
applied
sciences

Article

BeePIV: A Method to Measure Apis Mellifera Traffic with
Particle Image Velocimetry in Videos

Vladimir Kulyukin 1,*, Sarbajit Mukherjee 1,*, Angela Minichiello 2,* and Tadd Truscott 3,*

����������
�������

Citation: Kulyukin, V.; Mukherjee, S.;

Minichiello, A.; Truscott, T. BeePIV: A

Method to Measure Apis Mellifera

Traffic with Particle Image

Velocimetry in Videos. Appl. Sci. 2021,

11, 2276. https://doi.org/10.3390/

app11052276

Academic Editor: Manuel Armada

Received: 23 January 2021

Accepted: 22 February 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Utah State University, 4205 Old Main Hill, Logan, UT 84322-4205, USA
2 Department of Engineering Education, Utah State University, 4160 Old Main Hill, Logan, UT 84322-4160, USA
3 Department of Mechanical and Aerospace Engineering, Utah State University, 4130 Old Main Hill,

Logan, UT 84322-4130, USA
* Correspondence: vladimir.kulyukin@usu.edu (V.K.); sarbajit.mukherjee@usu.edu (S.M.);

angie.minichiello@usu.edu (A.M.); tadd.truscott@usu.edu (T.T.)

Abstract: Accurate measurement of honeybee (Apis mellifera) traffic in the vicinity of the hive is
critical in systems that continuously monitor honeybee colonies to detect deviations from the norm.
BeePIV, the algorithm we describe and evaluate in this article, is a new significant result in our
longitudinal investigation of honeybee flight and traffic in electronic beehive monitoring. BeePIV
converts frames from bee traffic videos to particle motion frames with uniform background, applies
particle image velocimetry to these motion frames to compute particle displacement vector fields,
classifies individual displacement vectors as incoming, outgoing, and lateral, and uses the respective
vector counts to measure incoming, outgoing, and lateral bee traffic. We evaluate BeePIV on twelve
30-s color videos with a total frame count of 8928 frames for which we obtained the ground truth
by manually counting every full bee motion in each frame. The bee motion counts obtained from
these videos with BeePIV come closer to the human bee motion counts than the bee motion counts
obtained with our previous video-based bee counting methods. We use BeePIV to compute incoming
and outgoing bee traffic curves for two different hives over a period of seven months and observe
that these curves closely follow each other. Our observations indicate that bee traffic curves obtained
by BeePIV may be used to predict colony failures. Our experiments suggest that BeePIV can be used
in situ on the raspberry pi platform to process bee traffic videos.

Dataset: The supplementary materials for our article include three video sets for the reader to
appreciate how BeePIV processes bee traffic videos. Each set consists of three videos. The first video
is an original raw video captured by our deployed BeePi electronic beehive monitoring system; the
second video is the corresponding video that consists of the white background particle motion frames
extracted from the first video; the third video is the video of displacement vectors extracted by PIV
from each pair of consecutive white background frames from the second video. All computation is
executed on a raspberry pi 3 model B v1.2 with four cores.

Keywords: electronic beehive monitoring; particle image velocimetry; video processing; image
processing; bee traffic; bee flight

1. Introduction

Most of the work in a honeybee (Apis mellifera) colony is performed by the female
worker bee whose average life span is approximately six weeks [1]. The worker becomes
a forager in her third or fourth week after spending the first two to three weeks cleaning
cells in the brood nest, feeding and nursing larvae, constructing new cells, receiving
nectar, pollen, and water from foragers, and guarding the hive’s entrance. Foragers are
worker bees mature enough to leave the hive for pollen, nectar, and water [2] and, when
necessary, as scouts in search of new homesteads when their colonies prepare to split
through swarming [3].

Appl. Sci. 2021, 11, 2276. https://doi.org/10.3390/app11052276 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4545-9355
https://orcid.org/0000-0003-1613-6052
https://doi.org/10.3390/app11052276
https://doi.org/10.3390/app11052276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052276
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2276?type=check_update&version=2

Appl. Sci. 2021, 11, 2276 2 of 31

Since robust forager traffic is an important indicator of the well-being of a honeybee
colony, accurate continuous measurement of honeybee traffic in the vicinity of the hive is
critical in electronic beehive monitoring (EBM) systems that monitor honeybee colonies to
detect and report deviations from the norm [4]. In a previous article [5], we presented our
first algorithm based on particle image velocimetry (PIV) to measure directional honeybee
traffic in the vicinity of a Langstroth hive [6]. We proposed to classify bee traffic in the
vicinity of the hive as incoming, outgoing, and lateral. Incoming traffic consists of bees
entering the hive through the landing pad or round holes in hive boxes (also known as
supers). Outgoing traffic consists of bees leaving the hive either from the landing pad or
from box holes. Lateral traffic consists of bees flying, more or less, in parallel to the front
side of the hive (i.e., the side with the landing pad). We proposed to refer to these three
types of traffic as directional traffic and defined omnidirectional traffic as the sum of the
measurements of incoming, outgoing, and lateral traffic [7].

In this article, we present BeePIV, a video-based algorithm to measure omnidirectional
and directional honeybee traffic. The algorithm is a new significant result in our ongoing
longitudinal investigation of honeybee flight and traffic in images and videos acquired
with our deployed BeePi EBM systems [5,7–9]). BeePIV is a significant improvement of
our previous algorithm [5]. Our previous algorithm applied PIV directly to raw video
frames without converting them to frames with uniform background or clustering multiple
motion points generated by a single bee into a single particle, which had a negative effect
on its accuracy. In BeePIV, frames from bee traffic videos are converted to particle motion
frames with uniform white background and multiple motion points generated by a single
bee are clustered into a single particle. PIV is applied to these particle motion frames to
compute particle displacement vector fields. Individual displacement vectors are classified
as incoming, outgoing, and lateral, and the respective vector counts are used to measure
incoming, outgoing, and lateral bee traffic.

BeePIV is guided by our conjecture that there exist functions that map color variation in
videos to video-specific threshold and distance values that can be used to reduce smoothed
difference frames to uniform background frames with motion points. Another conjecture
that we have implemented and partially verified in BeePIV is that color variation can be
used to estimate optimal interrogation window sizes and overlaps for PIV.

We evaluate BeePIV on twelve 30-s color videos with various levels of bee traffic
for which we obtained the ground truth by manually counting every full bee motion in
each frame, which also constitutes a significant improvement on the evaluation of the
previous algorithm whose performance was evaluated only on four 30-s videos. Another
critical difference is that our previous algorithm when tested on the raspberry pi 3 model B
v1.2 platform on 30-s videos, had an unacceptably slow performance of ≈2.5 h per video.
BeePIV, by contrast, has a mean processing time of 2.15 min with a standard deviation of
1.03 min per video when tested on the same raspberry pi 3 model B v1.2 platform.

The remainder of our article is organized as follows. In Section 2, we present related
work. In Section 3, we describe the hardware of the BeePi monitors we built and deployed
on Langstroth hives to acquire bee traffic videos for this investigation and give a detailed
description of BeePIV. In Section 4, we present the experiments we designed to evaluate
the proposed algorithm. In Section 5, we summarize our observations and findings.

2. Related Work

While PIV is one of the most important measurement methods in fluid dynam-
ics [10,11], it has also been used to measure and characterize insect flight patterns and
topologies, because flying insects leave behind air motions that can be captured in regular
or digital photos. PIV analysis of flight patterns improves our understanding of the insects’
behavior and ecology.

Several research groups have used PIV to investigate insect flight. Dickinson et al. [12]
applied PIV to measure fluid velocities of a fruit fly and to determine the contribution
of the leading-edge vortex to overall force production. Bomphrey et al. [13] performed a

Appl. Sci. 2021, 11, 2276 3 of 31

detailed PIV analysis of the flow field around the wings of the tobacco hawkmoth (Manduca
sexta) in a wind tunnel. Flow separation was associated with a saddle between the wing
bases on the surface of the hawkmoth’s thorax. Michelsen [14] used PIV to examine and
analyze sound and air flows generated by dancing honeybees. PIV was used to map the
air flows around wagging bees. It was discovered that the movement of the bee’s body
is followed by a thin (1–2 mm) boundary layer and other air flows lag behind the body
motion and are insufficient to fill the volume left by the body or remove the air from the
space occupied by the bee body. The PIV analysis showed that flows collide and lead to
the formation of short-lived eddies.

Several video-based electronic beehive monitoring (EBM) projects are related to our
research. Rodriguez et al. [15] proposed a system that uses trajectory tracking to distinguish
entering and leaving bees, which works reliably under smaller bee traffic levels. The dataset
used by the researchers to evaluate their system consists of 100 fully annotated frames,
where each frame contains 6–14 honeybees. Babic et al. [16] proposed a system for pollen
bearing honeybee detection in videos obtained at the entrance of a hive. The system’s
hardware includes a specially designed wooden box with a raspberry pi camera module
inside. The box is mounted on the front side of a standard hive above the hive entrance.
A glass plate is placed on the bottom side of the box, 2 cm above the flight board, which
forces the bees entering or leaving the hive to crawl a distance of≈11 cm. Consequently, the
bees in the field of view of the camera cannot fly. The training dataset contained 50 images
of pollen bearing honeybees and 50 images of honeybees without pollen. The test dataset
consisted of 354 honeybee images.

The research reported in this article has been influenced and inspired by our ongoing
research and development work on the mobile instructional particle image velocimetry (mI-
PIV) system [17,18]. The system uses a smartphone’s internal camera for image acquisition
and performs PIV analysis either on a web server or directly on the smartphone running
Android using both open-source and our own PIV algorithms. We have been investigating
the effects of different PIV parameters on the accuracy of the mI-PIV system. This system
is an innovative stepping stone in making PIV less expensive and more widely available,
particularly for application within educational settings. Our main design objective is to
achieve convenience and safety without sacrificing too much accuracy so that the system is
available not only to physics, engineering, and computer science university majors and
professionals but also to high school students who have never had any exposure to PIV
due to the expensive nature of commercial PIV systems.

We have designed and completed various experiments to benchmark the mI-PIV
system as part of our iterative design-based research process. Our main findings are: (1)
average flow velocity appears to be positively correlated with error due to higher in-plane
gradients, particle streaking, greater in-plane motion of particles, and greater out-of-plane
motion of particles associated with higher flow velocities; (2) while the mean bias error of
different open-source PIV algorithms (e.g., OpenPIV [19], JPIV [20], and PIVLab [21]) varies,
the variations are not significant to have appreciable effects on the overall accuracy on
synthetic images; (3) the overall physical image processing times of the web server-based
(images from fluid low videos are taken on a smartphone and processed on a web server)
and smartphone-based (image capture and processing is done on a smartphone running
Android) implementations of the mI-PIV system are similar with the smartphone-based
implementation’s mean processing time being slightly smaller.

