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Abstract: In this research, an innovative robot is presented that can move both on land and water
thanks to a vibration-based locomotion mechanism. The robot consists of a U-shaped beam made of
spring steel, two low-density feet that allow it to stand on the water surface without sinking, and a
micro-DC motor with eccentric mass, which excites vibrations. The robot exhibits stable terrestrial
and aquatic locomotion based on the synchronization between body vibrations and the centrifugal
force due to the eccentric mass. On the one hand, in aquatic locomotion, the robot advances thanks to
floating oscillations and the asymmetric shape of the floating feet. On the other hand, the terrestrial
locomotion, which has already been demonstrated for a similar robot, exploits the modes of vibration
of the elastic beam. In this study, the effect of different excitation frequencies on the locomotion speed
in water is examined by means of experimental tests and a numerical model. A good agreement
between experimental and numerical results is found. The maximum locomotion speed takes place
when the floating modes of vibration are excited.

Keywords: legged robot; modes of vibration; amphibious robot; vibration-based locomotion

1. Introduction

Humanity has found the most effective way to move on land with the invention of
the wheel. However, the need to move in different environments where wheeled vehicles
cannot move forces scientists to develop mechanisms that mimic living things. Although a
very small part of the Earth’s surface is suitable for the locomotion of wheeled vehicles,
living things can reach almost all surfaces of the world due to their unique physiology.
Today, robots can perform different locomotion movements, such as walking, running,
jumping, and swimming, that mimic living things. However, today’s robots can perform
these movements by consuming a large amount of energy, while living things can perform
more complex and stable locomotion using much less energy. Therefore, it is important
to understand the principles of animal locomotion to develop robots with low energy
consumption. Research on this subject has focused on the energy consumed during
locomotion [1-5]. The studies on the locomotion of legged robots have been mainly in the
form of detailed examination of the movements of animals and the physical models related
to these movements [6].

Legged robots can be divided into three main families. There are robots equipped
with rigid limbs, whose locomotion is essentially based on rigid body dynamics. They
have been extensively studied since the last decades of the last century [7-10]. There
are hopping robots that mimic hopping locomotion used by many animals, especially
at high speeds. Hopping locomotion requires the presence of elastic limbs able to store
elastic energy [10-12]. Finally, there are soft robots, which are the most recent family.
They have some characteristics of the hopping robots, but they also mimic the behavior of
many animals that adjust the stiffness and shape of their limbs in order to increase their
mobility [13-16].

The first issue of this research is vibration-based locomotion. Since this kind of
locomotion shares many features and problems with hopping locomotion, a brief literature
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review on this topic is presented. The first research on hopping robots was carried out in
the 1980s at the Leg Lab of the MIT [10]. As a result of these studies, robot mechanisms
capable of two-dimensional and three-dimensional locomotion have been developed, but
these mechanisms had complex structures and showed excessive energy consumption. In
contrast, appropriately designed elastic limb mechanisms allow the development of legged
robots with lower energy consumption by exploiting a natural vibration, and the energy
efficiency of these systems may approach one of biological organisms [17]. The use of
elastic limbs in robots brings energy efficiency together with a range of control difficulties.
This difficulty can be eliminated by overlapping frequencies of the free vibrations of the
elastic limbs and the periodic actuation of the robot. The identification of the stiffness
properties of hopping robots is very important in order to generate accurate dynamic
models, and, for this purpose, Experimental Modal Analysis (EMA) can be used [18,19]. In
recent years, many robotic systems with elastic limbs have been developed [20-25]. For
example, Bhatti et al. have developed a simple but effective control unit for a single-legged
hydraulic robot, which can change the jump height, step length, and, thus, the flight
time [21]. Li et al. presented a soft-bodied jumping robot called JelloCube, which can be
used for applications that require locomotion on uneven terrain [22]. Using a free vibration
mode, Reis et al. have developed an elastic mechanism that can perform locomotion with
low energy consumption [23-25].

