
applied
sciences

Article

Outlier Detection with Explanations on Music Streaming Data:
A Case Study with Danmark Music Group Ltd.

Jonas Herskind Sejr 1,* , Thorbjørn Christiansen 2, Nicolai Dvinge 2, Dan Hougesen 2 and Peter Schneider-Kamp 1

and Arthur Zimek 1

����������
�������

Citation: Herskind Sejr, J.;

Christiansen, T.; Dvinge, N.;

Hougesen, D.; Schneider-Kamp, P.;

Zimek, A. Outlier Detection with

Explanations on Music Streaming

Data: A Case Study with Danmark

Music Group Ltd. Appl. Sci. 2021, 11,

2270. https://doi.org/10.3390/

app11052270

Academic Editor: Markus Goldstein

Received: 28 January 2021

Accepted: 2 March 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics & Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
petersk@imada.sdu.dk (P.S.-K.); zimek@imada.sdu.dk (A.Z.)

2 Danmark Music Group Ltd., Dartmouth TQ6 9BE, UK; bjorn@danmarkmusicgroup.com (T.C.);
nicolai@danmarkmusicgroup.com (N.D.); dan@danmarkmusicgroup.com (D.H.)

* Correspondence: sejr@imada.sdu.dk; Tel.: +45-52-34-2918

Abstract: In the digital marketplaces, businesses can micro-monitor sales worldwide and in real-time.
Due to the vast amounts of data, there is a pressing need for tools that automatically highlight chang-
ing trends and anomalous (outlier) behavior that is potentially interesting to users. In collaboration
with Danmark Music Group Ltd. we developed an unsupervised system for this problem based on
a predictive neural network. To make the method transparent to developers and users (musicians,
music managers, etc.), the system delivers two levels of outlier explanations: the deviation from
the model prediction, and the explanation of the model prediction. We demonstrate both types of
outlier explanations to provide value to data scientists and developers during development, tuning,
and evaluation. The quantitative and qualitative evaluation shows that the users find the identified
trends and anomalies interesting and worth further investigation. Consequently, the system was inte-
grated into the production system. We discuss the challenges in unsupervised parameter tuning and
show that the system could be further improved with personalization and integration of additional
information, unrelated to the raw outlier score.

Keywords: unsupervised; outlier explanation; lstm; forecasting

1. Introduction

Today, businesses in the digital marketplaces can micro-monitor sales of products
worldwide and in real-time. Market analysts are presented with large amounts of consumer
data that contain valuable information about market trends. Having insights immediately
when interesting events occur is essential and therefore tools are needed to detect changing
trends and anomalies in real-time.

In collaboration with Danmark Music Group Ltd. (DMG) we have developed and
deployed such a method that ranks and visualizes songs according to how much their
streaming behavior deviates from the normal (i.e., expected) behavior. While extant work
often revolves around recommending songs to end-users [1,2], our work, thus, focuses on
recommending anomalous streaming behavior to backstage users such as studio executives,
musicians and IT professionals.

We do not have access to purely normal data and therefore our method is unsupervised.
The lack of supervision introduces challenges that we identified and solved. Both us, as
developers of the method and the end-users need to understand underlying reasons for
the identified outliers. Therefore our method supplies outlier explanations on two levels
(Level 1 Explanation and Level 2 Explanation).

The model for expected behavior has in its core an artificial neural network with
long short-term memory nodes (LSTM) [3] and the explanations are based on LIME [4].
The method is currently enabled for a subset of end-users (software developers, musicians,

Appl. Sci. 2021, 11, 2270. https://doi.org/10.3390/app11052270 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3008-0948
https://orcid.org/0000-0003-4000-5570
https://doi.org/10.3390/app11052270
https://doi.org/10.3390/app11052270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052270
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2270?type=check_update&version=2

Appl. Sci. 2021, 11, 2270 2 of 14

and music managers) and the system has been evaluated on an offline dataset with 3end-
users, both quantitatively and qualitatively. Along with the method and the application
case study, we discuss the core challenges when applying unsupervised outlier detection
and outlier explanation in real-life applications.

The novel contributions of our research are:

• A novel unsupervised LSTM based outlier method;
• Two levels of contextual outlier explanations;
• Discussion of challenges in a real-life application of unsupervised contextual outlier

detection and explanation;
• Quantitative and qualitative evaluation with end-users;
• A discussion of context-dependent and personalized outlier detection based on em-

pirical findings.

The remainder of the article is organized as follows. We discuss related work in
Section 2. In Section 3.1, we discuss challenges with applying an unsupervised model for
contextual outliers in general. In Section 3.2, we describe how we solved these challenges
in a concrete application case study. We discuss the setup for quantitative evaluation in
Section 3.3 and present the results from quantitative and qualitative evaluation in Section 4
before we finally discuss and conclude in Section 5.

2. Related Work

Detecting interesting developments and anomalies in time series data in some fields
of research is treated under the terms “‘trend detection” or “event detection” [5,6]. We will
treat it as an “outlier detection” problem [7,8]. The close relationship between those areas
has been discussed earlier [9].