3. Materials and Methods
3.1. Hardware and Data Acquisition

The video data for this investigation were captured by BeePi monitors, multi-sensor
EBM systems we designed and built in 2014 [8], and have been iteratively modifying
since then [7,22]. Each BeePi monitor (see Figure 1) consists of a raspberry pi 3 model B
v1.2 computer, a pi T-Cobbler, a breadboard, a waterproof DS18B20 temperature sensor,
a pi v2 8-megapixel camera board, a v2.1 ChronoDot clock, and a Neewer 3.5 mm mini

Appl. Sci. 2021, 11, 2276 4 of 31

lapel microphone placed above the landing pad. All hardware components fit in a single
Langstroth super. BeePi units are powered either from the grid or rechargeable batteries.

(a) BeePi (b) Pi Camera

Figure 1. BeePi monitor (a) on top of Langstroth beehive of 3 supers; BeePi’s hardware components
are in top green super; pi camera (b) is looking down on landing pad and is protected against
elements by wooden box; hardware details and assembly videos are available at [23,24].

BeePi monitors thus far have had six field deployments. The first deployment was
in Logan, UT (September 2014) when a single BeePi monitor was placed into an empty
hive and ran on solar power for two weeks. The second deployment was in Garland,
UT (December 2014–January 2015), when a BeePi monitor was placed in a hive with
overwintering honeybees and successfully operated for nine out of the fourteen days of
deployment on solar power to capture ≈200 MB of data. The third deployment was in
North Logan, UT (April–November 2016) where four BeePi monitors were placed into
four beehives at two small apiaries and captured ≈20 GB of data. The fourth deployment
was in Logan and North Logan, UT (April–September 2017), when four BeePi units were
placed into four beehives at two small apiaries to collect ≈220 GB of audio, video, and
temperature data. The fifth deployment started in April 2018, when four BeePi monitors
were placed into four beehives at an apiary in Logan, UT. In September 2018, we decided
to keep the monitors deployed through the winter to stress test the equipment in the harsh
weather conditions of northern Utah. By May 2019, we had collected over 400 GB of video,
audio, and temperature data. The sixth field deployment started in May 2019 with four
freshly installed bee packages and is still ongoing as of January 2021 with ≈250 GB of data
collected so far. In early June 2020, we deployed a BeePi monitor on a swarm that made
home in one of our empty hives and have been collecting data on it since then.

We should note that, unlike many apiarists, we do not intervene in the life cycle of the
monitored hives in order to preserve the objectivity of our data and observations. For exam-
ple, we do not apply any chemical treatments to or re-queen failing or struggling colonies.

3.2. Terminology, Notation, and Definitions

We use the terms frame and image interchangeably to refer to two-dimensional (2D)
pixel matrices where pixels can be either real non-negative numbers or, as is the case with
multi-channel images (e.g., PNG or BMP), tuples of real non-negative numbers.

We use pairs of matching left and right parentheses to denote sequences of symbols.
We use the set-theoretic membership symbol ∈ to denote when a symbol is either in a
sequence or in a set of symbols. We use the universal quantifier ∀ to denote the fact that
some mathematical statement holds for all mathematical objects in a specific set or sequence

Appl. Sci. 2021, 11, 2276 5 of 31

and use the existential quantifier ∃ to denote the fact that some mathematical statement
holds for at least one object in a specific set or sequence.

We use the symbols ∧ and ∨ to refer to the logical and and the logical or, respectively.
Thus, (∀i ∈ N)(∃j ∈ N)(j > i) states a common truism that for every natural number i
there is another natural number j greater than i.

Let X = (xi1 , . . . xin) and Y = (yj1 , . . . , yjm) be sequences of symbols, where n, m are
positive integers. We define the intersection of two symbolic sequences Z = X ∩ Y in
Equation (1), where l, k are positive integers, zr ∈ X ∧ zr ∈ Y ∧ zr 6= zs whenever r 6= s,
for l ≤ r ≤ l + k and l ≤ s ≤ l + k. If two sequences have no symbols in common, then
X ∩Y = ().

Z = X ∩Y = (zl , . . . , zl+k), (1)

We define a video to be a sequence of consecutive equi-dimensional 2D frames
(Ft, . . . , Fj, . . . , Ft+k), where t, j, and k are positive integers such that t ≤ j ≤ t + k. Thus, if a
video V contains 745 frames, then V = (F1, . . . , Fj, . . . , F745) = (F1, . . . , F1+744), 1 ≤ j ≤ 745.
By definition, videos consist of unique frames so that if Fl ∈ V and Fk ∈ V, then l 6= k.
It should be noted that Fl and Fk may be the same pixelwise. Any smaller sequence of
consecutive frames of a larger video is also a video. For example, if V = (F1, . . . , F745) is a
video, then so are V′ = (F17, . . . , F745) and V′′ = (F5, . . . , F23).

When we discuss multiple videos that contain the same frame symbol Fl or when we
want to emphasize specific videos under discussion, we use superscripts in frame symbols
to reference respective videos. Thus, if videos V′ and V′′ include F23, then FV′

23 designates
F23 in V′ and FV′′

23 designates F23 in V′′.
Let V = (Ft, . . . , Ft+k) be a video, Fl ∈ V, and ∆ be a positive integer. A frame’s

context in V, denoted as KV
l,∆, is defined in Equation (2).

KV
l,∆ = (Fφ(l−∆), Fφ(l−∆+1), . . . , Fφ(l), . . . , Fφ(l+∆)) ∩V, (2)

where

φ(x) =


x if t ≤ x ≤ t + k;
t if x < t;
t + k if x > t + k.

In other words, the context KV
l,∆ of FV

l is a video that consists of a sequence of consec-
utive ∆ or fewer frames (possibly empty) that precede FV

l and a sequence of ∆ or fewer
frames (possibly empty) that follow it. We refer to ∆ as a context size and to KV

l,∆ as the
∆-context or, simply, context of FV

l and refer to FV
l as the contextualized frame of KV

l,∆. If
there is no need to reference V, we omit the superscript and refer to Fl as the contextualized
frame of Kl,∆.

For example, let V = (F1, . . . , F1+4) = (F1, F2, F3, F4, F5), then the 3-context of FV
1 is

KV
1,3 =

(
Fφ(1−3), Fφ(1−2), Fφ(1−1), Fφ(1), Fφ(1+1), Fφ(1+2), Fφ(1+3)

)
∩V =

(F1, F1, F1, F1, F2, F3, F4) ∩ (F1, F2, F3, F4, F5) = (F1, F2, F3, F4).

Analogously, the 2-context of FV
4 is

KV
4,2 =

(
Fφ(4−2), Fφ(4−1), Fφ(4), Fφ(4+1), Fφ(4+2)

)
∩V =

(F2, F3, F4, F5, F5) ∩ (F1, F2, F3, F4, F5) = (F2, F3, F4, F5).

If Fl ∈ V, then Fl(r, c) is the pixel value at row r and column c in Fl . If Fl is a frame
whose pixel values at each position (r, c) are real numbers, we use the notation max{Fl} to
refer to the maximum such value in the frame. If V = (Ft, . . . , Ft+k), then the mean frame

Appl. Sci. 2021, 11, 2276 6 of 31

of V, denoted as FV
µ or Fµ when V can be omitted, is the frame where the pixel value at

(r, c) is the mean of the pixel values at (r, c) of all frames FV
l , as defined in Equation (3).

FV
µ (r, c) =

1
k

t+k

∑
l=t

FV
l (r, c) (3)

If pixels are n-dimensional tuples (e.g., each FV
l is an RGB or PNG image), then each

pixel in FV
µ is an n-dimenstional tuple of the means of the corresponding tuple values in all

frames FV
l .

Let V = (Ft, . . . , Ft+k) be a video, and let ∆ be a context size and KV
l,∆ be the context of

FV
l . The l-th dynamic background frame of V, denoted as BV

l,∆, t ≤ l ≤ t + k, is defined in
Equation (4) as the mean frame of KV

l,∆ (i.e., the mean frame of the ∆-context of FV
l).

BV
l,∆ = F

KV
l,∆

µ (4)

In general, the dynamic background operation specified in Equation (4) is designed to
filter out noise, blurriness, and static portions of the images in a given video. As the third
video set in the supplementary material shows, BeePIV can process videos taken against
the background of grass, trees, and bushes. For an example, consider a 12-frame video V
in Figure 2, and let ∆ = 3. Figure 3 shows 12 dynamic background frames for the video in
Figure 2. In particular, BV

1,3 is the mean frame of KV
1,3 = (F1, F2, F3, F4) of FV

1 ; BV
2,3 is the mean

frame of KV
2,3 = (F1, F2, F3, F4, F5) of FV

2 ; BV
3,3 is the mean frame of KV

3,3 = (F1, F2, F3, F4, F5, F6)

of FV
3 ; and BV

4,3 is the mean frame of KV
4,3 = (F1, F2, F3, F4, F5, F6, F7) of FV

4 . Proceeding to the
right in this manner, we reach BV

12,3, the last contextualized frame of V, which is the mean
frame of KV

12,3 = (F9, F10, F11, F12) of FV
12.

(a) F1 (b) F2 (c) F3 (d) F4

(e) F5 (f) F6 (g) F7 (h) F8

(i) F9 (j) F10 (k) F11 (l) F12

Figure 2. Twelve frames of a video V = (F1, . . . , F12).

Appl. Sci. 2021, 11, 2276 7 of 31

(a) BV
1,3 (b) BV

2,3 (c) BV
3,3 (d) BV

4,3

(e) BV
5,3 (f) BV

6,3 (g) BV
7,3 (h) BV

8,3

(i) BV
9,3 (j) BV

10,3 (k) BV
11,3 (l) BV

12,3

Figure 3. Twelve dynamic background frames of video V in Figure 2 with ∆ = 3.

A neighborhood function maps a pixel position (r, c) in Fl to a set of positions around
it. In particular, we define two neighborhood functions h4(r, c) (see Equation (5)) and
h8(r, c) (see Equation (6)) for the standard 4- and 8-neighborhoods, respectively, used in
many image processing operations. Given a position (r, c) in Fl , the statement (∃(k, l) ∈
h8(r, c))(k < r ∧ l < c) states that the 8-neighborhood of (r, c) includes a position (k, l)
such that k < r and l < c.

h4(r, c) ={(r− 1, c), (r, c− 1), (r, c + 1), (r + 1, c)} (5)

h8(r, c) ={(r− 1, c− 1), (r− 1, c), (r− 1, c + 1),

(r, c− 1), (r, c + 1),

(r + 1, c− 1), (r + 1, c), (r + 1, c + 1)}
(6)

We use the terms PIV and digital PIV (DPIV) interchangeably as we do the terms bee
and honeybee. Every occurrence of the term bee in the text of the article refers to the Apis
Mellifera honeybee and to no other bee species. We also interchange the terms hive and
beehive to refer to a Langstroth beehive hosting an Apis Mellifera colony.

