
ZnO and AuNPs have antibacterial activity against E. coli bacteria. The gold nanoparticles
showed toxic effect on bacteria, Salmonella typhimurium, in which the macro gold did not
exhibit. Jayaseelana et al. [84] synthesized gold nanoparticles from Abelmoschus esculentus
and reported their antifungal activity. The antifungal activity of AuNPs was tested against
Puccinia graministritci, Aspergillus niger, Aspergillus flavus and Candida albicans using the
standard well diffusion method. The maximum zone of inhibition was observed in the Au
NPs against P. graminis and C. albicans.
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Fan et al. [85] observed the antibacterial activity of Cu composites against Xanthomonas
euvesicatoria. Huang et al. [86] showed the antifungal activity of CuO NPs against Botry-
tis cinerea, Colletotrichum graminicola, Rhizoctonia solani, Colletotrichum musae, Magnaporthe
oryzae, Penicillium digitatum, and Sclerotium rolfsii. Giannousiet al. [87] showed the anti-
fungal activity of CuO and Cu2O NPs against Phytophthora infestans. Sharmaet al. [88]
reported the antifungal and antibacterial activity of MgONPs against Ralstonia solanacearum
bacteria and Phomopsis vexans fungus. Imada et al. [45] found the antibacterial activity
of MgONPs against Ralstonia solanacearum. Derbalah et al. [89] observed the antifungal
property of silica NPs against Alternaria solani fungus. Akpinar et al. [90] found that SiO2
NPs possess antifungal properties against Fusarium oxysporum f. sp. lycopersici and F.
oxysporum f. sp. radicislycopersici. Park et al. [91] showed the antifungal activity of Nano
Si-Ag against Pythium ultimum, Magnaporthe grisea, Colletotrichum gloeosporioides, Botrytis
cineria, Rhizoctonia solani, Pseudomonas syringae, Xanthomonas compestris pv. vesicatoria.

Jamdagni et al. [92] found that ZnO NPs have promising antifungal activity against
Alternaria alternate Botrytis cinerea, Aspergillus niger, Fusarium oxysporum, and Penicillium ex-
pansum fungi. Navale et al. [93] found the promising antifungal activity of ZnO NPs against
Aspergillus flavus and Aspergillus fumigates fungi. Rajiv et al. [94] reported the antifungal
activity of ZnO NPs against Aspergillus flavus, A. niger, A. fumigates, Fusarium culmorum,
and F. oxysporium. Gunalan et al. [95] found that ZnO NPs have promising antifungal
activity against Aspergillus flavus, Trichoderma harzianum, A. nidulans, and Rhizopus stolonifer.
Dimkpa et al. [96] have shown the antifungal activity of ZnO nanoparticles on Fusarium
graminearum fungus. Jayaseelan et al. [97] synthesized ZnO nanoparticles using Aeromonas
hydrophila and screened their activity against pathogenic bacteria P. aeruginosa, and fungi,
C. albicans, A. flavus, and A. niger. Sar et al. [98] reported the antifungal activity of TiO2
NPs against Fusarium oxysporum f. sp. radicislycopersici and Fusarium oxysporum f. sp.
Lycopersici. Hamza et al. [99] found the antifungal activity of TiO2 NPs against Cercospora
beticola. Ardakani [100] found the nematicidal activity of TiO2 NPs against Meloidogyne
incognita nematode. Kasemets et al. [101] reported the antifungal activity of ZnO and TiO2
NPs against Saccharomyces cerevisiae. Cui et al. [102] found that TiO2 NPs have antibacterial
against P. syringae pv. lachrymans and P. cubensis (Table 2, Figure 3).

Table 2. Various nanomaterials in plant disease management

Nanoparticle Pathogen Effect Reference

Ag NPs

Alternaria alternata, A. brassicicola, A. solani,
Cladosporium cucumerinum, Botrytis cinerea,

Corynespora cassiicola, Cylindrocarpon destructans,
Didymella bryoniae, F. oxysporum f. sp. lycopersici, F.

oxysporum, Fusarium oxysporum f.sp. cucumerinum, F.
solani, Fusarium sp., Glomerella cingulata, P. spinosum,
Monosporascuscannonballus, Pythium aphanidermatum,

Stemphylium lycopersici

Show antifungal activity [70]

AgNPs Erwinia sp., Bacillus megaterium, Pseudomonas syringe,
Fusarium graminearum, F. avenaceum, F. culmorum

An inhibitory effect on
tested microbes [71]

AgNPs Escherichia coli Antibacterial activity [72]

AgNPs Staphylococcus aureus and Klebsiella pneumonia Antibacterial activity [73]

AgNPs Gram-positive (Bacillus subtilis) and gram-negative
(Escherichia coli).