Outlier detection in time series or streaming data covers a number of different types
of outliers [10]. One type is outlier time series in a database of time series of equal length.
Since a time series can be seen as a single point with as many dimensions as there are
measurements, any traditional outlier detection method could be used [7]. By defining a
similarity measure on the time series, density-based methods or cluster-based methods can
find top outliers.

Point outliers or subsequence outliers [10] are other types of outliers in time se-
ries data. These outliers are sought within a single time series or multiple time series.
Ignoring the context in which the points or subsequence outliers are sought, traditional
outlier detection methods can also find these types of outliers, e.g., by defining an outlier
score overall subsequences of similar length.

Another possibility is to define outlierness relative to the context, in which case they
are called contextual outliers [7]. Contextual outlierness is defined relative to a context
set of observations [11], e.g., a time window before or around the point. If the context
is a window that includes the point itself, e.g., autoencoders can find anomalous points.
Auto-encoders compress and decompress the data back to the original time series window
and the reconstruction error is then used as an outlier score. For time series, LSTM
auto-encoders capture timely dependencies [12]. The approach by Malhotra et al. [12]
is a semi-supervised autoencoder, that assumes access to purely normal training data,
but auto-encoders can also be trained fully unsupervised on a mixture of normal and
abnormal data [13]. With this approach, the assumption is that due to anomalies being
underrepresented, if restricted sufficiently, the model will only fit the normal points and
the reconstruction error will be larger for abnormal points or subsequences.

Points or subsequences can also be analyzed relative to earlier measurements only.
This type of outlier is rather intuitive and can be interpreted as how much the point or
subsequence deviates from what was expected at a certain point in time. Novelty detection
methods are of this type, since they define novelties based on prior measurements. Novelty
detection methods typically do not consider temporal dependencies [14,15].

Looking at the temporal aspect, the obvious way to find outliers is to first predict
the point or subsequence based on the past and then calculate a score that indicates how

Appl. Sci. 2021, 11, 2270 3 of 14

well the real values match the expected. A plethora of methods exist for time series
prediction (sometimes called forecasting) [16] and any of these methods could be used.
Lately, LSTMs [3] have been shown to perform better than other methods [17] and LSTMs
are becoming the preferred choice for time series outlier detection (e.g., [18]).

We apply a method similar to that of Malhotra et al. [18], but as we cannot assume
access to purely normal data, our approach is unsupervised. This introduces profound
challenges, identified in Section 3.1, and requires us to purposely underfit the model
similar to how autoencoders work. Additionally, we deliver outlier explanations, deploy
the method in a real-life application and evaluate with real users.

Explanation for supervised models is currently a hot topic [19–21]. Within outlier
detection, a number of approaches have also been applied to explain the outlierness of
found outliers (see, e.g., [22–28]), but none of these focus on contextual outliers or time-
series outliers as we do.

3. Material and Methods
3.1. Background and Challenges
3.1.1. The Use Case

In the music streaming business, it is essential to know when streaming behavior
changes for multiple reasons: Such information is an advantage in negotiation between
stakeholders (artists, music managers, or record labels), it helps to focus marketing cam-
paigns, and it may even help decide what the next song should sound like. DMG delivers
a service with which artists and music companies upload songs to streaming services
(Spotify, YouTube, iTunes, TikTok, etc.) and monitor streaming. The system aggregates
streaming data from all of the streaming services and gives users a homogeneous interface
that allows users to manually identify changing trends and anomalies. This task is hard and
time-consuming, so in the ideal world, the system itself identifies and explains changing
trends, failures in the system, etc., i.e., any anomaly that the user might find interesting.
Our method addresses this use case.

In data science, finding these anomalies is called outlier detection. The typical defini-
tion of an outlier is “an observation which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism” [29].

In the music streaming use case, the mechanism of “the other observations” is de-
scribed by the distribution of the normal songs following expected trends. These dis-
tributions could, e.g., reflect that some songs are played more on the weekend or the
dependency between number of streamings on consecutive days—the expected behavior.
DMG is interested in surprises, i.e., outliers. Outliers differ from normal observations, e.g.,
when a song suddenly becomes more popular than expected or changes the pattern of
when it is played. Such a change could be, e.g., the result of a concert or that the song
is used in a YouTube video, in other words, changes to the mechanisms that generate
the streamings.

Because outliers and inliers are relative we are not interested in a binary decision, but
rather in a ranking of the observations on how normal or outlierish the objects are. The task
is to find a model that defines the grade of normality (and outlierness) that ideally reflects
how interesting the deviation is to the user.

