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Abstract: It is essential to understand the voice characteristics in the normal aging process to
accurately distinguish presbyphonia from neurological voice disorders. This study developed the
best ensemble-based machine learning classifier that could distinguish hypokinetic dysarthria from
presbyphonia using classification and regression tree (CART), random forest, gradient boosting
algorithm (GBM), and XGBoost and compared the prediction performance of models. The subjects
of this study were 76 elderly patients diagnosed with hypokinetic dysarthria and 174 patients with
presbyopia. This study developed prediction models for distinguishing hypokinetic dysarthria
from presbyphonia by using CART, GBM, XGBoost, and random forest and compared the accuracy,
sensitivity, and specificity of the development models to identify the prediction performance of them.
The results of this study showed that random forest had the best prediction performance when it was
tested with the test dataset (accuracy = 0.83, sensitivity = 0.90, and specificity = 0.80, and area under
the curve (AUC) = 0.85). The main predictors for detecting hypokinetic dysarthria were Cepstral
peak prominence (CPP), jitter, shimmer, L/H ratio, L/H ratio_SD, CPP max (dB), CPP min (dB),
and CPPF0 in the order of magnitude. Among them, CPP was the most important predictor for
identifying hypokinetic dysarthria.
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1. Introduction

When people get old, they experience vocal aging due to the malfunction of the
respiratory system and the vocal system [1]. It is defined as presbyphonia in otorhinolaryn-
gology [1]. Presbyphonia generally shows symptoms such as hoarse, weak, or a trembling
voice due to the atrophy or loss of elasticity of the vocal cord muscles in the aging pro-
cess [2]. These symptoms are similar to the major vocal symptoms of early Parkinson’s
disease as known as hypokinetic dysarthria that are caused by damage to the nervous
system [2]. Hypokinetic dysarthria is characterized perceptually by varying degrees of
reduced loudness, breathy voice, short rushes of speech, and reduced pitch variation [1–3].
However, presbyphonia can be distinguished from neurological voice disorders such as
dysarthria in view of the fact that presbyphonia is not a voice disorder. Therefore, it is
essential to understand the voice characteristics in the normal aging process to accurately
distinguish presbyphonia from neurological voice disorders.

Previous studies that analyzed the characteristics of presbyphonia over the past
20 years can be divided into studies that identified subjective voice problems through
a self-administered questionnaire [3,4], and acoustic phonetic studies that recorded and
analyzed the voices of subjects by gender and age [5]. In particular, the acoustic phonetic
studies on presbyphonia have focused on the results of tracking the cycle boundaries of
the vocal cords over time using Spectrum, a frequency-based analysis in sustained vowel
phonation tasks [6–8].
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More recent studies have widely used acoustical analyses such as Cepstral measures
to objectively evaluate connected speech [9]. Cepstral measure is a terminology derived
from Spectral measure: it is a second frequency Spectrum that is estimated by conducting
the inverse Fourier transform after taking a log of the Spectrum G of the function G(t) in
the time domain. Cepstral indices (e.g., Cepstral peak prominence (CPP) and Cepstral
Spectral Index of Dysphonia (CSID)) can analyze aperiodic voice signals and periodic voice
signals, unlike Spectrum indices (e.g., Jitter and Shimmer) [10]. In other words, it has the
advantage of analyzing connected speech (dialogue) reflecting the speech characteristics
of actual subject acoustically and sustained vowel phonation tasks for analyzing voice
characteristics [11,12].

Until now, most of the acoustic studies that analyzed presbyphonia using Spec-
trum analysis and Cepstral analysis have evaluated the sustained phonation of single
vowel [13–15], and only a few studies examined connected speech [16,17]. Furthermore, in
terms of methodology, even the previous studies [12,16] that analyzed connected speech
using Cepstral analysis just identified the differences in measurements (e.g., CPP and
CSID) by age and gender based on analysis of variance (ANOVA), multivariate analysis of
variance (MANOVA), generalized linear model (GLM), and t-test by collecting the voice
data of subjects.

On the other hand, ensemble-based machine learning methods such as random forest
and gradient boosting algorithm (GBM) have been widely used as data mining algorithms
for developing disease prediction models in recent years [18–20]. Ensemble-based machine
learning can reduce prediction errors by increasing randomness to the maximum, and it has
the advantage of being able to analyze big data that is difficult to handle with traditional
statistical analysis such as GLM [21]. Nevertheless, studies on hypokinetic dysarthria
caused by Parkinson’s disease have mainly relied on GLM [22], and only a few studies
have used ensemble-based machine learning algorithms. This study developed the best
ensemble-based machine learning classifier that could distinguish hypokinetic dysarthria
from presbyphonia using classification and regression tree (CART), random forest, GBM,
and XGBoost and compared the prediction performance of models.