3.3. BeePIV
3.3.1. Dynamic Background Subtraction

Let V = (Fi, . . . , Fj) be a video. In BeePIV, the background frames are subtracted
pixelwise from the corresponding contextualized frames to obtain difference frames. The l-
th difference frame of V, denoted as DV

l,∆, is defined in Equation (7).

DV
l,∆ = FV

l,∆ − BV
l,∆ (7)

The pixels in FV
l,∆ that are closest to the corresponding pixels in BV

l,∆ represent positions
that have remained unchanged over a specific period of physical time over which the
frames in KV

l,∆ were captured by the camera. Consequently, the positions of the pixels
in DV

l,∆ where the difference is relatively high, signal potential bee motions. Figure 4

Appl. Sci. 2021, 11, 2276 8 of 31

shows several difference frames computed from the corresponding contextualized and
background frames of the 12-frame video in Figure 2.

(a) FV
1 (b) BV

1,3 (c) DV
1,3

(d) FV
4 (e) BV

4,3 (f) DV
4,3

(g) FV
7 (h) BV

7,3 (i) DV
7,3

(j) FV
9 (k) BV

9,3 (l) DV
9,3

Figure 4. Difference frames DV
l,∆, for ∆ = 3, computed from contextualized frames FV

1 , FV
4 , FV

7 , FV
9

and corresponding background frames BV
1,3, BV

4,3, BV
7,3, BV

9,3 of 12-frame video V in Figure 2.

Let V = (Ft, . . . , Ft+k) be a video. We now introduce the video difference operator
D∗∆(V) in Equation (8) that applies the operation in Equation (7) to every contextualized
frame FV

l,∆, t ≤ l ≤ t + k.

D∗∆(V) = D∗∆
((

FV
t , . . . , FV

t+k

))
=
(

DV
t,∆, . . . , DV

t+k,∆

)
(8)

For example, if V is the 12-frame video in Figure 2 and ∆ = 3, then D∗3 (V) =
(DV

1,3, . . . , DV
12,3) and D∗3 (V) contains each of the four difference frames (i.e., DV

1,3, DV
4,3,

DV
7,3, DV

9,3) in Figure 4.

3.3.2. Difference Smoothing

A difference frame Dl,∆ may contain not only bee motions detected in the correspond-
ing contextualized frame Fl,∆ but also bee motions from the other frames in the context Kl,∆
or motions caused by flying bees’ shadows or occasional blurriness. In BeePIV, smoothing
is applied to Dl,∆ to replace each pixel with a local average of the neighboring pixels.
Insomuch as the neighboring pixels measure the same hidden variable, averaging reduces
the impact of bee shadows and blurriness without necessarily biasing the measurement,
which results in more accurate frame intensity values. An important objective of difference

Appl. Sci. 2021, 11, 2276 9 of 31

smoothing is to concentrate intensity energy in those areas of Dl,∆ that represent actual bee
motions in Fl,∆.

The smoothing operator, H(Dt,∆, r, c), is defined in Equation (9), where α is a real
positive number and ω is a weighting function assigning relative importance to each
neighborhood position. In the current implementation of BeePIV, α = 8. We will use
the notation St,∆ to denote the smoothed difference frame obtained from Dt,∆ so that
St,∆(r, c) = H(Dt,∆, r, c). We will use the notation H(Dt,∆) = St,∆ as a shorthand for the
application of H(Dt,∆, r, c) to every position (r, c) in Dt,∆ to obtain St,∆. Figure 5 shows
several smoothed difference frames obtained from the corresponding difference frames
where the weights are assigned using the weight function ω(k, l) in Equation (10).

H(Dt,∆, r, c) =
1
α

r+1

∑
k=r−1

c+1

∑
l=c−1

ω(k, l)Dt,∆(k, l) (9)

ω(k, l) =


1 if (k = r ∧ l ∈ {c− 1, c + 1}) ∨ (l = c ∧ k ∈ {r− 1, r + 1});
4 if k = r ∧ l = c;
0 otherwise.

(10)

(a) FV
1 (b) DV

1,3 (c) SV
1,3

(d) FV
4 (e) DV

4,3 (f) SV
4,3

(g) FV
7 (h) DV

7,3 (i) SV
7,3

(j) FV
9 (k) DV

9,3 (l) SV
9,3

Figure 5. Smoothed difference frames SV
1,3, SV

4,3, SV
7,3, SV

9,3 obtained from DV
1,3, DV

4,3, DV
7,3, DV

9,3 corre-
sponding to FV

1 , FV
4 , FV

7 , FV
9 of video V in Figure 2; ∆ = 3, α = 8 (see Equation (9)), and weight

function ω(k, l) is defined in Equation (10); blobs in smoothed difference frames correspond non-static
frame regions where bee motions have been detected.

Let V = (Ft, . . . , Ft+k) and let D∗∆(V) = (DV
t,∆, . . . , DV

t+k,∆). The video smoothing
operator H∗(V) applies the smoothing operator H to every frame in D∗∆(V) and re-

Appl. Sci. 2021, 11, 2276 10 of 31

turns a sequence of smoothed difference frames SV
t,∆, as defined in Equation (11), where

Z = (DV
t,∆, . . . , DV

t+k,∆) is a sequence of difference frames.

H∗∆(Z) = H∗∆
((

DV
t,∆, . . . , DV

t+k,∆

))
=
(

SV
t,∆, . . . , SV

t+k,∆

)
(11)

3.3.3. Color Variation

Since a single flying bee may generate multiple motion points in close proximity as its
body parts (e.g., head, thorax, and wings) move through the air, pixels in close proximity
(i.e., within a certain distance) whose values are above a certain threshold in smoothed
difference frames can be combined into clusters. Such clusters can be reduced to single
motion points on a uniform (white or black) background to improve the accuracy of PIV.
Our conjecture, based on empirical observations, is that a video’s color variation levels
and its bee traffic levels are related and that video-specific thresholds and distances for
reducing smoothed difference frames to motion points can be obtained from video color
variation.

Let V = (Ft, . . . , Ft+k) be a video and let BV
t+k,k (see Equation (4)) be the background

frame of Ft+k with ∆ = k (i.e., the number of frames in V). To put it differently, as
Equation (4) implies, BV

t+k,k is the mean frame of the entire video and contains information
about regions with little or no variation across all frames in V.

A color variation frame, denoted as VARV
l (see Equation (12)), is computed for each FV

l
as the squared smoothed pixelwise difference between FV

l and BV
t+k,k across all image chan-

nels.

VARV
l =

(
H
(

FV
l − BV

t+k,k

))2
(12)

The color variation values from all individual color variation frames VARV
l are com-

bined into one maximum color variation frame, denoted as MXVV (see Equation (13)), for
the entire video V. Each position (r, c) in MXVV holds the maximum value for (r, c) across
all color variation frames VARV

l , where k = argmaxk∈(t,...,t+k)VAR
V
k (r, c). In other words,

MXVV contains quantized information for each pixel position on whether there has been any
change in that position across all frames in the video.

MXVV(r, c) = VARV
k (r, c) (13)

Figure 6 gives the background and maximum color variation frames for a low bee
traffic video V1 and a high bee traffic video V2. The maximum color variation frames are
grayscale images whose pixel values range from 0 (black) to 255 (white). Thus, the whiter
the value of a pixel in a MXVV is, the greater the color variation at the pixel’s position. As can
be seen in Figure 6, MXVV1 has fewer whiter pixels compared to MXVV2 and the higher
color variation clusters in MXVV1 tend to be larger and more evenly distributed across the
frame than the higher color variation clusters in MXVV2 .

The color variation of a video V, denoted as CLVV , is defined in Equation (14) as the
standard deviation of the mean of MXVV . Higher values of CLVV indicate multiple motions;
lower values indicate either relatively few motions or complete lack thereof. We intend to
investigate this implication in our future work.

CLVV = STD(MXVV) (14)

Appl. Sci. 2021, 11, 2276 11 of 31

(a) BV1
745,744 (b) MXVV1

(c) BV2
745,744 (d) MXVV2

Figure 6. V1 is a low bee traffic video with 745 frames; BV1
745,744 is the background frame of V1; MXVV1

is the maximum color variation frame for V1; V2 is a high bee traffic video with 745 frames; BV2
745,744 is

the background frame of V2; MXVV2 is maximum color variation frame for V2.

We postulate in Equation (15) the existence of a function Γ : R→ R×R from reals to
2-tuples of reals that maps color variation values for videos (i.e., CLVV) to video-specific
threshold and distance values that can be used to reduce smoothed difference frames to
uniform background frames with motion points. In Section 4.2, we define one such Γ
function in Equation (33) and evaluate it in Section 4.3, where we present our experiments
on computing the PIV interrogation window size and overlap from color variation.

Γ
(
CLVV

)
=
(

ΘV , dV
)

(15)

Suppose there is a representative sample of bee traffic videos C = {V1, . . . , Vn} ob-
tained from a deployed BeePi monitor. Let CLVl and CLVu be experimentally observed lower
and upper bounds, respectively, for the values of CLVV . In other words, for any V ∈ C,
CLVl ≤ CLVV ≤ CLVu. Let θl and θu be the experimentally selected lower and upper bounds,
respectively, for CLV, that hold for all videos in the sample. Then ΘV in Equation (15) can
be constrained to lie between θl and θu, as shown in Equation (16).

ΘV = θl + (θu − θl)(CLV
V − CLVl)/(CLVu − CLVl) (16)

The frame thresholding operator, TΘV (St,∆), is defined in Equation (17), where, for any
position (r, c) in SV

t,∆, SΘV

t,∆ (r, c) = SV
t,∆(r, c) if SV

t,∆(r, c) ≥ ΘV and SΘV

t,∆ (r, c) = 0, otherwise.
The video thresholding operator, T∗ΘV (Z), applies TΘV to every frame in H∗(Z) and returns

a sequence of smoothed tresholded difference frames SΘV

t,∆ , as defined in Equation (18),

where Z =
(

SV
t,∆, . . . , SV

t+k,∆

)
.

TΘV

(
St,∆

)
= SΘV

t,∆ . (17)

T∗ΘV

(
Z
)
=
(

TΘV

(
St,∆

)
, . . . , TΘV

(
St+k,∆

))
=
(

SΘV

t,∆ , · · ·, SΘV

t+k,∆

)
. (18)

In Section 4.2, we give the actual values of θl and θu we found by experimenting with
the videos on our testbed dataset. Figure 7 shows the background frame of the video in
Figure 2 and the value of ΘV computed from MXVV for the video. Figure 8 shows the impact

Appl. Sci. 2021, 11, 2276 12 of 31

of smoothing difference frames with the smoothing operation H (see Equation (9)) and
then thresholding them with ΘV computed from MXVV .

