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Abstract: Cone cell identification is essential for diagnosing and studying eye diseases. In this paper,
we propose an automated cone cell identification method that involves TV-L1 optical flow estimation
and K-means clustering. The proposed algorithm consists of the following steps: image denoising
based on TV-L1 optical flow registration, bias field correction, cone cell identification based on
K-means clustering, duplicate identification removal, identification based on threshold segmentation,
and merging of closed identified cone cells. Compared with manually labelled ground-truth images,
the proposed method shows high effectiveness with precision, recall, and F1 scores of 93.10%, 94.97%,
and 94.03%, respectively. The method performance is further evaluated on adaptive optics scanning
laser ophthalmoscope images obtained from a healthy subject with low cone cell density and subjects
with either diabetic retinopathy or acute zonal occult outer retinopathy. The evaluation results
demonstrate that the proposed method can accurately identify cone cells in subjects with healthy
retinas and retinal diseases.

Keywords: adaptive optics scanning laser ophthalmoscope; image registration; image segmentation;
retinal imaging

1. Introduction

High-resolution in vivo retinal imaging facilitates the diagnosis and study of retinal
diseases. Nevertheless, ocular aberrations limit the optical resolution of retinal imaging
systems. To solve this problem, adaptive optics, which was originally developed to cor-
rect atmospheric imaging aberrations [1], has been applied to retinal imaging [2–8]. By
integrating adaptive optics, a scanning laser ophthalmoscope, which is a widely used
retinal imaging system, can achieve in vivo retinal imaging at the cellular level [4,9–11].
Thus, the identification of cone cells (one type of photoreceptor found in the retina) can be
implemented by using adaptive optics scanning laser ophthalmoscope (AO-SLO) images.
Although cone cells can be identified manually, such a method is often time and work
intensive. Thus, automated and semi-automated methods for cone cell identification have
been devised [12–25].

Automated cone cell identification mainly includes image denoising and target identi-
fication. Reliable denoising of AO-SLO images often relies on averaging multiple AO-SLO
images. However, the directly averaged AO-SLO image is blurred due to eye motion. To
correct eye motion artifacts, the AO-SLO images need to be registered. Although hardware-
based registration is effective [3,4,26–30], software-based registration is more commonly
used due to its low costs [31–36]. For software-based registration, optical flow estimation
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provides high performance [36]. However, this registration method requires preprocessing
that increases its complexity. To avoid preprocessing, we adopt TV-L1 optical flow [37] to
achieve direct software-based AO-SLO image registration. Then, for target identification,
we use K-means clustering [38], which despite being a common unsupervised learning
algorithm, has not been applied to cone cell identification.

To verify the effectiveness of the proposed method, we compared it with manual
labeling to obtain various evaluation measures, namely, recall, precision, and F1 score.
We further evaluated the identification performance of the proposed method for cone cell
identification of AO-SLO images from a healthy subject with low cone cell density and
subjects with either diabetic retinopathy or acute zonal occult outer retinopathy, as far as
we know for the first time.

2. Proposed Cone Cell Identification Method

Figure 1 shows the flowchart of the proposed cone cell identification method, which
comprises six steps: (1) image denoising, (2) bias field correction, (3) cone cell identification
based on K-means clustering [38], (4) duplicate identification removal, (5) identification
based on threshold segmentation, and (6) merging of closed identified cone cells. First,
AO-SLO images are denoised by averaging multiple images registered by TV-L1 optical
flow estimation [37]. Second, bias field correction [39] is applied to the denoised image, and
the corrected image is isotropically magnified four times via bicubic interpolation. Third,
cone cells are roughly identified by K-means clustering [38]. Fourth, duplicate identification
results are removed. Fifth, a threshold is calculated by using the identification results to
segment the corrected image. The segmentation results are used to generate the cone cell
identification results. Finally, the identification outcome is obtained by merging closed
identified cone cells [16].
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2.1. AO-SLO Image Denoising