2. Materials and Methods
2.1. Subjects

This study targeted 76 elderly people aged between 65 and 80 years old (30 males
and 46 females) diagnosed with hypokinetic dysarthria at rehabilitation hospitals in Seoul
and Incheon and 174 healthy elderly people aged between 65 and 80 years old (93 males
and 81 females) with presbyphonia residing in Seoul and Incheon. In this study, the
presbyphonia was defined as a healthy control group without laryngeal disease. This study
was approved by the Institutional Review Board of HN University in Korea (No. 1041223-
201812-HR-26). The selection criteria for the elderly with presbyphonia were: (1) those
who did not have a voice disorder in the GRBAS (grade, roughness, breathiness, asthenia,
strain) scale, an auditory-perceptual assessment method, (2) those who did not have an
upper respiratory infection for the last one month, (3) those who did not undergo surgery
due to a neurological disease, (4) those who had five or less in the Geriatric Depression
Scale Short Form Korea Version (GDSSF-K) and were determined not to have depression,
(5) those who satisfied the definition of presbyphonia because they had clinical symptoms
such as weakened voice, limited pitch and loudness, reduced phonation time, breathiness,
hoarseness, and/or roughness according to Kendall [23].

2.2. Data Collection

Voice samples were collected in a noise-controlled laboratory. Voice was recorded
using a microphone (D7 Vocal., AKG, Vienna, Austria) fixed at a 90-degree angle installed
at 10 cm away from the mouth. Sustained vowels and connected speech were recorded at a
sampling rate of 44.1 kHz with 16-bit quantization for each sample using the Analysis of
Dysphonia in Speech and Voice (ADSV; Model 5109, Kay Pentax Medical, Montvale, NJ,
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USA). Sustained vowel phonation tasks were conducted by analyzing the phonation of
/a/ vowel in Korean for more than three seconds. We analyzed two seconds of the interval
except for 50 ms at the beginning and end of the vocal sample. The mean of three mea-
surements computed averaging over three separate vowel recordings. Connected speech
was collected by using “
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2.3. Definition of Variables

The outcome variable was the prevalence of hypokinetic dysarthria. Explanatory
variables were age, gender, years of education, current smoking status, current drinking
status, CPP (dB), low-high Spectral ratio (L/H ratio, dB), L/H ratio_standard deviation
(SD), L/H ratio max (dB), L/H ratio Min (dB), CPP fundamental frequency (CPP F0, Hz),
CSID, CPP Max (dB), CPP min (dB), mean CPP F0 (Hz), and mean CPP F0 SD (Hz). The
definitions of Cepstral and Spectral measures [25] are presented in Table 1.

Table 1. The definitions of Cepstral and Spectral measures.

Index Explanation

CPP (dB) Defined as the height of that peak relative to a regression line through the overall cepstrum.
The better the quality of voice, the higher the score.

L/H ratio (dB)

LHR is the ratio of low (below 4000 Hz) versus high (above 4000 Hz) frequency spectral
energy (spectral tilt). Threshold is 4000 Hz and its score is low in abnormal voice. Higher
values reflect greater low frequency spectral energy, which is commonly found in normal

voices.
L/H ratio_SD Standard deviation of L/H ratio

L/H ratio Max (dB) Maximum value of L/H ratio
L/H ratio Min (dB) Minimum value of L/H ratio

CPPF0 (Hz) Defined as average frequency of CPP which is in the range of 60~300 Hz of vocal sound
among analyzed voices.

CSID Its score is high in abnormal voice. The CSID estimated dysphonia severity is theoretically a
number between 0 and 100, with 100 being rated the most severe.

CPP Max (dB) Maximum value of CPP
CPP Min (dB) Minimum value of CPP

Mean CPP F0 (Hz) Mean F0 frequency calculated by CPP within the 60–300 Hz of the selected voice data
Mean CPP F0 SD (Hz) Standard deviation of mean CPP F0

2.4. Development and Performance Evaluation of the Prediction Model

This study developed prediction models for distinguishing hypokinetic dysarthria
from presbyphonia by using CART, GBM, XGBoost, and random forest and compared
the area under the curve (AUC), accuracy, sensitivity, and specificity of the development
models to identify the prediction performance of them. The collected data were randomly
divided into a training dataset (70%) and a test dataset (30%). A 5-fold cross-validation
(CV) was performed only on the training data, and the test dataset was used to evaluate the
prediction performance. The ensemble algorithm contains randomness, and models were
developed by setting the seed to 123456789. The prediction performance of models was
compared using the AUC, accuracy, sensitivity, and specificity of each model. The AUC
summarizes the entire location of the receiver operating characteristic (ROC) curve rather
than depending on a specific operating point. The closer the AUC value is to 1, the better
the predictive power of the model. Accuracy indicates the percentage (OR proportion)
of the subjects successfully predicted by each model. Sensitivity is the percentage of the
true positives out of all the samples, while specificity means the percentage of the true
negatives. This study defined the model with the best prediction performance as a model
showing the highest accuracy and AUC while sensitivity and specificity values were 0.7
or higher, and chose it as the final model to predict hypokinetic dysarthria. All analyses
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were performed using the package (xgboost, randomForest, gbm, rpart, and tree) in R
version 3.5.1 (Foundation for Statistical Computing, Vienna, Austria). The package can be
downloaded from the web (https://cran.r-project.org/web/packages/; accessed date: 1
March 2021).