The second main issue of this research is amphibious locomotion [26-30]. The locomo-
tion mechanism of many amphibious robots has been developed by taking inspiration from
living things. The nervous system of amphibious animals has been studied, and a robot
motion control system that can control movement patterns such as walking, breathing,
and swimming has been developed and applied to a multi-foot amphibious robot [31]. In
Reference [32], an amphibious spherical robot inspired by amphibious turtles was devel-
oped. The six-pedal amphibious robot [33], which is a four-legged salamandra robot [34]
inspired by a cockroach, and the six-legged amphibious robot (AmphiHex-I) [35] are some
of the most well-known examples of a robot mimicking nature. Zhong et al. introduced
an amphibious robot mechanism (AmphiHex-1I) with semi-circular stiffness adjustable
feet [36]. In Reference [37], an alligator-inspired robot was developed. Liquids have surface
tension due to the strong cohesive force between their molecules. The surface tension
of water is about ten times greater than the weight of some aquatic organisms with a
body mass of milligrams. This makes it possible for aquatic insects to move on the water
surface, and even to jump on it. Using this characteristic of the water, Koh et al. [38]
developed a water strider robot. In the robot design, a simple mechanical model of the
interaction between the water strider’s legs and the water surface is established. Moreover,
Yang et al. [39] developed a theoretical leg motion model that provides an estimate of
conditions for optimal jump performance of water runners.

This research deals with a simple two-legged robot, which consists of a U-shaped
elastic beam, two feet, and a micro-DC motor with eccentric mass. Due to the shape and
material of the feet, the robot can move both on land and in the water. Potential applications
include the use of this robot to transport environmental sensors from ground to water (e.g.,
sensors for bridge monitoring in lagoons), and the collection and transport of plastic waste
from shallow water to ground. This paper chiefly focuses on the aquatic locomotion of
the amphibious robot. First, in order to have a better understanding of the locomotion
principle, the natural frequencies and the modes of vibration of the amphibious robot are
analytically derived. Since the terrestrial locomotion capabilities of this kind of robot have
been already demonstrated in References [23-25], the aim of the analysis is to demonstrate
that, in the aquatic locomotion, the structural stiffness of the robot can be neglected. Then,
a multi-body model of the robot is developed, in order to study the aquatic locomotion
principle in detail. Many numerical results dealing with forces and displacements of the
robot feet and locomotion speed are presented. Finally, experimental tests are described.
The experimental results show that the robot has both terrestrial and aquatic locomotion
capabilities, owing to the developed foot structure. The measured locomotion speed as a
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function of the frequency of the rotating mass and the natural frequencies of the robot are
in good agreement with the results coming from the mathematical and numerical models.

2. Amphibious Robot

The amphibious robot considered in the framework of this research is an improvement
of the U-shaped walking robot presented in References [23,25]. The experimental results
presented in these references showed that the robot was able to walk on the ground
exploiting the elastic deformability of the U-shaped beam.

The photograph of the amphibious robot is shown in Figure 1 and its main dimen-
sions and inertial properties are summarized in Table 1. The dimensions of the robot are
different from the ones presented in References [23,25] and, moreover, half-elliptical feet
are introduced in order to obtain aquatic locomotion. The robot consists of a U-shaped
beam, a micro-DC motor with mass m1,,0t0r, and two feet with mass m F=my made of
polyurethane foam. The legs (length L, and mass ) and spine (length L; and mass
Mspine) Of the robot are made of spring steel (Young modulus E = 200 GPa) with a cross
section of 2 = 0.8 mm X b =2 mm and formed as a U-shaped beam with right angles. The
micro-DC motor is mounted at the center of the spine and a small eccentric mass (1, at
a radius rp) is driven by the motor. The robot is supported by two floating feet made of
low-density material that enable the robot to move both on land and on the water surface.
The polyurethane feet with a half-elliptical section (with semiaxes 71 and 7, and length L)
are submerged in water by 50% while statically carrying the robot total mass m;,; =7.5 g.

Figure 1. A photograph of the amphibious robot.

Table 1. Main design parameters of the amphibious robot.

Mmotor 3g Itop 1114 g~mm2
Mspine lg Tp 25 mm
Mieq lg Ly 75 mm
my 07g Ly 85 mm
mg 04g Ly 90 mm
my, 04g a 0.8 mm
Mot 75¢g b 2 mm
r 10 mm E 200 GPa
) 7 mm

The following assumptions were made [25] in order to develop a mathematical model
of the robot for terrestrial locomotion: the behavior of the robot can be analyzed in the
sagittal plane, the contact of the feet with the ground can be considered as a point contact,
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the elastic properties of the spline and legs are represented by lumped linear and torsion
springs, and the mass properties of the system are represented by lumped masses.