The human eye has a limited resilience to light exposure. Therefore, to prevent optical
damage, the light of AO-SLO imaging should be set to a low-power mode. However,
low light might lead to a low signal-to-noise ratio in AO-SLO images. To increase this
ratio, multiple registered AO-SLO images can be averaged. To this end, we adopt TV-L1
optical flow estimation [37] for image registration and then average the registered images
after screening. The flowchart of image denoising based on registered images is shown
in Figure 2. First, the middle image in a time sequence is selected as a reference for the
registration of other images. Then, TV-L1 optical flow registration is applied to each image
to be registered. Third, image registration is evaluated. Registered images whose structural
similarity index [40] with respect to the reference image is below 0.5 under masks are
discarded. If the number of remaining registered images is below one-fifth of the number
of acquired images, the algorithm selects the next image closest to the middle in the time
sequence as the new reference image. When the number of successfully registered images
is sufficient, they are averaged along with the reference image under masks to obtain the
denoised AO-SLO image.
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Figure 3 shows an example of image denoising on a representative AO-SLO image
patch using the proposed method. Note that image noise is markedly reduced after
denoising, indicating the high effectiveness of the method.
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2.2. Bias Field Correction

To mitigate intensity differences across the cone cells in an AO-SLO image and improve
the identification accuracy, we apply bias field correction [39] to denoised AO-SLO images.
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First, an intensity bias field image is created by applying a Gaussian filter to the denoised
image:

Bias field image = Gaussion filter(Denoised image) (1)

The denoised image is corrected by extracting the bias field image [39]:

Bias field corrected image(x, y) = Mean(Bias field image)× Denoised image(x, y)
Bias field image(x, y)

(2)

Figure 4 illustrates bias field correction performed on a representative AO-SLO image.
The intensity of the cone cells is more uniform after bias field correction. To accurately
identify the cone cells, we also isotropically magnify the corrected image four times via
bicubic interpolation after bias field correction and before identification.
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2.3. Identification Based on K-Means Clustering

K-means clustering [38] is the most time-consuming operation in the proposed cone
cell identification method. To reduce the computational time of K-means clustering, we
divide the bias-field-corrected image into image patches before identification. Then, we
separately identify the cone cells on each patch and join the identification results afterward.
To accurately identify the cone cells near the edge of image patches, we add extra patch
borders of 10% of the length of the image patch before identification. These borders only
support identification in the image patches, but the identified cone cells in the borders are
discarded from the final identification results.

For identification on each image patch, we first apply a histogram equalization. Sec-
ond, the pixels are divided into 3 clusters by K-means according to intensity. Third, we
generate a mask for the cluster that contains the largest number of pixels because this mask
represents either cone cells or the background. Fourth, we extract the contours of this mask
by using function findContours in the Python implementation of OpenCV. Then, we obtain
the centroid of the area inside each contour to identify the cone cells.

Figure 5 shows an example of cone cell identification based on K-means clustering
on a representative image patch. The cone cells are roughly identified. Nevertheless,
overidentification errors occur, as some cone cells are identified more than once.
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2.4. Duplicate Identification Removal

To mostly correct overidentification, we remove duplicate identification results with
low intensities. Specifically, we first divide the identified results into groups, with the maxi-
mum distances per group being below a threshold. Second, we only keep the identification
results corresponding to the highest intensity per group and remove the likely duplicate
identification results. Thus, we only preserve one identification result per group.

Figure 6 shows an example of duplicate identification result removal using the image
patch shown in Figure 5. The overidentification shown in Figure 5 is corrected after
duplicate identification removal.
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2.5. Identification Based on Threshold Segmentation

To further improve the accuracy of cone cell identification at high-intensity locations,
we apply threshold segmentation to the bias-field-corrected image (Section 2.2). The
threshold is determined as follows: (1) we generate a mask that includes the identification
results obtained in Section 2.4 and their surroundings whose locations are within 4 pixels
from them; (2) the mean value of the bias-field-corrected image under the mask is calculated;
(3) this mean value is set as the threshold for segmentation. After segmenting the bias-field-
corrected image using this threshold, we extract the contours of the segmentation results
by using function findContours of OpenCV and obtain the centroid of the area inside each
contour to identify the cone cells.

Figure 7 shows an example of threshold segmentation applied to a representative
image patch. The cone cells are more accurately identified after threshold segmentation.
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2.6. Merging of Closed Identification Results

After threshold segmentation, some cone cells are identified more than once. To
mitigate duplicate identification, we merge closed identified cone cells by using the method
in [16], which combine several closed identified results into one identified result. Specifi-
cally, morphological dilation is applied to the identification results (function morphologyEx
of OpenCV), and the centroid of each region is obtained. Then, closed identified cone
cells are combined, obtaining refined identification around the middle of the previously
identified closed cone cells.