3.1.2. Formalizing the Problem

Music streaming data (describing the total number of streamings per day) come
themselves as a data stream. The data are time series data, and we want to analyse and act
on the data immediately, when they arrive from the streaming services. We call the i’th
time series of length m, Tm

i and the individual data point, e.g., at time j, di,j:

Tm
i = di,1, di,2, ..., di,m (1)

In time series data every observation depends on previous observations based on
their relation in time. Therefore new observations can be predicted to some extent based

Appl. Sci. 2021, 11, 2270 4 of 14

on previous observations. We denote the window that we observe for outliers, the outlier
window o with length lo, and the window from which we predict the expected outlier
window, we denote the context window c with length lc. Starting from day j we thus have:

(ci,j, oi,j) = ((di,j, di,j+1, ..., di,j+lc), (di,j+lc+1, di,j+lc+2, ..., di,j+lc+lo)) (2)

For example, if users monitor on a weekly basis, we want an outlier ranking of a 7 day
window (i.e., lo = 7). Assuming that there are monthly variations the context windows
should capture at least roughly a month (i.e., lc = 30).

The user wants to see surprises, i.e., music that has a different streaming count in the
outlier window than would have been expected based on the context window. To predict
the outlier window, we maintain a prediction model pred that takes a context window c
and predicts the corresponding outlier window ô.

ô = pred(c) (3)

We calculate the outlier score os as how much the real streaming counts deviate from
the predicted streaming counts, according to some similarity function sim:

os = sim(o, ô) (4)

Using machine learning we can automatically learn the prediction model from historic
data and quickly updated the model, when data change significantly, e.g., when new
streaming services are added.

3.1.3. Challenges

The unsupervised learning scenario incurs some fundamental challenges for out-
lier detection:

Challenge 1 (Outliers in the Training Data). Training data can contain unknown outliers that
influence the prediction models.

When outliers are defined relative to a model trained on past data, in the ideal situation
the training dataset should not have any outlier subsequences. If we can guarantee that
there are no outliers in the training data, we effectively have a semi-supervised scenario [30].
If the model learns, based on “dirty” training data, to predict outliers, the observed values
will not deviate from the expected and we cannot identify them. This phenomenon is
known as “masking” in the statistics literature [30]. A strategy to alleviate the problem is
to remove the apparently most outlierish objects (e.g., those exhibiting the highest outlier
scores) from the training data or limit the expressiveness of the model.

Challenge 2 (Outliers in the Context Window). The context window used for predicting the
outlier windows will occasionally contain outliers.

Even if Challenge 1 is somehow addressed, outliers can still be present in the context
window and derail the predictions. Therefore we want the model to be robust against
the influence of outliers in the context window. This relates to robustness in statistical
methods [31]. A strategy that can alleviate this is to ensure that the model uses several
context features in the predictions.

Challenge 3 (Lack of User Preference Data). We seek to detect outliers interesting to users, but
in an unsupervised setting, there is no structured data on user preferences.

Users find interesting what to them is unexpected, so our model should be com-
plex enough to predict what the user predicts, and nothing else (due to Challenge 1).
Without supervision in the form of labels, we cannot know if a model finds interesting

Appl. Sci. 2021, 11, 2270 5 of 14

outliers or not and we cannot compare the quality of two models. Instead of labels, we
need alternative ways of evaluating and getting feedback from users.

3.2. Application Case Study

In this section, we describe how the challenges identified in Section 3.1 are addressed
in the case study with DMG (Figure 1).

Figure 1. Events are daily imported from music streaming services such as Spotify or YouTube.
When an update of the prediction models is required, events are imported and converted to streaming
time series. In pre-processing data are filtered (series below a threshold may be removed) and split
into a training set and a test set. These are used for the visual evaluation of outliers and explanations.
Finally, the model is uploaded to the real-time system where predictions, explanation, and outlier
analysis can be accessed by DMGs web front end.

3.2.1. Data Retrieval

In DMGs system, events from streaming services are daily imported and stored
in a general format. Every event is a single streaming of a single song with annotated
metadata (country, artist, etc.). These data are then regularly imported by the batch system.
During the export, event data are converted into time-series data and grouped by song ID,
resulting in a time series for each song with total number of streamings for each day.

3.2.2. Training and Test Data

Training and test samples are generated in preprocessing. With the test data, the user
can evaluate the model before deploying it to the real-time system. For the results shown
in the article the full window, from which training and test data are generated, spans from
1 May 2017 to 10 April 2020.

For the test samples to be useful in the evaluation of the model, the test set must not
overlap with training samples. Therefore, the total time series window is split, so that test
samples are generated based on the last lc + lo + ctest days, where ctest is the number of test
samples. Training samples are generated from a window starting at the beginning and
ending at ctest + lo days from the last day. Thereby, there is no overlap between the context
windows of the training samples and test samples.

Dtrain = {(ci,j, oi,j)|∀i, 0 < j < m− (ctest + lo)− (lc + lo)} (5)

Dtest = {(ci,j, oi,j)|∀i, m− (lc + lo + ctest) < j < m− (lc + lo)} (6)

Weekly correlation is typically strong and therefore we want an equal number of
samples starting on each weekday. Because there could also be differences between the first
part of a month and the last part of a month, we also want samples spread over a month,
and therefore we chose ctest = 28.