An inhibitory effect on
tested bacteria [74]

AgNPs Foodborne pathogens viz. Pseudomonas aeruginosa,
Escherichia coli, Bacillus subtilis. Antibacterial activity [75]

AgNPs Alternaria alternata, A. citri, Penicillium digitatum Show antifungal properties [76]

AgNPs
Alternaria alternata, Macrophomina phaseolina, Botrytis

cinerea, Sclerotinia Sclerotiorum, Curvularia lunata,
Rhizoctonia solani

Show Antifungal activity. [77]
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Table 2. Cont.

Nanoparticle Pathogen Effect Reference

AgNPs Bipolaris sorokiniana and MagnaportheGrisea Show antifungal activity [78]

AgNPs and Cs-Ag
nanocomposite Pseudomonas syringaepv.syringae Show antibacterial activity [79]

Chitosan NPs Klebsiella pneumoniae, Escherichia coli, Staphylococcus
aureus, Pseudomonas aeruginosa Show antibacterial activity [80]

Chitosan NPs Fusarium solani, Aspergillus niger Show Antifungal activity [81]

Au NPs Escherichia coli and Staphylococcus Antibacterial activity [82]

ZnO and Au NPs E. coli Antibacterial activity [83]

AuNPs Puccinia graminis tritci, Aspergillus flavus, Aspergillus
niger and Candida albicans Show Antifungal activity [84]

Cu composites Xanthomonas euvesicatoria Antibacterial activity [85]

CuO NPs
Botrytis cinerea, Colletotrichumgraminicola, Rhizoctonia

solani, Colletotrichum musae, Magnaportheoryzae,
Penicillium digitatum, Sclerotium rolfsii

Show antifungal activity [86]

CuO and Cu2O NPs Phytophthora infestans Show antifungal activity [87]

MgO NPs Ralstonia solanacearum, Phomopsis vexans Show antifungal and
antibacterial activity [88]

SilicaNPs Alternaria sp Show antifungal activity [89]

SiO2 NPs Fusarium oxysporum f. sp. lycopersici and F.
oxysporum f. sp. radicislycopersici Possess antifungal properties [90]

Nano Si-Ag

Pythium ultimum, Magnaporthe grisea, Colletotrichum
gloeosporioides, Botrytis cineria, Rhizoctonia solani,
Pseudomonas syringae, Xanthomonas compestris

pv. vesicatoria

Show antifungal and
antibacterial activity [91]

ZnO NPs Alternaria alternate Botrytis cinerea, Aspergillus niger,
Fusarium oxysporum and Penicillium expansum

Antifungal activity against all
the tested fungi [92]

ZnO NPs Aspergillus flavus and Aspergillus fumigates Shown potential activity
against these tested fungi [93]

ZnO NPs Aspergillus flavus, A. niger, A. fumigatus
Fusarium culmorum and F. oxysporium

The highest zone of inhibition
occurred in A. flavus [94]

ZnO NPs Aspergillus flavus, A. nidulans, Trichoderma harzianum
and Rhizopus stolonifer Antifungal activity [95]

ZnO NPs Fusarium graminearum Antifungal activity [96]

ZnO NPs Pseudomonas aeruginosa Antibacterial activity [97]

TiO2 NPs Fusarium oxysporum f. sp. radicislycopersici and
Fusarium oxysporum f. sp. Lycopersici Antifungal activity [98]

TiO2 NPs Cercosporabeticola Pathogen growth
was inhibited [99]

TiO2 NPs Meloidogyne incognita Controlled M. incognita [100]

TiO2 NPs and ZnO
NPs Saccharomyces cerevisiae Antifungal activity [101]

TiO2 NPs P. syringaepv. lachrymans and P. cubensis Reduced infection of pathogen [102]

Metallic NPs Fungus and Bacteria Antibacterial and
antifungal activity [103]

Metallic NPs Microbes Antibacterial and
antifungal activity [104]

AgNPs Fusarium culmorum Antifungal activity [105]
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Table 2. Cont.