(a) BV
12,11 (b) MXVV

Figure 7. Background frame BV
12,11 (a) for 12 frames of video V in Figure 2 and (b) corresponding

MXVV for V that holds values and positions of highest color variations across all 12 frames in V;
value of CLVV computed from MXVV is 13.59; value of ΘV is 11.35; ΘV is computed by Γ function
in Equation (33) in Section 4.2.

(a) FV
1 (b) DV

1,3 (c) SΘV

1,3

(d) FV
4 (e) DV

4,3 (f) SΘV

4,3

(g) FV
7 (h) DV

7,3 (i) SΘV

7,3

(j) FV
9 (k) DV

9,3 (l) SΘV

9,3

Figure 8. Frames FV
1 , FV

4 , FV
7 , FV

9 in left column are from video V in Figure 2; frames
DV

1,3, DV
4,3, DV

7,3, DV
9,3 in middle column are corresponding difference frames computed from frames in

left column; frames SΘV

1,3 , SΘV

4,3 , SΘV

7,3 , SΘV

9,3 are computed from corresponding frames in middle column
by smoothing them and thresholding their pixel values at ΘV = 11.35.

Appl. Sci. 2021, 11, 2276 13 of 31

The values of ΘV are used to threshold smoothed difference frames St,∆ from a video
V and the values of dV , as we explain below, are used to determine which pixels are in
close proximity to local maxima and should be eroded. Higher values of ΘV indicate the
presence of higher bee traffic and, consequently, must be accompanied by smaller values
dV between maxima points, because in higher traffic videos, multiple bees fly in close
proximity to each other. On the other hand, lower values of ΘV indicate lower traffic and
must be accompanied by higher values of dV , because in lower traffic videos bees typically
fly farther apart.

3.3.4. Difference Maxima

Equation (19) defines a maxima operator M4(r, c) that returns 1 if a given position in
a smooth thresholded difference frame SΘV

t,∆ is a local maxima by using the neighborhood
function h4(r, c) in Equation (5). By analogy, we can define M8(r, c), another maxima oper-
ator to do the same operation by using the neighborhood function h8(r, c) in Equation (6).

M4

(
SΘV

t,∆ , r, c
)
=

{
1 if SΘV

t,∆ (r, c) > SΘV

t,∆ (k, l), ∀(k, l) ∈ h4(r, c);
0 if SΘV

t,∆ (r, c) < SΘV

t,∆ (k, l), ∃(k, l) ∈ h4(r, c).
(19)

We will use the notation Mn(SΘV

t,∆) = SV
bt,∆

, where n is a positive integer (e.g., n = 4 or

n = 8), as a shorthand for the application of Mn(SΘV

t,∆ , r, c) to every position of (r, c) in SΘV

t,∆
to obtain the frame SV

bt,∆
. The symbol b in the subscript of SV

bt,∆
indicates that this frame is

binary, where, per Equation (19), 1’s indicate positions of local maxima. Figure 9 shows that
application of M4 to a 4× 4 smoothed difference frame SΘV

t,∆ to obtain the corresponding
SV

bt,∆
.
The video maxima operator M∗n(Z) applies the maxima operator Mn to every frame

in a sequence of smoothed thresholded difference frames SΘV

t,∆ , and returns a sequence of

binary difference frames, as defined in Equation (20), where Z = (SΘV

t,∆ , · · ·, SΘV

t+k,∆) is a
sequence of smoothed thresholded difference frames.

M∗n
(

Z
)
=
(

Mn

(
SΘV

t,∆

)
, . . . , Mn

(
SΘV

t+k,∆

))
=
(

SV
bt,∆

, . . . , SV
bt+k,∆

)
(20)

3.3.5. Difference Maxima Erosion

Let P be the sequence of (r, c) positions of all maxima points in the frame Mn(SΘV

t,∆).
For example, in Figure 9, P = ((1, 1), (1, 3), (3, 2), (4, 4)). We define an erosion operator
EdV (SV

bl,∆
) that, given a distance dV , constructs the set P, sorts the positions (r, c) in P by

their i coordinates, and, for every position (r, c) such that SV
bl,∆

(r, c) = 1, sets the pixel

values of all the positions that are within dV pixels of (r, c) in SV
b,l,∆ to 0 (i.e., erodes them).

We let RV
bl,∆

refer to the smoothed and eroded binary difference frame obtained from Sbl,∆

after erosion and define the erosion operator E in Equation (21).

EdV

(
SV

bl,∆

)
= RV

bl,∆
(21)

The application of the erosion operator is best described algorithmically. Consider the
4× 4 binary difference frame in Figure 10a. Recall that this frame is the frame in Figure 9b
obtained by applying the maxima operator M4 to the frame in Figure 9a. After M4 is
applied, the sequence of the local maxima positions is P = ((1, 1), (1, 3), (3, 2), (4, 4)).

Let us set the distance parameter dV of the erosion operator to 4 and compute E4(Sbl,∆
).

As the erosion operator scans Sbl,∆
left to right, the positions of the eroded maxima are

saved in a dynamic lookup array (let us call it I) so that the previously eroded positions
are never processed more than once. The array I holds the index positions of the sorted

Appl. Sci. 2021, 11, 2276 14 of 31

pixel values at the positions in P. Initially, in our example, I = [4, 1, 3, 2], because the pixel
values at the positions in P, sorted from lowest to highest, are [125.50, 134.00, 136.00, 143.00]
so that the value 125.50 is at position 4 in P, the value 134.00 at position 1, the value 136.00
at position 3, and the value 143 at position 2. In other words, the pixel value at (4, 4) is the
lowest and the pixel value at (1, 3) the highest. For each value in I which has not yet been
processed, the erosion operator computes the euclidean distance between its coordinates
and the coordinates of each point to the right of it in I that has not yet been processed.
For example, in the beginning, when the index position is at 1, the operator computes the
distances between the coordinates of position 1 and the coordinates of positions 2, 3, and 4.


134.00 71.75 143.00 64.34
93.64 102.96 107.66 100.70
99.10 136.00 126.89 124.69
83.48 103.32 120.09 125.50


(a). SΘV

t,∆


1 0 1 0
0 0 0 0
0 1 0 0
0 0 0 1


(b). SV

bt,∆

Figure 9. (a) Smoothed thresholded difference frame SΘV

t,∆ ; (b) SV
bt,∆

= M4(SΘV

t,∆); positions of local

maxima in SV
bt,∆

are (1,1), (1,3), (3,2), and (4,4); the values at these positions in SV
t,∆ are bolded.


1 0 1 0
0 0 0 0
0 1 0 0
0 0 0 1


(a). Sbl,∆


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


(b). Rbl,∆

Figure 10. (a) Binary difference frame Sbl,∆
; (b) eroded frame Rbl,∆

= E4(Sbl,∆
), where P =

((1, 1), (1, 3), (3, 2), (4, 4)) and dV = 4.

If the current point in I is at (r1, c1), a point to the left of it in I is at (r2, c2), then

d′ =
√
(r1 − r2)

2 + (c1 − c2)
2 is the distance between them. If d′ < dV , the point at (r2, c2)

is eroded and is marked as such. The erosion operator continues to loop through I, skipping
the indices of the points that have been eroded. In this example, the positions 2 and 3 in P
are eroded. Thus, the frame Rbl,∆

shown in Figure 10b, has 1’s at positions (1, 1) and (4, 4)
and 0’s everywhere else.

Since the erosion operator is greedy, it does not necessarily ensure the largest pixel
values are always selected, because their corresponding positions may be within the
distance dV of a given point whose value may be lower. In our example, the largest pixel
value 143 at position (1, 3) is is eroded, because it is within the distance threshold from
(1, 1), which is considered first.

A more computationally involved approach to guarantee the preservation of relative
local maxima is to sort the values in Sbl,∆

in descending order and continue to erode the
positions within dV pixels of the position of each sorted maxima until there is nothing else
to erode. In practice, we found that this method does not contribute to the accuracy of the
algorithm due to the proximity of local maxima to each other. To put it differently, it is
the positions of the local maxima that matter, not their actual pixel values in smoothed
difference frames in that the motion points generated by the multiple body parts of a flying
bee have a strong tendency to cluster in close proximity.

The video erosion operator E∗dV (V) applies the erosion operator EdV to every frame
in a sequence of binary difference frames SV

bl,∆
and returns a sequence of corresponding

eroded frames RV
bl,∆

, as defined in Equation (22), where Z = (SV
bt,∆

, . . . , SV
bt+k,∆

) is a sequence
of difference frames.

Appl. Sci. 2021, 11, 2276 15 of 31

E∗dV (Z) = E∗dV

(
SV

bt,∆
, . . . , SV

bt+k,∆

)
=
(

RV
bt,∆

, . . . , RV
bt+k ,∆

)
(22)

The positions of 1’s in each Rbl,∆
are treated as centers of small circles whose radius is

1/β of the width of Rbl,∆
, where β = 50 in our current implementation. The β parameter,

in effect, controls the size of the motion points for PIV. After the black circles are drawn
on a white background the frame Rbl,∆

becomes the frame Wl . We refer to Wl frames as
motion frames and define the drawing operator Jβ in Equation (23), where Wl is obtained
by drawing at each position with 1 in Rbl,∆

a black circle with a radius of 1/β of the width
of Rbl,∆

.

Jβ(Rbl,∆
) = Wl (23)

Figure 11 shows twelve motion frames obtained from the twelve frames in Figure 2.
Figure 12 shows the detected motion points in each motion frame Wl plotted on the corre-
sponding original frame Fl from which Wl was obtained. The motion frames Wl record bee
motions reduced to single points and constitute the input to the PIV algorithm described
in the next section.

The video drawing operator J∗β(V) applies the drawing operator Jβ to every frame in
a sequence of eroded frames Rbl,∆

and returns a sequence of the corresponding white back-
ground frames with black circles Wl , as defined in Equation (24), where Z = (Rbt,∆ , . . . , Rbt+k,∆

)
is a sequence of eroded frames. The sequence of motion frames is given to the PIV algorithm
described in the next section.

J∗β(Z) =
(

Jβ

(
Rbt,∆

)
, . . . , Jβ

(
Rbt+k,∆

))
=
(

Wt, . . . , Wt+k

)
(24)

(a) W1 (b) W2 (c) W3 (d) W4

(e) W5 (f) W6 (g) W7 (h) W8

(i) W9 (j) W10 (k) W11 (l) W12

Figure 11. Motion frames W1 to W12 obtained from original frames F1 to F12 in Figure 2.