Appl. Sci. 2021, 11, 2270 6 of 14

Due to Challenge 1 we want to remove outlierish behavior from training data. From the
perspective of DMG new songs in their catalog or songs removed from the catalogue are
uninteresting outliers that should be removed to improve the model. Furthermore, DMG
has less interest in songs with only very few streamings and the system will not be used
to find outliers among these. We, therefore, filter songs with fewer streamings in the two
periods c and o together than a threshold tlim = 10.000. To ensure that there are streamings
in both periods, time series with less than 10 percent of the threshold in either of the periods
are also excluded.

With all songs and the interval used for evaluation, this process generates 252,378
training samples. Training with this many training samples is time consuming and takes
around 10 h on the available machinery (CPU: Intel Exeon E5-2620v4, 2.1 GHz, GPU: nVidia
GeForce GTX 1080 TI 11 GB GDDR5). We, therefore, select a random sample of 15,000 time
series for training. Experiments with different sample sizes are described in Section 4.

3.2.3. The Prediction Model

Because of the way we will later explain predictions, we trained one model for each
prediction in the outlier window and since we compare scores and explanations across
songs, for each prediction in the outlier windows we trained one common model.

As discussed in Section 2 LSTMs have good performance on time series prediction
tasks. Since neural networks also fit well with the large amounts of training data, we
trained an LSTM for each day in the outlier window.

Songs have very different numbers of streamings so training data are normalized
relative to the mean and standard deviation of the context windows (e.g., ctrain). Likewise,
when predicting a time series, it is normalized before the prediction is made and the result
is denormalized before it is returned:

Dnorm
train =

Dtrain −mean(ctrain)

std(ctrain)
(7)

We want a network that will not learn the outliers (as perceived by the users, cf.
Challenge 3) left in the training data, and at the same time, it should be good at predicting
the inliers (Challenge 1). The amounts of data are an advantage and mean that it is possible
to fit a complex normal behavior without fitting outlier behavior. The assumption here
is that normal days are clustered in days of similar behavior, while outliers are either
unique, within micro-clusters of similar behavior, or simply unpredictable. We have kept
the neural network simple and added a dropout layer to regularize and increase robustness
(Challenge 2).

The final neural network (Figure 2) was selected iteratively as the network with the
best outlier ranking and outlier explanations, judged by the users. The model is optimized
to minimizing the mean absolute error (mae). Training with mae instead of the usual mean
squared error (mse) puts less effort in fitting outliers and will therefore contribute to solving
Challenge 1. We train the model in 2000 epochs with a batch size of 32 using the Adam
algorithm [32].

In Section 4, we describe experiments with different configurations of the neural
network and the training process.

Figure 2. The final neural network evaluated and deployed to DMGs system. 7 prediction models
are trained; one for each day in the outlier window.

3.2.4. Prediction-Based Outlier Scores

From the prediction of the outlier windows, we calculate outlier scores that express
how much the real values deviate from the expected (i.e., the predicted) values. The outlier

Appl. Sci. 2021, 11, 2270 7 of 14

score is calculated as the mean absolute error between the normalized predicted outlier
week and the normalized real observations, where normalization is relative to mean and
standard deviation of the context windows. The similarity function simmae for two vectors
of length d is:

simmae(x, y) =
1
d

d

∑
n=1
|xi − yi| (8)

We use mae because we expected users to be more interested in changing trends
than single day outliers. With mae large deviations are not punished as hard as with mse.
The final outlier score is therefore:

os = simmae(normc(o), predlstm(normc(c))) (9)

where normc is normalization relative to c and predlstm is trained on Dnorm
train .

3.2.5. Outlier Score Customization

To DMG the outlier score itself is not enough to prioritize the importance of the outlier.
DMG also wants the total number of streamings to influence the outlier ranking. We did not
find a good model for calculating an outlier score as an aggregate of outlierness and total
number of streamings. Instead, the service available to developers in DMG, delivers outlier
scores that non-scientist developers use for the ranking, before requesting predictions and
explanations. In this way, developers can change the weighting of total streamings and
raw outlierness without changing the outlier detection algorithm (addressing Challenge 3).

3.2.6. Level 1 Explanation

Using mae over mse contributes to the interpretability of the outlier score. With mae
the outlier score is proportional to the area between the predicted and the real values
(see Figure 3). This simple white box explanation, explains feature by feature how the ob-
served values deviate from the expected. This is the typical way to explain non-contextual
outliers [22–28].

3.2.7. Level 2 Explanation

Because we deal with contextual outliers the expected value depends on the contextual
variables (the context window). Therefore we go one step deeper and explain the expected
value highlighting the most influential contextual features. We explain the expected values
using LIME [4], which is based on a local linear model. A set of local points are selected
and LIME fits a linear model. By using a version of LASSO [33], the algorithm ensures the
most influential features are selected.