2.5. Sampling for Processing Imbalanced Data

Disease data generally have an imbalance issue because the number of healthy people
is larger than that of sick people. This study also had an imbalance issue because 69.6%
of the subjects had presbyphonia without hypokinetic dysarthria, while only 30.4% of the
subjects had hypokinetic dysarthria. This study used the synthetic minority oversampling
technique (SMOTE) [26] to solve this imbalance issue. SMOTE is a method to compensate
for overfitting, the disadvantage of oversampling. This method randomly selects a minor
class among the classes of the response variable, and finds k nearest neighbors of the data.
Then, the differences between the selected sample and k neighbors were calculated and
a random value between 0 and 1 was multiplied with them. The calculated value was
added to the existing samples and the training dataset. Finally, this process is repeated.
Although SMOTE is similar to oversampling in the aspect that it increases the data size
of a minor class, it is known that it can overcome the overfitting issue of oversampling by
creating new samples by appropriately combining existing data rather than replicating the
same data.

2.6. CART

CART is an algorithm that carries out multiway split using the chi-square test (when
a target variable is categorical) or F-test (when a target variable is continuous). When a
target variable is categorical, Pearson’s chi-squared statistic or likelihood ratio chi-square
statistic is used as the separation criterion. When a target variable is ordinal, the likelihood
ratio chi-square statistic is used.

2.7. Random Forest

Random forest is an ensemble technique that generates multiple decision trees using
bootstrap samples and predicts by putting models together [27]. This algorithm has the
advantage of increasing the diversity of decision trees because it repeats the process of
randomly selecting several variables [28]. Decision trees present each node with the
partition showing the most optimal results by using all variables. However, unlike decision
tree, random forest randomly selects explanatory variables when presenting each node and
uses the method providing the most optimal results among the selected sets of explanatory
variables. Since random forest uses bootstrap samples, it has the advantage of being able
to use out of bag (OOB) samples [28,29]. The importance of variables is calculated using
permutation [30]. Random forest has the advantage of reducing variance, compared to the
bagging method, by decreasing the correlation between trees. Moreover, it shows more
accurate results than other existing algorithms and is good at finding important variables
in big data because it can use thousands of independent variables without removing
variables [29]. This study set the number of trees of the random forest model to 500. The
concept of random forest is presented in Figure 1 [31].

https://cran.r-project.org/web/packages/
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this process. The concept of GBM is presented in Figure 2 [33] and Figure 3.
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2.9. XGBoost

XGBoost is a boosting algorithm that makes the next model use misclassified obser-
vations more when producing trees [34]. In other words, it is trained to further improve
the performance for misclassified observations. XGBoost has the advantage in the fast
calculation process because it uses parallel computing that is used by all CPU cores while
learning and it is very useful because it supports various programming languages such as
Python and the R program [35]. The concept of XGBoost is presented in Figure 4 [36].
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3. Results
3.1. Comparison of the Accuracy, Sensitivity, and Specificity of Ensemble Learning-Based
Prediction Models

Table 2 shows the comparison of the accuracy, sensitivity, and specificity of the ensem-
ble learning-based prediction model for identifying hypokinetic dysarthria. The results of
this study showed that random forest had the best prediction performance when it was
tested with the test dataset (accuracy = 0.83, sensitivity = 0.90, and specificity = 0.80, and
AUC = 0.85).
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Table 2. The comparison of the accuracy, sensitivity, specificity, and AUC of the ensemble learning-
based prediction model for identifying hypokinetic dysarthria.

Type of Data Model Accuracy (%) Sensitivity Specificity AUC

Training data (1)

CART 77.5 0.66 0.91 0.73
GBM 85.5 0.85 0.89 0.84

XGBoost 85.3 0.90 0.81 0.85
Random

forest 87.1 0.91 0.79 0.88

Test data

CART 70.3 0.60 0.88 0.71
GBM 83.1 0.83 0.89 0.82

XGBoost 81.1 0.88 0.72 0.84
Random

forest 83.8 0.90 0.80 0.85

(1) Average accuracy calculated from 5-fold cross-validation.