Appl. Sci. 2021, 11, 2276 16 of 31

(a) F1 (b) F2 (c) F3 (d) F4

(e) F5 (f) F6 (g) F7 (h) F8

(i) F9 (j) F10 (k) F11 (l) F12

Figure 12. Motion points from motion frames W1 to W12 in Figure 11 plotted on original frames F1 to
F12 in Figure 2 from which motion frames were obtained.

3.3.6. PIV and Directional Bee Traffic

Let (Wt, . . . , Wt+k) be a sequence of motion frames and let Wl and Wl+1 be two consec-
utive motion frames in this sequence that correspond to original video frames Fl and Fl+1.
Let IA1 be a D× D window, referred to as interrogation area or interrogation window in
the PIV literature, selected from Wl and centered at position (i, j). Another D′×D′ window,
IA2, is selected in Wl+1 so that D ≤ D′. The position of IA2 in Wl+1 is the function of the
position of IA1 in Wl in that it changes relative to IA1 to find the maximum correlation
peak. For each possible position of IA1 in Wl , a corresponding position IA2 is computed
in Wl+1.

C(r, s) =
D−1
∑

i=0

D−1
∑

j=0
IA1(i, j)IA2(i + r, j + s) (25)

The 2D matrix correlation is computed between IA1 and IA2 with the formula in
Equation (25), where r, s are integers in the interval [−b(D + D′ − 1)/2c, . . . , b(D + D′ −
1)/2c]. In Equation (25), IA1(i, j) and IA2(i + r, j + s) are the pixel intensities at locations
(i, j) in Wl and (i + r, j + s) in Wl+1. For each possible position (r, s) of IA1 inside IA2, the
correlation value C(r, s) is computed. If the size of IA1 is M× N and the size of IA2 is
P×Q, then the size of the matrix C is (M + P− 1)× (N + Q− 1).

The matrix C records the correlation coefficient for each possible alignment of IA1
with IA2. A faster way to calculate correlation coefficients between two image frames is to
use the Fast Fourier Transform (FFT) and its inverse, as shown in Equation (26). The reason
why the computation of Equation (26) is faster than the computation of Equation (25) is
that IA1 and IA2 must be of the same size.

C(r, s) = <[FFT−1(FFT∗(IA1) · FFT(IA2))] (26)

If C(rm, sm) is the maximum value in C and (ic, jc) is the center of IA1, the pair
of (ic, jc) and (rm, sm) defines a displacement vector ~vic ,jc ,rm ,sm from (ic, jc) in Wl to (ic +
rm, jc + sm) in Wt+1. This vector represents how particles may have moved from Wl to
Wl+1. The displacement vectors form a vector field used to estimate possible flow patterns.

Appl. Sci. 2021, 11, 2276 17 of 31

Figure 13 shows two frames F3 and F4, two corresponding motion frames W3 and W4
obtained from them by the application of the operator in Equation (24), and the vector
field VF4 computed from W3 and W4 by Equation (26). The two displacement vectors
correspond to the motions of two bees with the left bee moving slightly left and the right
bee moving down and right.

(a) F3 (b) F4

(c) W3 (d) W4

(e) VF4

Figure 13. F3 and F4 are original frames from12 to frame video in Figure 2 with two moved bees
marked with green polygons in F4; W3 and W4 are corresponding motion frames obtained from F3

and F4, respectively; vector field VF4 is generated from W3 and W4 with PIV in Equation (26).

In Equation (27), we define the PIV operator that applies to two consecutive motion
frames Wl and Wl+1 to generate a field of displacement vectors VFl+1. The video PIV
operator G∗(V) applies the PIV operator G to every pair of consecutive motion frames Wl
and Wl+1 in a sequence of motion frames and returns a sequence of vector fields VFl+1,
as defined in Equation (28), where Z = (Wt, . . . , Wt+k) is a sequence of eroded frames. It
should be noted that the number of motion frames in Z exceeds the number of the vector
fields returned by the video PIV operator by exactly 1.

G
(

Wl , Wl+1

)
= VFl+1 (27)

G∗(Z) =
(

G
(

Wt, Wt+1

)
, . . . , G

(
Wt+k−1, Wt+k

))
=
(

VFt+1, . . . , VFt+k

)
(28)

After the vector fields are computed by the G operator for each pair of consecutive
motion frames Wt and Wt+1, the directions of the displacement vectors are used to estimate
directional bee traffic. Each vector is classified as lateral, incoming, or outgoing according to
the value ranges in Figure 14. A vector ~v is classified as outgoing if its direction is in the

Appl. Sci. 2021, 11, 2276 18 of 31

range [11◦, 170◦], as incoming if its direction is in the range [−11◦,−170◦], and as lateral
otherwise.

Figure 14. Degree ranges used to classify PIV vectors as lateral, incoming, and outgoing.

Let Wl and Wl+1 be two consecutive motion frames from a video V. Let Iw(Wl , Wl+1),
Ow(Wl , Wl+1), and Lw(Fl , Fl+1) be the counts of incoming, outgoing, and lateral vectors.
If Z = (Wt, . . . , Wt+k) is a sequence of k motion frames obtained from V, then Iw, Ow,
and Lw can be used to define three video-based functions I∗w(Z), O∗w(Z), and L∗w(Z) that
return the counts of incoming, outgoing, and lateral displacement vectors for Z, as shown
in Equation (29).

I∗w(Z) =
t+k

∑
j=t

Iw(Zj, Zj+1)

O∗w(Z) =
t+k

∑
j=t

Ow(Zj, Zj+1)

L∗w(Z) =
t+k

∑
j=t

Lw(Zj, Zj+1)

(29)

For example, let Z = (W1, W2, W3) such that Iw(W1, W2) = 10, Ow(W1, W2) = 4,
Lw(W1, W2) = 3 and Iw(W2, W3) = 2, Ow(W2, W3) = 7, Lw(W2, W3) = 5. Then, I∗w(Z) =
Iw(W1, W2) + Iw(W2, W3) = 10 + 2 = 12, O∗w(Z) = Ow(W1, W2) + Ow(W2, W3) = 4 + 7 =
11, and L∗w(Z) = Lw(W1, W2) + Lw(W2, W3) = 3 + 5 = 8.

We define the video motion count operator in Equation (30) as the operator that
returns a 3-tuple of directional motion counts obtained from a sequence of motion frames
Z with I∗w, O∗w, and L∗w.

Q∗(Z) =
(

I∗w(Z), O∗w(Z), L∗w(Z)
)

(30)

Appl. Sci. 2021, 11, 2276 19 of 31

3.3.7. Putting It All Together

We can now define the BeePIV algorithm in a single equation. Let V = (Ft, . . . , Ft+k)
be a video. Let the video’s color variation (i.e., CLVV) be computed with Equation (14)
and let the values of ΘV , and dV be computed from CLVV with Equation (15). We also
need to select a context size ∆ and the parameter β for the circle drawing operator J∗β in
Equation (24) to generate motion frames Wl .

F∗(V) = Q∗
(

G∗
(

J∗β
(

E∗dV

(
M∗n
(

T∗ΘV

(
H∗∆
(

D∗∆
(

V
))))))))

(31)

The BeePIV algorithm is defined in Equation (31) as the operator F∗ that applies to
a video V. The operator is a composition of operators where each subsequent operator
is applied to the output of the previous one. The operator starts by applying the video
difference operator D∗∆ in Equation (8) to subtract from each contextualized frame FV

t,∆ its
background frame BV

t,∆. The output of D∗∆ is given to the video smoothing operator H∗∆
in Equation (11). The smoothed frames produced by H∗∆ are given to the video maxima
operator M∗n in Equation (20) to detect positions of local maxima. The frames produced
by M∗n are given to the video erosion operator E∗dV in Equation (22). The eroded frames
produced by E∗dV are processed by the video drawing operator J∗β in Equation (24) that
turns these frames into white background motion frames and gives them to the video
motion count operator Q∗ in Equation (30) to return the counts of incoming, outgoing, and
lateral displacement vectors. We refer to Equation (31) as the BeePIV equation. Figure 15
gives a flowchart of the BeePIV algorithm.

Figure 15. Flowchart of BeePIV.

4. Experiments
4.1. Curated Video Data

We used thirty-two 30-s videos for our experiments from two BeePi monitors. Both
monitors were deployed in an apiary in Logan, Utah, USA from May to November 2018.
The raw videos captured by BeePi monitors have a resolution of 1920 × 1080 pixels, H.264
Codec, and a frame rate of 25 frames per second. In our current implemented version of

Appl. Sci. 2021, 11, 2276 20 of 31

BeePIV with which we performed the experiments described in this section, each video
frame is resized to a resolution of 60 × 80 for faster processing on the raspberry pi platform.

We selected the videos to reflect varying levels of bee traffic across different back-
grounds and under different weather conditions. Of these videos, we randomly selected 20
videos for our experiments to obtain plausible, data-driven parameters for the Γ function
in Equation (15) and ΘV in Equation (16) and evaluate the experimental findings on the
remaining 12 videos. We refer to the set of 20 videos as the testbed set and to the set of
12 videos as the evaluation set. By using these terms we seek to avoid confusion with the
terms training set and testing set prevalent in the machine learning literature, because
BeePIV does not use machine learning techniques.

For ease of reference and interpretation of the plots in this section, we explicitly state
that our testbed consisted of videos 5–8 and videos 10–25 and our evaluation set consisted
of videos 1–4, 9, and 26–32. Since our testbed set contained 20 videos, each of which had
744 frames with the raspberry pi camera’s frame capture rate of ≈25 frames per second, the
total frame count for this set was 14,880 (i.e., 744× 20). Since our evaluation set included
12 color videos, each of which had 744 frames, the total frame count for this set was 8928
(i.e., 744× 12).

For each video in both sets, we manually counted full bee motions in each frame and
took the number of bee motions in the first frame of each video (Frame 1) to be 0. A full bee
motion occurs when the entire body of a bee (tail, thorax, wings, head) moves from frame
to frame. If a bee’s head or tail appears in a frame, it is not considered a full bee motion. In
each subsequent frame, we counted the number of full bees that moved when compared
to their positions in the previous frame. We also counted as full bee motions in a given
frame (except in Frame 1) bees flying into the camera’s field of view that were abscent in
the previous frame.

For 27 out of the 32 videos we also marked each moving bee with polygons of
different colors easily distinguishable from the background, as shown in Figure 16, for
faster verification of each other’s counts. We compiled a CSV file for each curated video
with a count of bee motions in each frame. For example, the CSV file for the video out of
which the two frames in Figure 16 were taken, has entries 2 for Fl and 3 for Fl+1, because Ft
has 2 marked bee motions and Fl+1 has 3 marked bee motions. It took us ≈10 h to curate
each video for a total of ≈320 h of manual video curation. Higher traffic videos took, on
average, 2–3 h longer to curate than lower traffic videos. We used the 32 CSV files with
manual bee motion counts as the ground truth for our experiments. In all 32 videos, we
identified 25,090 full bee motions: 20,590 motions in the testbed dataset and 4500 in the
evaluation dataset.