3.2.8. Presentation

The Level 1 Explanation is presented by plotting the predicted values together with
the actual values. For presenting the Level 2 Explanation we chose the most influential
contextual feature together with contextual features with an explanatory weight above 30%
of the maximum weight. In the presentation used for the offline evaluation (Figure 3), one
plot is generated for each prediction. Selected explanatory features are colored according
to their weight.

Appl. Sci. 2021, 11, 2270 8 of 14

(a) An inlier (b) A sudden drop

(c) Song 1 (Band 1) (d) Song 2 (Band 2)

Figure 3. Static visualization for evaluation of 4 samples: One inlier Figure 3a and 3 songs with
high outlier scores. The blue line (the context windows) and the gray line (the outlier windows)
show the actual observations. The yellow line shows the prediction of the outlier window (Level 1
Explanation). In each visualization, a prediction is selected and marked with a red cross. The green
markings within the context window show the most important features in the prediction and outlier
score (Level 2 Explanation). The color indicates the importance.

3.3. Evaluation Setup

After tuning the system with user feedback we generated a single labeled dataset for
a quantitative evaluation. The system was evaluated in a workshop with three users from
DMG: A manager who is also a musician with songs published through DMG’s system,
a manager with programming experience, and a developer part of the team responsible
for maintaining the system. Apart from representing multiple roles as users of the system,
these users also have many years of experience in the business and are good proxies for
other types of users.

To get a dataset on which we can compare different configurations we selected top
20 outliers from each of the executed method configurations. To this selection, we added
10 normal objects with low outlier scores. The users scored each of the samples from 1 to
5 reflecting how interesting they found the outlier, i.e., how much it deviates from their
expectations. Even though the users had very different perspectives, we wanted a common
grade for the outliers. Planning poker (Planning poker was original described in a white
paper by James Grenning in 2002. The paper can be found at https://wingman-sw.com/
papers/PlanningPoker-v1.1.pdf, accessed on 28 January 2021) is a quick method to find a
common estimate, so we used a similar approach: Each user has 5 cards with grades from
1 to 5. On the count of three, all users show their grades. If they agree, the grade is written
down and if not, the users with the top grade and bottom grade present their reasons, and
the time series is reevaluated until the group agrees. The users quickly got a common

https://wingman-sw.com/papers/PlanningPoker-v1.1.pdf
https://wingman-sw.com/papers/PlanningPoker-v1.1.pdf

Appl. Sci. 2021, 11, 2270 9 of 14

agreement on how they would evaluate the time series and they evaluated all samples
within 2 h. To understand what is behind these grades, we asked the users to analyze the
root causes of a sample of three outliers with grades above 3. Finally, we discussed with
the users, the outlier explanations for the sample.

4. Results
4.1. Quantitative Results

The users are primarily interested in top-ranked outliers so we defined the quality
measure atg as the average user grade of top 20 outliers for evaluation and comparison of
the configurations we have executed (Figure 4). Results show that the deployed configura-
tion has an average atg of 4.55 for the top 20 outliers (note that maximum atg = 5). The
10 inliers embedded into the evaluation data were graded with grade 1.

Figure 4. The deployed configuration has 16 LSTM nodes, 8 Dense nodes, a 0.5 dropout layer, 15,000
training samples, 2000 epochs, minimum streams in sample is 10,000, and the outlier calculation used
is mean absolute error. We have plotted all the experiments we have executed to reveal the relation
between precision (mae) and outlier quality (atg). Additionally we have labeled interesting changes
to parameters.

4.1.1. Training Parameters

To separate model selection and training we made sure to have enough training
samples and epochs to fit the model. Experiments showed that mae stabilized with around
15,000 samples and 2000 epochs.

4.1.2. Precision Versus Quality of Outlier Scores

We imagined outlier quality (atg) increasing with precision mae until some point, where
the model starts predicting what the user perceives as outliers (Challenge 1). We learned
that the relation between model expressiveness and outlier performance is more compli-
cated than that (Figure 4), so precision cannot be used directly for model selection and
parameter tuning.

Appl. Sci. 2021, 11, 2270 10 of 14

4.1.3. Outlier Calculation

Before the user evaluation, we assumed single outliers in otherwise normal weeks
to have low priority to the user. We later realized that the users in the workshop found
single outlier days highly interesting: sudden drops can indicate an error in the system
while positive spikes can be the result of concerts, advertisements, or similar. Changing the
outlier score to use mse, atg increases to 4.80. According to the users, this could be different
for other users who would find single-day anomalies less outlierish or unexpected. In that
case, mae is a better choice.

4.1.4. Total Number of Streamings and Outliers Score

When ranking the outliers, the users were very clear that low volume songs are only
interesting if outlierness is very strong. An increase of 50 streamings could for example
come from a private event the musician attended, which is not the type of outliers inter-
esting from a business perspective. Removing the threshold (Minimum Streamings = 0)
decreases the outlier quality significantly (even though the predictive capabilities increase)
while increasing the threshold (Minimum Streamings = 20,000) results in the highest outlier
score we saw 4.80.