The physical principle of aquatic locomotion is rather different from the physical
principle of terrestrial locomotion [25] and, in particular, buoyancy and drag forces play a
very important role. New modes of vibration related to floating do appear and influence
locomotion. Therefore, the modes of vibration due to elastic deformability are first analyzed
with a detailed model, in order to evaluate their possible influence on aquatic locomotion.
Then, the typical modes of vibration related to floating are analyzed.

3. Natural Frequencies and Modes of Vibration
3.1. Modes of Vibration Due to Elastic Deformability

According to the previously mentioned assumptions, the proposed model consists
of lumped masses connected by elastic elements, as shown in Figure 2. The first of these
lumped masses (1110) is located in the center of the spine; it represents the motor and
spine masses, and a share (50%) of leg masses. The moment of inertia I}, is the moment
of inertia about the center of the spine. The other two masses (m; and m,,) represent the
masses of the front and hind feet and a share (50%) of leg masses. They are still. The length
of the spine is denoted by Ly, the lengths of the front and hind legs are L,, and the angles
between the legs and the vertical direction are 6 and 6y, respectively. The spine and the
legs are connected by torsional springs with stiffness ky. The legs of the robot are modeled
as linear springs with stiffness kj .

m,

mg
-\
@

—7

Figure 2. Model for the study of the modes of vibration on the ground.

When the robot is in contact with the ground and friction prevents any tangential
motion between the feet and the ground itself, the legs with the spine and the ground make
up a flexible four-bar linkage [40]. Figure 2 shows that the configuration of this linkage

depends on five variables: the rotations of the two legs with respect to the y-axis <9h, 0 f) ,

the rotation of the spine with respect to the x-axis (¢), and the lengths of the two legs
(Lo + sp, Ly + s¢), in which s, and s are length variations due to axial deformability.

Actually, these five parameters are linked by the closure equation of the linkage and
only three variables are independent. The components of the closure equation in x and y
directions are:

(Lo + sp,) cos (Gh + g) + Lycos(¢p) — (Lv + sf) cos(Gf + g) —L,=0 1)

(Ly + sp,) sin(@h + g) + Lysin(¢) — (Lv + sf) sin(Hf + g) =0 (2)
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and expanding the trigonometric functions:
— (Ly +sy) sin(6y,) + Lycos(¢) + (LU + sf) sin(ef) —L,=0 3)

(Ly + sp,) cos(6y,) + Lysin(p) — (Lv + sf) cos (6f> =0 4)

Since the variations in the lengths and angles caused by robot elastic deformation are
small, these equations can be linearized around the reference configuration:

— Lo + Ly + Lobs — L, = 0 &)
Lo+sp+Lyp—Ly—sp=0 (6)

Equation (5) leads to:
bp=0=10 (7)

Coordinate 6 is associated with the torsion angle of the linkage. Equation (6) links
three variables (s, s¢, and ¢). Therefore, two independent parameters can be chosen:

Sf_sh

- ®
Sh +Sf _
— = s 9)

Variable s represents the heave of the spine along the leg’s direction, which may be
tilted by angle 6. Variables 6, s, and ¢ are the generalized coordinates describing the motion
of the deformable linkage. The equations of the vibrations of the robot can be derived with
the Lagrange’s method [41]:

d [ dL oL

—| =] —-—=—=0Qk=1.3 10

dt(aqk> 3ax Qk (10)
in which g1 = 6, q» = s, and g3 = ¢. The Lagrangian components of forces (Qy) include
the forces generated by the eccentric mass and are zero when free vibrations are considered.
L is the Lagrange’s function (which is the difference between kinetic and potential energy).

The components of the velocity of the system’s center of mass can be calculated by
neglecting second order terms:

ic=—Lob Yo =35 (11)

The kinetic energy according to Konig’s theorem is:

1 N2 2 1 2
Ex = zmtop<(_L09) +s ) + Eltop(P (12)

The potential energy includes the elastic energy related to robot deformation and the
gravitational energy:

1 2) 1 L, \2 1 L, \*
E,=2 Ekg(@—go) +§ks s— ¢ +§ks st ¢ + myotg(Ly +5) cos(6) (13)

If a second order approximation is adopted, the potential energy becomes:

L 2 02
Ep =ko(6 — q))z + kssz + kg <2h([7) + Mot (Lo +5) — mtotgLU? (14)
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The expansion of the Lagrange’s equations leads to the equations of the free undamped
vibrations of the robot in matrix form:

L3mip O 0 i 2kg — miptgLly O —2kg 0 0
0 Mipp 0 $ + 0 2k 0 s = Mot (15)
0 0 Irop ) —2kgp 0 2kp+0.5L%ks @ 0