Appl. Sci. 2021, 11, 2259 6 of 10

Figure 8 shows an example of merging closed identified cone cells on a representative
image patch. Closed cone cells are merged, thus improving the identification results.
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3. Results

An AO-SLO system with an acquisition rate of 30 Hz was used for imaging the
posterior part of the eye of human subjects. The field of view and frame size of the
human eye are 1.5◦ and 512 × 449 pixels, respectively. Thus, a transverse region of
445 × 445 µm was scanned using an effective focal length of 17 mm for the eye. More
details of the AO-SLO system can be found in [41]. Before imaging, the pupil was dilated
with 1% tropicamide and 2.5% phenylephrine hydrochloride to increase its diameter to
6–8 mm. Throughout the procedure, light exposure was maintained in accordance with
the maximum permissible exposure limits specified by the American National Standards
Institute [42].

The automated processing of a 100 × 100-pixel image required 8.72 s for denois-
ing based on TV-L1 optical flow registration, 0.01 s for bias field correction, 0.52 s for
identification based on K-means clustering, 0.01 s for duplicate identification removal,
1.56 s for identification based on threshold segmentation, and 1.65 s for merging of closed
identification results. These computational times were obtained from a system equipped
with an Intel Core i5-9400 CPU at 2.90 GHz, an NVIDIA GeForce GTX 1660 Ti graphics
card, and 16.0 GB memory. Python (64 bits) was used for implementation of the algo-
rithms: the numerical calculations were mainly implemented by using NumPy and SciPy
libraries; the computer vision algorithms, especially K-means, were mainly implemented
by OpenCV library.

To verify the effectiveness of the proposed method for cone cell identification, we
acquired five retinal images around the foveola of healthy subjects (n = 5). The proposed
method successfully identified the cone cells from the five subjects. The identification on
three representative images is shown in Figure 9. By regarding manual cone cell identifi-
cation as the ground truth, the overall precision, recall, and F1 score of the identification
are listed in Table 1. The proposed method provides high identification accuracy near the
foveola of the healthy subjects.

We further evaluated the performance of the proposed method on different types of
AO-SLO images. Figure 10 shows three examples of AO-SLO images [43,44] and their
corresponding cone cell identification results. The first example (Figure 10(a1,b1)) shows
an AO-SLO image at different retinal locations in the same healthy eye with cone cell
density below that of the examples shown in Figure 9. The examples in Figure 10(a2,b2)
and Figure 10(a3,b3) show AO-SLO images of an eye with diabetic retinopathy [43] and an
eye with acute zonal occult outer retinopathy [44], respectively, along with the correspond-
ing cone cell identification results. The proposed method accurately identifies AO-SLO
images of eyes with low cone cell density, diabetic retinopathy, and acute zonal occult
outer retinopathy.
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Table 1. Performance measures of cone cell identification.

Measure Description Value

Precision Percentage of actual cells in identified cells 93.10%
Recall Percentage of actual cells identified 94.97%

F1 score 2 × Precision × Recall/(Precision + Recall) 94.03%
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4. Discussion

One future direction of image denoising for AO-SLO images is to try the deep learning-
based image registration method and averaging the registered images. The deep learning
registration model could be trained by natural images and applied to the AO-SLO images.
For automated cone cell identification methods, more unsupervised clustering methods,
which are known for their high accuracy in image segmentation, could be applied to
AO-SLO images for trying to obtain highly accurate cone cell identification results in some
pathological cases.
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5. Conclusions

We propose an automated cone cell identification method that uses TV-L1 optical
flow registration and K-means clustering identification on AO-SLO images. The proposed
method successfully achieves denoising based on TV-L1 optical flow registration, bias field
correction, identification based on K-means clustering, and merging of closed identified
cone cells, as verified experimentally. To evaluate the performance of the proposed method,
we compared its automated cone cell identification with manual labeling. The proposed
method achieves precision, recall, and F1 scores of 93.10%, 94.97%, and 94.03%, respectively.
Furthermore, the proposed method exhibits high-performance cone cell identification on
AO-SLO images of eyes with low cone cell density, diabetic retinopathy, and acute zonal
occult outer retinopathy.
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