4.2. Qualitative Evaluation
4.2.1. The Value of Detecting Outliers

Even though finding the optimal parameters is not straightforward, all of the parame-
ter choices we have experimented with, highlight time series that users find interesting.
It is therefore also interesting what is behind the top outliers. An important pattern among
top outliers was sudden drops (e.g., Figure 3b). The analysis shows that these drops are
most likely caused by IT-related errors. Another observation was that many of the top
outliers are from the same artist (Band 1) (Names anonymized.) (e.g., Figure 3c). The users
agreed that these deviations most likely come from the same underlying event: one of the
artist’s songs has been added to a Spotify playlist which increased streaming of all of the
artist’s songs (e.g., through recommendations). With another song (Figure 3d) the users
agreed that the increased interest in the song was due to a blog post by the artist published
the day before.

4.2.2. The Value of Outlier Explanation

During the iterative process of selecting the model and parameters, both the re-
searchers and the developers in DMG found both levels of explanations valuable. Having
the predictions is valuable, e.g., in determining if the model fits outliers (Challenge 1).
Having the explanation of the predictions helps to assess if the prediction model is robust
(Challenge 2) and similar to the user’s model of expectation (Challenge 3).

We observe that the learned model is not able to predict outliers and that the predic-
tions are based on several previous observations. The strongest influence on the predictions
comes from the latest observation and the same weekday in previous weeks, which aligns
with the expected user intuition (Figure 3).

Having the predicted versus the observed inspired the end-users to discuss the validity
of the outlier scores, but for end-users who are not used to think about learned models,
model explanation (Level 2 Explanation) is hard to grasp and does not add much value.
The end-users are more interested in causal explanations to the outlier than an explanation
to the prediction.

5. Discussion
5.1. Evaluation and Adoption of The System

Our evaluation shows that the system is valuable to the users, with users grad-
ing the importance of the top 20 outliers to be on average 4.55, on a scale from 1 to 5.
The quantitative evaluation was limited by the number of labeled time series, but the
conclusion is strengthened by the clear coincidence between quantitative and qualitative

Appl. Sci. 2021, 11, 2270 11 of 14

results described in Section 4.2.1. Because of the positive evaluation, the system is being
further tested as part of DMGs production system and we are continually getting feedback
with interesting findings based on top outliers.

In the production system, users request songs with the most surprising trends during
the last week and for each top 3 outlier song, the user is presented with the trend together
with the expected behavior (level 1 explanation) (Figure 5).

Even though end-users found it hard to grasp level 2 explanation, DMG has decided
to keep it in the presentation, but only present the explanation when the users hover the
expected values.

When the users hover a prediction, the most influential contextual features are high-
lighted with dots (level 2 explanation). Instead of coloring the dots according to feature
importance, the most important explanatory features are all highlighted with black dots,
reducing the amount of information presented to the user.

The current system is designed to find outlier songs, but—without changes to the
outlier detection method–the system can also be used to identify outlier artists, outlier coun-
tries, etc., which will be a natural extension in the future. DMG will conduct experiments
with different sources of outlierness.

Figure 5. The presentation of outliers and explanations in DMGs monitoring system: Expected versus observed streaming
count (Level 1 Explanation) are presented for each outlier and when the users hover the individual predictions the
explanation of the predicted value is highlighted (Level 2 Explanation).

5.2. Finding the Best Parameters

The currently deployed configuration of the method was found through iterating with
developers and end-users in DMG. During the iterations, we found both levels of explana-
tions valuable. We have described finer parameter tuning in Section 4, but explanations
were already valuable before the number of layers, the types of layers, normalization, etc.
were fixed.

Often the iterative process of finding a model and tuning parameters in unsupervised
settings is ignored, but this way a large part of the value gained from outlier explanations
is omitted. Even with outlier explanations, we saw that the iterative process was both
time consuming and limited and we found no simple pattern between the precision of the
prediction model and outlier quality.

5.3. The Complexity of Outlierness
5.3.1. Personalization

In our use case, the only way to meaningfully define outlierness is relative to the
user’s perception of normality. The different perceptions and prioritization of single-day
drops in streaming, exemplifies the context (in this case the user) dependency of outlierness.
The ideal outlier detector, in this use case, is therefore personalized, but this can only be
achieved with some type of supervision.

Appl. Sci. 2021, 11, 2270 12 of 14

5.3.2. Non-Outlier Information

Changing the threshold for total number of streamings had the biggest effect on the
outlier quality (Figure 4). With our model, total number of streamings does not influence
the prioritization of outliers. However, to the users in DMG, medium-sized deviations
are expected for songs with a small number of streamings and are much less interesting.
An ideal outlier detector therefore must also take into account information not directly
related to outlierness. DMG is currently experimenting with a balancing of outlier score
and total number of streamings when prioritizing the outliers.

5.3.3. Outlier Grouping

When we identified multiple interesting outliers from the same artist the users found
it valuable but added that they would prefer if the system only ranked one of these outliers,
since they are related to the same underlying event. In other words, the users want a kind
of alert correlation.