3.2. Key Predictors of the Final Model

The importance of variables of the random forest-based prediction model, the final
model, is presented in Figure 5. The main predictors for detecting hypokinetic dysarthria
were CPP, jitter, shimmer, L/H ratio, L/H ratio_SD, CPP max (dB), CPP min (dB), and
CPPF0 in the order of magnitude. Among them, CPP was the most important predictor for
identifying hypokinetic dysarthria. Figure 6 shows the error graph when each prediction
model was made with 500 bootstrap samples. The error of the developed random forest
model was 0.16 and the prediction rate was 83.8%.
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4. Discussion

It is important to accurately distinguish presbyphonia from neurological voice dis-
orders because presbyphonia has similar voice characteristics to hypokinetic dysarthria
caused by Parkinson’s disease. This study developed a classifier that distinguishes hypoki-
netic dysarthria from presbyphonia using ensemble machine learning algorithms. This
study compared the prediction performance of GBM, XGBoost, random forest, and CART
to find that the accuracy of random forests was the highest. It is believed that random forest
showed higher accuracy than CART because the former was based on a bagging algorithm
that generated various decision trees from 500 bootstrap samples [37,38]. CART has the
limitation that the variance of the model is large because, although it has a small bias, the
structure of the tree model changes greatly depending on the first split variable. In other
words, if n data are split n−1 times, only one value is included in each area. The large tree
model created in this way is generally more likely to cause an overfitting problem [39,40].
On the other hand, bagging tree is a tree model made by bootstrap samples, and it has
the advantage of minimizing bias and effectively reducing the variance of the model.
Since random forest effectively reduces the correlation of each tree model through an
algorithm that gives randomness in the growing process of the bagging tree, it is believed
to have higher prediction power than CART [39]. However, further studies are needed to
explain why the accuracy of random forest is higher than that of GBM and XGBoost, other
ensemble algorithms. The results of this study revealed that the sensitivity of XGBoost
was higher than that of random forest while sensitivity indicated the percentage of true
positives. Therefore, future studies are necessary to compare prediction performance by
estimating diverse evaluation methods, such as sensitivity, specificity, and weight harmonic
average, suitable for the analysis objective, rather than using one performance index such
as accuracy.

Another key finding of this study was that CPP, one of the Cepstral indices, was the
most important predictor for identifying hypokinetic dysarthria in the developed predic-
tion model including sociodemographic factors, health behavior, and acoustic–phonetic
indices. Although acoustic–phonetic characteristics, such as loudness, were generally
reported as important characteristics for distinguishing hypokinetic dysarthria from other
disorders [41,42], studies on pitch and quality showed inconsistent results [43,44]. Previous
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studies [41,42] that analyzed the voice of patients with Parkinson’s disease using Spec-
trum showed that the increase of shimmer and jitter, decreased maximum phonation time
(MPT) and harmonic-to-noise ratio (HNR), and a decrease of F0 variability were important
acoustic diagnostic indices of Parkinson’s disease. However, some studies reported results
contradictory to Holmes et al. [41] and Jiménez-Jiménez et al. [42]. Santos et al. [43] reported
that acoustic measurements (e.g., F0, shimmer, jitter, and HNR) were significantly different
between the control group and the Parkinson’s patient group. Yuceturk et al. [44] compared
Parkinson’s disease patients with healthy people and reported that MPT and HNR were
significantly different between them, but jitter and shimmer were not significantly different
between them. However, these previous studies used only Spectrum indices as an analysis
method to determine sound quality, which was a limitation. This study analyzed major
predictors while including both Spectrum and Cepstral indices and confirmed that CPP
was the most important predictor. It is believed that it was because CCP could reflect the
periodicity of the speech signal well regardless of the type or length of the speech. The Cep-
strum analysis not only displays the degree of harmonics as a single peak on the Spectrum
through log Fourier transformation, but also visualizes the harmonic structure of the speech
signal more prominently than the Spectrum through the inverse Fourier transformation
of the Spectral measurement. In particular, among Cepstral measures, CPP is an index
that can check the amount of harmonics in the voice signal through the difference between
the maximum Cepstral value and the regression line [45]. Speakers with prominent voice
problems tend to show a small CPP value [46,47], and CPP tends to increase as quality
improves or loudness increases [48]. In a number of previous studies, CPP has shown good
accuracy and effectiveness in detecting dysarthria (e.g., accurately predicting the severity
of dysarthria) and a high correlation with auditory-perceptual evaluation results [25,45,46].

5. Conclusions

In summary, the results of this study imply that CPP among Cepstral indices is useful
for distinguishing hypokinetic dysarthria from presbyphonia in acoustic–phonetic analysis
using both Cepstrum and Spectrum. It will be necessary to develop a multimodal-based
prediction model including auditory-perceptual indices, biomarkers, and acoustic–phonetic
indices (e.g., Cepstral and Spectral measures) to predict hypokinetic dysarthria more
sensitively.
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