(a) Fl (b) Fl+1

Figure 16. Two consecutive curated frames from a BeePi video; in both frames each full bee motion
was marked by a human curator with a green polygon.

Appl. Sci. 2021, 11, 2276 21 of 31

4.2. Color Variation Threshold and Erosion Distance

We re-state, for ease of reference, Equation (14) for the color variation CLVV of a video
V and Equation (16) for the color variation’s scaled threshold ΘV .

CLVV = STD(MXVV)

ΘV = θl + (θu − θl)(CLV
V − CLVl)/(CLVu − CLVl)

When we computed CLVV for each video in the testbed set, we observed that the
rounded values of CLVV ranged from 5 to 210 and set CLVl to 5 and CLVu to 210. We also
observed that for all of the videos the rounded values of CLVV ranged from 9 to 65. In par-
ticular, for the videos with lower bee traffic, CLVV tended toward 9 and for the videos with
higher bee traffic–toward 65. Thus, we set the values of θl and θu to 9 and 65, respectively.
Consequently, in the current implementation of BeePIV, the value of ΘV is computed
according to Equation (32).

ΘV = 9.0 +
65.0− 9.0

210.0− 5.0
(CLVV − 5.0) = 9.0 +

56.0
205.0

(CLVV − 5) ≈ 9.0 + 0.27(CLVV − 5.0) (32)

Recall that in Equation (15) we postulated the existence of functions Γ : R→ R×R
from reals to 2-tuples of reals that maps video-specific color variation CLVV values to
video-specific color variation threshold ΘV and erosion distance dV values that are used to
convert smoothed difference frames St,∆ to motion frames Wt with uniform background.
In the current implementation of BeePIV, the function Γ(CLVV) is computed in accordance
with Equation (33).

Γ(CLVV) = (ΘV , γ(ΘV)), (33)

where

γ(x) =

{
5 if 0 ≤ x < 22;
3 if 22 ≤ x.

In Equation (33), we chose the specific ranges for dV in γ(x) on the basis of our
experiments with the 20 videos in the testbed set. We observed that the ΘV values computed
from the videos with lower to medium bee traffic ranged from 9 to≈21.5 and for the videos
with medium to higher traffic ranged from 22 to 65. The average size of an individual
honey bee in 60 × 80 video frames that BeePIV processes is ≈10 pixels. In lower traffic
videos, where bees do not tend to fly in close proximity, we chose to set the value of dV

to approximately 1/2 the size of the bee so that local maxima positions that farther apart
than half the bee are not eroded. In higher traffic videos, where bees tend to fly in closer
proximity, we set the value of dV to approximately 1/3 the size of the bee so that local
maxima positions that are farther apart than a third of the bee are not eroded.

4.3. Interrogation Window Size and Overlap in PIV

To estimate the optimal values for the interrogation window size (i.e., the size of IA1
and IA2) and window overlap (see Equation (26)), we ran a grid search on the videos in
the testbed set. Since we use the FFT version of the correlation equation, IA1 and IA2 are
of the same size in BeePIV.

For the grid search, we tested all D×D interrogation windows, where 8 ≤ D ≤ 19, in
increments of 1. We chose values for the grid search, because the mean size of an individual
honey bee is ≈10 pixels. Thus, the dimension of the smallest 8× 8 interrogation window is
two pixels below the mean bee’s size and the dimension of the largest 19× 19 interrogation
window is almost twice the mean bee’s size.

The control flow of the grid search was as follows. For each video V in the testbed
set, for each window size in the interval [8, 19], for each overlap from 1% to 70%, we used
the BeePIV Equation (see Equation (31)) to compute the counts of incoming, outgoing,
and lateral displacement vectors (i.e., I∗w, O∗w, L∗w, respectively). For each video, the overall
omnidirectional count was computed as I∗w + O∗w + L∗w and was compared with the human
ground truth count for the video in the corresponding CSV file. The absolute difference

Appl. Sci. 2021, 11, 2276 22 of 31

between the BeePIV count and human count (i.e., the absolute error) was recorded. Table 1
gives the interrogation window size and overlap for each video that resulted in the smallest
absolute error for that video.

Table 1. Interrogation window size and overlap for each video in testbed that resulted in smallest
absolute error between BeePIV and human counts for that video; values in BeePIV column are I∗w(Z)+
O∗w(Z) + L∗w(Z), where Z is motion frame sequence of corresponding video V; values in Err column
are absolute differences between corresponding values in Human Count and BeePIV columns.

Video # Window Overlap (%) BeePIV Human Count Error

5 17 12 75 75 0

6 17 18 231 239 8

7 12 25 71 74 3

8 10 40 360 361 1

10 12 25 368 357 11

11 12 1 374 373 1

12 17 12 339 348 9

13 8 25 174 176 2

14 12 25 208 208 0

15 10 40 456 456 0

16 10 40 263 270 7

17 12 17 157 154 3

18 12 1 294 294 0

19 17 24 14 17 3

20 12 1 65 60 5

21 8 25 419 432 13

22 10 20 101 101 0

23 12 30 249 247 2

24 12 30 168 168 0

25 17 12 90 90 0

On the basis of the grid search, we designed two functions β1(ΘV) : R → R× R,
defined in Equation (34), and β2(ΘV) : R→ R×R, defined in Equation (35), to map color
variation (i.e., ΘV) to 2-tuples of interrogation window sizes and overlaps.

The function β1, to which we henceforth refer as the DPIV_A method, splits the
observed ΘV values into three intervals and outputs the mean window size and overlap
of all window sizes and overlaps tried during the grid search that resulted in BeePIV
achieving the smallest absolute error on all testbed videos whose ΘV values fall in the
corresponding range (e.g., 0 ≤ ΘV < 18).

β1(ΘV) =


(17, 12) if 0 ≤ ΘV < 18;
(17, 18) if 18 ≤ ΘV < 36;
(17, 30) if ΘV ≥ 36.

(34)

The function β2, to which we henceforth refer as the DPIV_B method, splits the
observed ΘV values into five intervals and outputs the mean window size and overlap
of all window sizes and overlaps tried during the grid search that resulted in BeePIV
achieving the smallest absolute error on all testbed videos whose ΘV values fall in the

Appl. Sci. 2021, 11, 2276 23 of 31

corresponding range (e.g., 13 ≤ ΘV < 16). Both methods reflect the general strategy of
increasing the size of the interrogation window or the amount of overlap as ΘV increases.

β2(ΘV) =



(15, 20) if 0 ≤ ΘV < 13;
(21, 22) if 13 ≤ ΘV < 16;
(25, 28) if 16 ≤ ΘV < 19;
(26, 31) if 19 ≤ ΘV < 21;
(27, 50) if ΘV ≥ 21.

(35)

4.4. Omnidirectional Bee Traffic

In our previous article [5], we proposed a two-tier algorithm for counting bees in
videos that couples motion detection with image classification. The algorithm uses motion
detection to extract candidate bee regions and applies trained image classifiers (e.g., a
convolutional network (ConvNet) or a random forest) to classify all candidate region as
containing or not containing a bee. The algorithm is agnostic to motion detection or image
classification methods insomuch as different motion detection and image classification
algorithms can be paired and tested. We experimented with pairing three motion detec-
tion algorithms in OpenCV 3.0.0 (KNN [25], MOG [26], and MOG2 [27]) with manually
and automatically designed ConvNets, support vector machines, and random forests to
count bees in 4 manually curated videos of bee traffic. We curated these 4 videos in the
same way as the 32 videos described in this article. Our experiments identified the fol-
lowing four best combinations MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS3,
MOG2/ConvNetGS4 (see our previous article [5] for the details of how we trained and
tested the convolutional networks VGG16, ResNet32, ConvNetGS3, and ConvNetGS4).

We compared the performance of BeePIV with DPIV_A (see Equation (34)), BeePIV
with DPIV_B (see Equation (35)), MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS3,
and MOG2/ConvNetGS4 on the twelve videos in our evaluation dataset in terms of
absolute omnidirectional error. Figure 17 shows the result of our comparison. The ab-
solute omnidirectional error was the smallest for DPIV_B for each video with DPIV_A
being close second. The methods MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS3,
MOG2/ConvNetGS4 performed on par with DPIV_A and DPIV_B on lower traffic videos
but overcounted bee motions in higher traffic videos. Table 2 gives the PIV parameters we
used in this experiment.

Figure 17. Absolute omnidirectional error of six bee counting algorithms on twelve evalua-
tion videos; VGG16 refers to MOG2/VG16; ResNet32 refers to MOG2/ResNet32; GS3 refers to
MOG2/ConvNetGS3; GS4 refers to MOG2/ConvNetGS4.

Appl. Sci. 2021, 11, 2276 24 of 31

Table 2. PIV parameters used in absolute error comparison experiments.

Parameter Value

Img. Size 60× 80

Inter. Win. Correlation FFT

Signal to Noise Ratio peak1/peak2 with a threshold of 0.05

Spurious Vector Replacement local mean with kernel size of 2 and max. iter. limit of 15

4.5. Directional Bee Traffic

We cannot use our evaluation dataset for evaluating the directional bee counts of
BeePIV (either with DPIV_A or DPIV_B), because we curated the videos for omnidirectional
bee traffic (i.e., bee motions in any direction). Curating the videos for directional bee traffic
would involve marking each detected bee motion in every frame as incoming, outgoing,
and lateral, and specifying the angle of each motion with respect to a fixed coordinate
system. We currently lack sufficient resources for this type of curation.

We can, however, use an indirect approach based on the hypothesis that in a typical
hive the levels of incoming and outgoing bee traffic should match fairly closely over a
given period of time, because all foragers (or most of them) that leave the hive eventually
come back. If we consider the incoming and outgoing bee motion counts obtained with
BeePIV as time series, we are likely to see that, in the long run, the incoming and outgoing
series should follow each other fairly closely. Hives for which this is not the case may be
failing or struggling.

We used the indirect approach outlined in the previous paragraph to estimate the
performance of BeePIV (see Equation (31)) with DPIV_B (see Equation (35)) on all videos
captured with the BeePi monitors deployed on the two beehives from May to November,
2018. Each BeePi monitor recorded a 30-s video every 15 min from 8:00 to 21:00. Thus,
there were 4 videos every hour with a total 52 videos each day. We refer to these hives
as R_4_5 and R_4_7 to describe and analyze our directional bee traffic experiments. Both
hives were located in the same apiary in Logan, Utah ≈10 m apart. Although we had four
monitored hives in that apiary, we chose to use the data from R_4_5 and R_4_7, because
the BeePi monitors on these hives had the least number of hardware failures during the
2018 beekeeping season (May–November, 2018). R_4_5 was in sunlight from early morning
until 12:00; R_4_7 remained in the shade most of the day and received sunlight from 16:30
to 18:30.