5.3.4. Outlier Explanations

Seeing the values expected by the model (Level 1 Explanation) increases users’ trust
in the model, but we found that explaining how the model found the expected value
(Level 2 Explanation) was too abstract in the current presentation. Talking to the users they
expressed a need for casual explanations more than a model explanation.

5.4. Conclusions and Future Work

In our case study, we have the advantage of being involved in the development
process and therefore can evaluate the value of outlier explanation during development
and implementation. On the other hand, we are limited by looking at a single system and
three end-users.

This means that it is hard to generalize our results, but what we can conclude is,
that it is possible to do prediction-based contextual outlier detection in a completely
unsupervised setting. We also conclude that the two levels of contextual outlier explanation
can be used during model selection and parameter tuning and that level 1 contextual outlier
explanation can be valuable to the end-user while level 2 contextual outlier explanation
may be too abstract.

Based on the limitations we believe a broader study of unsupervised contextual outlier
explanations, both during development and for end-users could give valuable information
to both the research community and companies that want to use unsupervised contextual
outlier detection. We also believe future research should investigate how outlier detection
and explanation methods can be further improved via personalization, integration of
non-outlier related information, alert correlation, and causal outlier explanation.

These features require closer interaction with domain experts and users, either through
mixing in domain rules or retrieving labeled data, e.g., incrementally, with active learning.
Such an approach will have its outset in the unsupervised method but will gradually
achieve higher precision when labels and domain rules are integrated.

Author Contributions: Conceptualization, J.H.S. and N.D.; methodology, J.H.S. and A.Z.; software,
J.H.S. and T.C.; validation, J.H.S., T.C., D.H. and N.D.; formal analysis, J.H.; investigation, J.H.S.;
resources, T.C., D.H. and N.D.; data curation, J.H.S.; writing—original draft preparation, J.H.S.;
writing—review and editing, J.H.S., A.Z. and P.S.-K.; visualization, J.H.S.; supervision, P.S.-K. and
A.Z.; project administration, J.H.S. and N.D.; funding acquisition, J.H.S. and N.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by DigitaliseringsBoost.

Acknowledgments: The authors would like to acknowledge Henrik Vistisen, Erhvervshus Midtjyl-
land, for initiating and facilitating the collaboration between Danmark Music Group Ltd. and
Department of Mathematics & Computer Science, University of Southern Denmark.

Appl. Sci. 2021, 11, 2270 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moscato, V.; Picariello, A.; Sperli, G. An emotional recommender system for music. IEEE Intell. Syst. 2020, 1. [CrossRef]
2. Amato, F.; Moscato, V.; Picariello, A.; Sperlí, G. Recommendation in Social Media Networks. In Proceedings of the 2017 IEEE

Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; pp. 213–216.
[CrossRef]

3. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
4. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016,

arXiv:1602.04938. [CrossRef]
5. Mehrmolaei, S.; Keyvanpourr, M.R. A Brief Survey on Event Prediction Methods in Time Series. In Artificial Intelligence Perspectives

and Applications; Silhavy, R., Senkerik, R., Oplatkova, Z.K., Prokopova, Z., Silhavy, P., Eds.; Springer: Cham, Switzerland, 2015;
pp. 235–246. [CrossRef]

6. Guralnik, V.; Srivastava, J. Event Detection from Time Series Data. In Proceedings of the SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 33–42. [CrossRef]

7. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41. [CrossRef]
8. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection for Discrete Sequences: A Survey. IEEE TKDE 2012, 24, 823–839.

[CrossRef]
9. Schubert, E.; Weiler, M.; Zimek, A. Outlier Detection and Trend Detection: Two Sides of the Same Coin. In Proceedings of the

IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015. [CrossRef]
10. Gupta, M.; Gao, J.; Aggarwal, C.C.; Han, J. Outlier Detection for Temporal Data: A Survey. IEEE Trans. Know. Data Eng. 2014,

26, 2250–2267. [CrossRef]
11. Schubert, E.; Zimek, A.; Kriegel, H.P. Local Outlier Detection Reconsidered: A Generalized View on Locality with Applications to

Spatial, Video, and Network Outlier Detection. Data Min. Knowl. Disc. 2014, 28, 190–237. [CrossRef]
12. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G.M. LSTM-based Encoder-Decoder for Multi-sensor

Anomaly Detection. arXiv 2016, arXiv:1607.00148.
13. Provotar, O.I.; Linder, Y.M.; Veres, M.M. Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders.

In Proceedings of the 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine,
18–20 December 2019; pp. 513–517. [CrossRef]

14. Markou, M.; Singh, S. Novelty Detection: A Review—Part 2: Neural Network Based Approaches. Signal Process. 2003,
83, 2499–2521. [CrossRef]

15. Miljković, D. Review of novelty detection methods. In Proceedings of the 33rd International Convention MIPRO, Opatija, Croatia,
24–28 May 2010; pp. 593–598.