Nanoparticle Pathogen Effect Reference

Chitosan NPs Streptococcus Antibacterial activity [106]

AuNPs Candida albicans Antifungal activity [107]

AuNPs Escherichia coli, Staphylococcus aureus Antibacterial activity [108]

ZnO NPs Ralstonia solanacearum Antibacterial activity [109]

ZnO NPs Botrytis, Escherichia Antibacterial and
antifungal activity [110]

ZnO NPs Fusarium oxysporum, Aspergillus niger Antibacterial and
antifungal activity [111]

ZnO NPs Alternaria alternate, Fusarium oxysporum, Rhizopus
stolonifer and Mucor plumbeus

Inhibit germination of
spores of fungi [112]

ZnO NPs Botrytis cinerea and Penicillium expansum Significantly inhibit growth [113]

ZnO NPs Psedomanas sp. and Fusarium sp. Antibacterial and
antifungal activity [114]

TiO2 NPs Xanthomonas hortorum pv. pelargonii, X. axonopodis
pv. Poinsettiicola Antibacterial activity [115]Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 16 
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The inhibitory action of nanoparticles on fungi and bacteria includes disruption by
pore formation in the cell membrane, disturbance in membrane potential, cell wall damage,
direct attachment to the cell surface, DNA damage, cell cycle arrest, the inhibition of en-
zyme activity and reactive oxygen species (ROS) generation, and this finally leads to death.
Nanoparticles generate the ROS, which causes damage to the cellular structures. The differ-
ent components of reactive oxygen species include free radicals, such as hydrogen peroxide
(H2O2), superoxide (O2

−), singlet oxygen (1O2), carbon dioxide radical (CO2
−), hydroxyl

(HO·), hydroperoxyl (HO2), carbonate (CO3
−), peroxyl (RO2), and alkoxyl (RO), and non-

radicals, such as ozone (O3), nitric oxide (NO), hypobromous acid (HOBr), hypochlorous
acid (HOCl), hypochlorite (OCl−), peroxy nitrite (ONOO−), organic peroxides (ROOH),
peroxo monocarbonate (HOOCO2

−), peroxy nitrous acid (ONOOH) and peroxy nitrate
(O2NOO−), and these nanoparticles accumulate in the membrane of bacteria or fungi,
which leads to change in the permeability of the cell membrane and disturbs the proton
motive force (PMF).Oxidative stress due to the higher concentration leads to single- and
double-strand breaks and nitrogen base and pentose sugar lesions [103,104].

4. Toxic Effect of Nanoparticles

Nanomaterials’ effect on organisms is largely dependent on the dose, size, and shape,
the types of NPs, concentration, and the duration of exposure to NPs and the plant/animal
species [117,118]. Nanoparticles at optimum concentration augment the plant’s growth,
but high concentrations of nanoparticles could be toxic for plants. Kushwah and Patel [119]
observed that the optimum concentration of nano TiO2 in the Vicia faba plant ranged from
5–50 mg/L. Other studies proved that TiO2 NPs may induce stress in plants such as tomato,
cucumber and spinach at high concentration [120]. Silver nanoparticles cause chromosomal
aberrations in Vicia faba [121]. Lopez-Moreno et al. [122] reported that CeO2 nanoparticles
can induce DNA damage in soybean.

5. Conclusions

In summary, the literature shows that food demands will increase with time, and to
fulfill the demand of people, the present agricultural practices are not sufficient and chemi-
cals used in agriculture as pesticides have a severe toxic effect on the environment. Thus,
we need to develop an alternative approach that has a less toxic effect on the environment
and that could help in fulfilling food demands. According to estimates, around 192.8 Mt
chemical fertilizers were used in 2016–2017 in the whole world. The use of toxic chemicals
and pesticides causes environmental pollution, which affects fauna and flora. Pathogens
and pests induce resistance against fungicides and pesticides. Hence, optimizing of the use
of toxic chemical pesticides and fungicides is needed. Nanotechnology is flamboyant and
has provided nanostructure materials as pesticide and fertilizer carriers. Nanomaterials
can develop smart fertilizers as they can enhance nutrient availability and reduce environ-
mental pollution [123]. Novel nanotechnology can be an alternative that can reduce crop
diseases and enhance crop yield. Previous studies reported a significant positive effect of
nanomaterials on crop plants. This novel technology can reduce the use of toxic chemicals
and pesticides that contaminate soil, the environment, and groundwater. Further research
is needed to develop this technology on a large scale (Figure 4).
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