In our first experiment, we randomly chose 2 days from each month from May to
August, 2018 (most active period in terms of bee traffic) from R_4_5 and R_4_7 to compute
the incoming and outgoing bee motion count curves and to see how closely they follow
each other. Our dataset included 832 videos from both hives. We applied BeePIV with
DPIV_B to each video to obtain the counts of incoming and outgoing bee motions (i.e.,
Iw and Ow). We henceforth refer to these curves as hourly bee motion count curves or as
hourly curves. Figure 18 show the hourly curves for R_4_5 and R_4_7 for three different
days in the chosen time period. While the overall shapes of the curves from the two hives
are different, the incoming and outgoing curves of each hive closely follow each other.
We also used Dynamic Time Warping (DTW) [28] to calculate the similarity between the
incoming and outgoing time series. Lower DTW scores suggest the two curves are more
closely aligned. Table 3 shows the DTW coefficients for the curves of the days in Figure 18
and several additional days.

Appl. Sci. 2021, 11, 2276 25 of 31

(a) R_4_5; May 28, 2018 (b) R_4_7; 28 May 2018

(c) R_4_5; 17 June 2018 (d) R_4_7; 17 June 2018

(e) R_4_5; 27 July 2018 (f) R_4_7;27 July 2018

Figure 18. Incoming and outgoing bee motion count curves for hives R_4_5 and R_4_7 on three different days in 2018;
x-axis denotes time of day of video recording; y-axis denotes hourly means of incoming and outgoing traffic for correspond-
ing hours.

Appl. Sci. 2021, 11, 2276 26 of 31

Table 3. DTW scores between outgoing and incoming curves in Figure 18 and several other days in
2018 beekeeping season; lower DTW values reflect closer curve alignments.

May 28 May 30 June 03 June 17 July 17 July 27 Aug 05 Aug 15

R_4_5 5.42 4.41 7.50 6.52 7.38 8.50 3.01 5.89

R_4_7 4.17 3.53 5.72 2.89 7.60 8.25 6.45 4.59

(a) R_4_5; June, 2018 (b) R_4_7; June, 2018

(c) R_4_5; July, 2018 (d) R_4_7; July, 2018

(e) R_4_5; Aug, 2018 (f) R_4_7; Aug, 2018

Figure 19. Hourly incoming and outgoing bee motion curves of R_4_5 and R_4_7 in June, July and August 2018; straight
line segments in curves indicate lack of data on corresponding periods due to hardware failures.

We computed the hourly incoming and outgoing curves for both hives for all the days
in June–August, 2018. Figure 19 show the computed curves. Table 4 gives the mean daily
DTW scores between the curves for June, July, and August, 2018 for both hives.

The plots and low DTW scores indicate that the incoming and outgoing bee traffic
patterns appear to follow each other closely. We observed occasional spikes in incoming
traffic that were not matched by similar spikes in outgoing traffic. On a closer examination
of the corresponding videos, we observed that some bees were flying in and out too fast
for the DPIV_B method to detect corresponding displacement vectors with an ordinary

Appl. Sci. 2021, 11, 2276 27 of 31

raspberry pi camera with a frame rate of 25 frames per second. In fact, we could barely
detect some of these motions ourselves.

Table 4. Mean daily DTW between hourly outgoing and incoming curves in June, July and August,
2018.

June July August

R_4_5 4.89 7.34 4.66

R_4_7 2.99 3.38 3.33

4.6. Directional Bee Traffic as Predictor of Colony Failure

The ultimate objective of an EBM system such as BeePi is to predict problems with
monitored honeybee colonies. Since we knew from our manual beekeeper’s log that R_4_7
died in January 2019 whereas R_4_5 survived the winter and thrived in 2019, we inspected
the incoming and outgoing curves for both hives from May to November 2018 for possible
signs of failure. To compare the bee traffic in the two hives, we computed the mean of
the incoming and outgoing bee motion counts for each day in the period from May to
November, 2018 and plotted the incoming and outgoing curves for each hive. Figure 20
shows the two curves for this time period.

To interpret the plots in Figure 20, one must discard the straight segments of the curves
marked with red boxes, because they signify periods with no data from either hive due to
hardware failures in our monitors that we had to fix before re-deploying them. The other
parts of the curves indicate that the hives R_4_5 and R_4_7 were performing on par until
November, 2018 when R_4_5 (the green curve) outperformed R_4_7 (the blue curve) for
approximately three weeks.

We observed two important bee traffic events in the curves and marked them with
two black boxes in Figure 20. The first black box above the value 2018-10 on the x-axis
shows that there was a sudden increase in incoming and outgoing bee traffic in hive R_4_7,
which we could not explain after we watched the real videos from that period and read
our beekeeping log entries for that period.

Figure 20. Bee motion counts for the entire season of 2018; red boxes signify time periods with lack of data due to hardware
failures in either hive.

Appl. Sci. 2021, 11, 2276 28 of 31

The second black box above the value 2018-11 on the x-axis is more revealing.
The curves in the box correspond to the period from the end of October 2018 to the
end of November 2018, when the temperature becomes lower, which explains lower traffic
in both hives. However, the higher variability of the R_4_5 green curve indicates that the
bees in that hive were still flying in and out. On the other hand, the blue traffic curve
for R_4_7 exhibits almost no variability and is consistently below the R_4_5 green curve,
which indicates that the hive was in a weaker health condition. Indeed, our beekeeping
log entries for R_4_7 show that it had fewer bees and less honey stored for the winter than
R_4_7, which may account for the hive’s colony death approximately two months later.

4.7. Testing BeePIV on Raspberry Pi Platform

As we have stated in our previous articles (e.g., [7]), a long-term objective of the
BeePi project is to develop an open citizen science platform for researchers, practitioners,
and citizen scientists worldwide who want to monitor beehives. One of the essential
characteristics of a citizen science platform is scalability. Thus, it is essential to ask the
question of how much physical time the BeePIV algorithm takes when executed on the
raspberry pi computer functioning as the computational unit of a deployed BeePi monitor.
Since a BeePi monitor, records a 30-s video every 15 min, we can re-formulate our question
in a more precise fashion: Can BeePIV, when executed on the raspberry pi computer,
provide the bee motion counts for a given video before the next video is taken?

To answer this question, we executed BeePIV with DPIV_B on the 32 videos in the
testbed and evaluation datasets on a raspberry pi 3 model B v1.2 with four cores, the
model running in most of our currently deployed BeePi monitors. Table 5 shows the
actual physical time taken by BeePIV to process each video on this raspberry pi platform.
The results indicate that the processing time varies from video to video. In seconds, the
mean processing time is 128.90 with a standard deviation of 61.68; in minutes, the mean
processing time is 2.15 with a standard deviation of 1.03. While the longest time of 5.87 min
taken by BeePIV on video 32 is significantly higher than the mean, it is significantly lower
than 15 min (i.e., the length of the interval in between consecutive videos taken by the
BeePi monitor). Hence, our test indicates that BeePIV can be used in situ to process bee
traffic videos captured by deployed BeePi monitors.

Table 5. Physical processing times for each video in our testbed and evaluation datasets; counts in
columns Human Count and BeePIV Count are omnidirectional.

Video Human Count BeePIV Count TIME (secs) TIME (mins)

1 5693 4923 243.61 4.06

2 343 319 114.35 1.91

3 2887 2106 115.41 1.92

4 73 56 190.04 3.17

5 75 64 93.50 1.55

6 239 285 85.08 1.42

7 74 92 88.91 1.48

8 361 712 84.172 1.40

9 478 1393 88.41 1.47

10 357 221 90.24 1.50

11 373 512 88.821 1.48

Appl. Sci. 2021, 11, 2276 29 of 31

Table 5. Cont.

Video Human Count BeePIV Count TIME (secs) TIME (mins)

12 348 778 88.437 1.47

13 176 221 113.80 1.90

14 208 290 95.77 1.60

15 456 416 118.60 1.98

16 270 261 126.28 2.10

17 154 296 121.40 2.02

18 294 298 113.23 1.89

19 17 22 180.32 3.01

20 60 97 238.48 3.97

21 432 685 229.06 3.82

22 101 610 85.99 1.43

23 247 279 85.43 1.42

24 168 250 112.93 1.88

25 90 106 89.59 1.49

26 74 29 93.24 1.55

27 1943 2481 111.71 1.86

28 6580 8635 192.92 3.22

29 186 165 120.03 2.00

30 289 498 84.84 1.41

31 643 815 87.92 1.47

32 1401 1738 352.49 5.87

5. Summary

In this article, we have presented BeePIV, a video-based algorithm for measuring
omnidirectional and directional honeybee traffic. The algorithm is a new significant result
in our ongoing longitudinal investigation of honeybee flight and traffic in images and
videos acquired with our deployed BeePi EBM systems. BeePIV converts frames from bee
traffic videos to particle motion frames with uniform white background, applies PIV to
these motion frames to compute particle displacement vector fields, classifies individual
displacement vectors as incoming, outgoing, and lateral, and uses vector counts to measure
incoming, outgoing, and lateral bee traffic.

We postulated the existence of functions that map color variation to video-specific
threshold and distance values that can be used to reduce smoothed difference frames to uni-
form background frames with motion points and defined and evaluated two such functions.
Our experiments with using those functions in BeePIV partially verified our conjecture
that thresholds and distances can be obtained from video color variation insomuch as
BeePIV outperformed our previously implemented omnidirectional bee counting methods
on twelve manually curated bee traffic videos. We readily acknowledge that these results
are suggestive in nature and that more curated videos are needed for experimentation.
We currently lack sufficient resources to execute this curation, because curating videos
for directional bee traffic involves marking each detected bee motion in every frame as
incoming, outgoing, and lateral and specifying the angle of each motion with respect to a
fixed coordinate system. We plan to perform this curation in the future on the videos in the
testbed and evaluation datasets.

Appl. Sci. 2021, 11, 2276 30 of 31

We proposed an indirect method to evaluate incoming and outgoing traffic based on
the hypothesis that in many hives the levels of incoming and outgoing traffic should match
fairly closely over a given period of time. The bee motion curves we computed for two
hives indicate that the incoming and outgoing bee traffic patterns closely follow each other.
We experimentally observed that in the healthy hive R_4_5 there was a period of time when
the bees were flying in and out whereas in the failing hive R_4_7 the traffic curve over the
same period exhibited almost no variability and was consistently below the curve of the
healthy hive. We also observed that the hourly bee motion curves followed each other
closely in the failing hive, too.