16. Hyndman, R.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, VIC, Australia, 2018.
17. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of

the 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401. [CrossRef]

18. Malhotra, P.; Vig, L.; Shroff, G.M.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series.
In Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2015), Bruges, Belgium, 22–24 April 2015.

19. Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence Program. AI Mag. 2019, 40, 44–58. [CrossRef]
20. Lipton, Z.C. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is Both Important and

Slippery. Queue 2018, 16, 31–57. [CrossRef]
21. Goebel, R.; Chander, A.; Holzinger, K.; Lecue, F.; Akata, Z.; Stumpf, S.; Kieseberg, P.; Holzinger, A. Explainable AI: The New

42? In Machine Learning and Knowledge Extraction; Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E., Eds.; Springer: Cham,
Switzerland, 2018; pp. 295–303.

22. Knorr, E.M.; Ng, R.T. Finding Intensional Knowledge of Distance-Based Outliers. In Proceedings of the International Conference
on Very Large Data Bases, Edinburgh, UK, 7–10 September 1999; pp. 211–222.

23. Zhang, J.; Gao, Q.; Wang, H.H. A Novel Method for Detecting Outlying Subspaces in High-dimensional Databases Using Genetic
Algorithm. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), Hong Kong, China, 18–22
December 2006; pp. 731–740. [CrossRef]

24. Duan, L.; Tang, G.; Pei, J.; Bailey, J.; Campbell, A.; Tang, C. Mining outlying aspects on numeric data. Data Min. Knowl. Disc. 2015,
29, 1116–1151. [CrossRef]

25. Kriegel, H.P.; Schubert, M.; Zimek, A. Angle-Based Outlier Detection in High-dimensional Data. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 11–14 August 2008;
pp. 444–452. [CrossRef]

26. Kriegel, H.P.; Kröger, P.; Schubert, E.; Zimek, A. Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data.
In Proceedings of the 13th Pacific-Asia Knowledge Discovery and Data Mining Conference, Bangkok, Thailand, 27–30 April 2009;
pp. 831–838. [CrossRef]

http://doi.org/10.1109/MIS.2020.3026000
http://dx.doi.org/10.1109/BigMM.2017.55
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1007/978-3-319-18476-0_24
http://dx.doi.org/10.1145/312129.312190
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TKDE.2010.235
http://dx.doi.org/10.1109/ICDMW.2015.79
http://dx.doi.org/10.1109/TKDE.2013.184
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1109/ATIT49449.2019.9030505
http://dx.doi.org/10.1016/j.sigpro.2003.07.019
http://dx.doi.org/10.1109/ICMLA.2018.00227
http://dx.doi.org/10.1609/aimag.v40i2.2850
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1109/ICDM.2006.6
http://dx.doi.org/10.1007/s10618-014-0398-2
http://dx.doi.org/10.1145/1401890.1401946
http://dx.doi.org/10.1007/978-3-642-01307-2_86

Appl. Sci. 2021, 11, 2270 14 of 14

27. Dang, X.H.; Micenková, B.; Assent, I.; Ng, R. Local Outlier Detection with Interpretation. In Proceedings of the ECML-PKDD
2013: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Prague,
Czech Republic, 23–27 September 2013; pp. 304–320.

28. Dang, X.H.; Assent, I.; Ng, R.T.; Zimek, A.; Schubert, E. Discriminative Features for Identifying and Interpreting Outliers.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE 2014), Chicago, IL, USA, 31 March–4 April 2014;
pp. 88–99. [CrossRef]

29. Hawkins, D. Identification of Outliers; Chapman and Hall: London, UK, 1980.
30. Zimek, A.; Filzmoser, P. There and back again: Outlier detection between statistical reasoning and data mining algorithms. Data

Min. Know. Discov. 2018, e1280. [CrossRef]
31. Rousseeuw, P.J.; Hubert, M. Robust statistics for outlier detection. Data Min. Know. Discov. 2011, 1, 73–79. [CrossRef]
32. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
33. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [CrossRef]

http://dx.doi.org/10.1109/ICDE.2014.6816642
http://dx.doi.org/10.1002/widm.1280
http://dx.doi.org/10.1002/widm.2
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x

	Introduction
	Related Work
	Material and Methods
	Background and Challenges
	The Use Case
	Formalizing the Problem
	Challenges

	Application Case Study
	Data Retrieval
	Training and Test Data
	The Prediction Model
	Prediction-Based Outlier Scores
	Outlier Score Customization
	Level 1 Explanation
	Level 2 Explanation
	Presentation

	Evaluation Setup

	Results
	Quantitative Results
	Training Parameters
	Precision Versus Quality of Outlier Scores
	Outlier Calculation
	Total Number of Streamings and Outliers Score

	Qualitative Evaluation
	The Value of Detecting Outliers
	The Value of Outlier Explanation

	Discussion
	Evaluation and Adoption of The System
	Finding the Best Parameters
	The Complexity of Outlierness
	Personalization
	Non-Outlier Information
	Outlier Grouping
	Outlier Explanations

	Conclusions and Future Work

	References