Our experiments with estimating the physical run times of BeePIV on the raspberry
pi platform showed that the algorithm can be used in situ to process bee traffic videos in
deployed BeePi monitors. In seconds, the mean processing time of executing BeePIV on
the raspberry pi 3 model B v1.2 with four cores on 32 videos in our testbed and evaluation
datasets was 128.90 with a standard deviation of 61.68; in minutes, the mean processing
time on the same videos was 2.15 with a standard deviation of 1.03. While the longest time
of 5.87 min taken by BeePIV on video 32 was significantly higher than the mean time, it
was significantly lower than 15 min (i.e., the length of the interval in between consecutive
videos taken by the BeePi monitor).

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/5/2276/s1.

Author Contributions: Supervision, Project Administration, and Resources, V.K., A.M.; Conceptual-
ization and Software, S.M., V.K., T.T.; Data Curation, V.K., S.M.; Writing—Original Draft Preparation,
V.K., S.M. Writing—Review and Editing, V.K., S.M., A.M.; Investigation and Analysis, S.M., V.K.;
Validation, S.M., V.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded, in part, by our Kickstarter research fundraisers in 2017 [23] and
2019 [24]. This research is based, in part, upon work supported by the U.S. Office of Naval Research
Navy and Marine Corps Science, Technology, Engineering and Mathematics (STEM) Education, Out-
reach and Workforce Program, Grant Number: N000141812770. Any opinion, findings, conclusions,
or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the sponsor.

Data Availability Statement: Since we lack the resources to host the testbed and evaluation datasets
online permanently, interested readers are encouraged to make individual email arrangements with
the first author in case they want to obtain these datasets.

Acknowledgments: We would like to thank all our Kickstarter backers and especially our BeePi
Angel Backers (in alphabetical order): Prakhar Amlathe, Ashwani Chahal, Trevor Landeen, Felipe
Queiroz, Dinis Quelhas, Tharun Tej Tammineni, and Tanwir Zaman. We express our gratitude to
Gregg Lind, who backed both fundraisers and donated hardware to the BeePi project. We are grateful
to Richard Waggstaff, Craig Huntzinger, and Richard Mueller for letting us use their property in
northern Utah for longitudinal EBM tests. We would like to thank Anastasiia Tkachenko for many
valuable suggestions during the revision of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EBM Electronic Beehive Monitoring
FFT Fast Fourier Transform
PIV Particle Image Velocimetry
DPIV Digital Particle Image Velocimetry
OpenPIV Open Particle Image Velocimetry
JPIV Java Particle Image Velocimetry
OpenCV Open Computer Vision
DTW Dynamic Time Warping

https://www.mdpi.com/2076-3417/11/5/2276/s1
https://www.mdpi.com/2076-3417/11/5/2276/s1

Appl. Sci. 2021, 11, 2276 31 of 31

ConvNet Convolutional Network
CSV Comma Separated Values

References
1. Winston, M. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1987.
2. Page, R., Jr. The spirit of the hive and how a superorganism evolves. In Honeybee Neurobiology and Behavior: A Tribute to Randolf

Menzel; Galizia, C.G., Eisenhardt, D., Giurfa, M., Eds.; Springer: Berlin, Germany, 2012; pp. 3–16. [CrossRef]
3. Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of swarming sounds in bee Hives for early detection of the swarming

period. Comput. Electron. Agric. 2008, 64, 72–77. [CrossRef]
4. Meikle, W.G.; Holst, N.; Mercadier, G.; Derouan, F.; James, R.R. Using balances linked to dataloggers to monitor honey bee

colonies. J. Apic. Res. 2006, 45, 39–41. [CrossRef]
5. Mukherjee, S.; Kulyukin, V. Application of digital particle image velocimetry to insect motion: Measurement of incoming,

outgoing, and lateral honeybee traffic. Appl. Sci. 2020, 10, 2042. [CrossRef]
6. Langstroth Beehive. Available online: https://en.wikipedia.org/wiki/Langstroth_hive (accessed on 7 January 2021).
7. Kulyukin, V.; Mukherjee, S. On video analysis of omnidirectional bee traffic: Counting bee motions with motion detection and

image classification. Appl. Sci. 2019, 9, 3743. [CrossRef]
8. Kulyukin, V.; Putnam, M.; Reka, S. Digitizing buzzing signals into A440 piano note sequences and estimating forager traffic levels

from images in solar-powered, electronic beehive monitoring. In Lecture Notes in Engineering and Computer Science, Proceedings of
the International MultiConference of Engineers and Computer Scientists; Newswood Limited: Hong Kong, China, 2016; Volume 1,
pp. 82–87.

9. Kulyukin, V.; Reka, S. Toward sustainable electronic beehive monitoring: Algorithms for omnidirectional bee counting from
images and harmonic analysis of buzzing signals. Eng. Lett. 2016, 24, 317–327.

10. Willert, C.E.; Gharib, M. Digital particle image velocimetry. Exp. Fluids 1991, 10, 181–193. [CrossRef]
11. Adrian, R.J. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 1991, 23, 261–304. [CrossRef]
12. Dickinson, M.; Lehmann, F.; Sane, S. Wing rotation and the aerodynamic basis of insect flight. Science 1999, 284, 1954–1960.

[CrossRef]
13. Bomphrey, R.J.; Lawson, N.J.; Taylor, G.K.; Thomas, A.L.R. Application of digital particle image velocimetry to insect aerodynam-

ics: Measurement of the leading-edge vortex and near wake of a hawkmoth. Exp. Fluids 2006, 40, 546–554. [CrossRef]
14. Michelsen, A. How do honey bees obtain information about direction by following dances? In Honeybee Neurobiology and Behavior:

A Tribute to Randolf Menzel; Galizia, C., Eisenhardt, D., Giurfa, M., Eds.; Springer: Berlin, Germany, 2012; pp. 65–76. [CrossRef]
15. Rodriguez, I.F.; Megret, R.; Egnor, R.; Branson, K.; Agosto, J.L.; Giray, T.; Acuna, E. Multiple insect and animal tracking in video

using part affinity fields. In Proceedings of the Workshop Visual Observation and Analysis of Vertebrate and Insect Behavior
(VAIB) at International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018.

16. Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G. Pollen bearing honey bee detection in hive entrance video recorded by remote
embedded system for pollination monitoring. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 51–57. [CrossRef]

17. Minichiello, A.; Armijo, D.; Mukherjee, S.; Caldwell, L.; Kulyukin, V.; Truscott, T.; Elliott, J.; Bhouraskar, A. Developing a
mobile application-based particle image velocimetry tool for enhanced teaching and learning in fluid mechanics: A design-based
research approach. Comput. Appl. Eng. Educ. 2020, 1–21. [CrossRef]

18. Armijo, D. Benchmarking of a Mobile Phone Particle Image Velocimetry System. Master’s Thesis, Department of Mechanical and
Aerospace Engineering, Utah State University, Logan, UT, USA, 2020.

19. OpenPIV. Available online: http://www.openpiv.net/ (accessed on 7 January 2021).
20. JPIV. Available online: https://github.com/eguvep/jpiv/ (accessed on 7 January 2021).
21. PIVLab. Available online: https://github.com/Shrediquette/PIVlab/releases/tag/2.38 (accessed on 7 January 2021).
22. Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward audio beehive monitoring: Deep learning vs. standard machine learning in

classifying beehive audio samples. Appl. Sci. 2018, 8, 1573. [CrossRef]
23. Kulyukin, V. BeePi: A Multisensor Electronic Beehive Monitor. Available online: https://www.kickstarter.com/projects/970162

847/beepi-a-multisensor-electronic-beehive-monitor (accessed on 7 January 2021).
24. Kulyukin, V. BeePi: Honeybees Meet AI: Stage 2. Available online: https://www.kickstarter.com/projects/beepihoneybeesmeetai/

beepi-honeybees-meet-ai-stage-2 (accessed on 7 January 2021).
25. Zivkovic, Z. Improved adaptive gaussian mixture model for background subtraction. In Proceedings of the 17th international

conference on pattern recognition (ICPR), Cambridge, UK, 26–26 August 2004; Volume 2, pp. 28–31.
26. KaewTraKulPong, P.; Bowden, R. An Improved adaptive background mixture model for real-time tracking with shadow detection.

In Proceedings of the Second European Workshop on Advanced Video Based Surveillance Systems (AVBS01), Kingston, UK,
September 2001; pp. 28–31. [CrossRef]

27. Zivkovic, Z.; van der Heijden, F. Efficient adaptive density estimation per imge pixel for the task of background subtraction.
Pattern Recognit. Lett. 2006, 27, 773–780. [CrossRef]

28. Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580.
[CrossRef]

http://doi.org/10.1007/978-94-007-2099-2_6
http://dx.doi.org/10.1016/j.compag.2008.05.010
http://dx.doi.org/10.1080/00218839.2006.11101311
http://dx.doi.org/10.3390/app10062042
https://en.wikipedia.org/wiki/Langstroth_hive
http://dx.doi.org/10.3390/app9183743
http://dx.doi.org/10.1007/BF00190388
http://dx.doi.org/10.1146/annurev.fl.23.010191.001401
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1007/s00348-005-0094-5
http://dx.doi.org/10.1007/978-94-007-2099-2_6
http://dx.doi.org/10.5194/isprs-annals-III-7-51-2016
http://dx.doi.org/10.1002/cae.22290
http://www.openpiv.net/
https://github.com/eguvep/jpiv/
https://github.com/Shrediquette/PIVlab/releases/tag/2.38
http://dx.doi.org/10.3390/app8091573
https://www.kickstarter.com/projects/970162847/beepi-a-multisensor-electronic-beehive-monitor
https://www.kickstarter.com/projects/970162847/beepi-a-multisensor-electronic-beehive-monitor
https://www.kickstarter.com/projects/beepihoneybeesmeetai/beepi-honeybees-meet-ai-stage-2
https://www.kickstarter.com/projects/beepihoneybeesmeetai/beepi-honeybees-meet-ai-stage-2
http://dx.doi.org/10.1007/978-1-4615-0913-4_11
http://dx.doi.org/10.1016/j.patrec.2005.11.005
http://dx.doi.org/10.3233/IDA-2007-11508

	Introduction
	Related Work
	Materials and Methods
	Hardware and Data Acquisition
	Terminology, Notation, and Definitions
	BeePIV
	Dynamic Background Subtraction
	Difference Smoothing
	Color Variation
	Difference Maxima
	Difference Maxima Erosion
	PIV and Directional Bee Traffic
	Putting It All Together

	Experiments
	Curated Video Data
	Color Variation Threshold and Erosion Distance
	Interrogation Window Size and Overlap in PIV
	Omnidirectional Bee Traffic
	Directional Bee Traffic
	Directional Bee Traffic as Predictor of Colony Failure
	Testing BeePIV on Raspberry Pi Platform

	Summary
	References