The analysis of these equations shows that the translational vibration of the top mass
along the direction of the legs, which is due to axial compliance, is completely uncoupled
from the rotational vibrations involving coordinates 6 and ¢. There is a coupling between
rotation 6 (torsion rotation of the linkage) and rotation ¢ (pitch rotation of the spine).
Actually, with the values of ks and kg corresponding to straight legs, the stiffness of the legs
(0.5 L?ks) that opposes to the pitch rotation of the spine (¢) is very large and rotation ¢ is
very small. Therefore, the modes of vibration corresponding to the torsion rotation of the
linkage (9) and pitch rotation of the spine (¢) are nearly uncoupled. Figure 3 shows the
modes of vibration of the robot walking on the ground.

ay ~y s
1 s=0 7 (©) M, I
Meop e~ 950 o ke & m“’l’\}k 2
‘ p—y
: / —
@=0
a 0=0 0=0
ky T . Ik,
T L
~, ot x
/ \ J
s
(a) (b)

(©)

Figure 3. Modes of vibration on the ground: (a) twist mode, (b) hopping mode, and (c) pitch mode.

Since the three modes are nearly uncoupled, simplified equations can be used to
estimate the natural frequencies of the vibrational modes:

2kg — myopgL
Wy = 0 top& Lo (16)
L%mtop

2%,
Miop

o 0.5L7ks a8)
v Itop

Ws = 17)
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The equations for the torsion and heave frequencies are equal to the ones reported in
Reference [25]. With the mass and stiffness properties of the present robot (kg = 0.17 Nm/rad
and k; = 4.3x10° N/m), the difference between exact and approximate values of wy and
wy is less than 0.1%. The natural frequencies of the three modes are: wy = 108.3 rad/s,
ws = 38,487.3 rad /s, and wy, = 72,654.4 rad/s.

Since the torsion mode has the lowest natural frequency, the eccentric mass can excite
this mode more easily than the other modes.

3.2. Modes of Vibration Due to Floating

According to the Archimedes’ principle, a floating body reaches an equilibrium posi-
tion when the weight of the displaced water is equal to the weight of the body. The robot
walking on the water reaches an equilibrium position when:

Miot§ = 20wgV (19)

in which m;; is the total mass of the robot, py, is the density of water, and V is the water
volume displaced by each floating foot, which corresponds to a specific draft.

If an initial perturbation causes small variations in the drafts of the floating feet, the
vertical buoyancy forces become:

Fryp = PwgV — pwgASy (20)

Fh,y,b = w8V — pwgAs), (21)

in which Fy , , and F, , , are the buoyancy forces on the front and hind foot, respectively, and
sf and s, are the small vertical displacements of the floating feet, which are represented in
Figure 4. A is the water plane area [42] of each foot. Since small oscillations are considered,
the water plane area can be considered constant: A ~ r;L,, in which L, is the axial length
of the foot.

Ly

Mtop

)
f N
e

:

hg

Figure 4. Schematic drawing of the amphibious robot with its main geometrical parameters.

The second terms in Equations (20) and (21), which are linear on sy and s, are the
restoring forces exerted by the water on the feet. The corresponding equivalent stiffness
is pwgA.

When an object vibrates on the water, the added mass is another important phe-
nomenon that has to be considered. A share of the water surrounding the object vibrates
with the object itself, adds to the mass of the object, and reduces the natural frequency of free
vibrations. The added mass has been widely studied in the fields of fluid-dynamics, mar-
itime, and naval engineering [42], adopting experimental [43] and numerical methods [44].
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Since the feet of the robot are floating, the specific added mass coefficient presented in
Reference [43] has been adopted to calculate the added mass of each foot:

1
Mygq = Cy EPw 7Tbe2 (22)

in which b, is the half-beam of the floating body and cyy = 1.4 is the added mass coefficient.

In this study, the amphibious robot is considered as a rigid beam with distributed
mass properties and some lumped masses (the mass of the motor with the eccentric mass,
and the masses of the feet). Structural deformability and damping are neglected. With the
previously mentioned assumptions, the dynamic system has 2 degrees of freedom: vertical
displacement s of the center of mass and rotation ¢ about the center of mass (see Figure 4).

The equations of motion are derived with the Lagrange’s method. Some kinematic
calculations are first performed in order to calculate the vertical displacements of the feet
(sf and s,) as functions of s and ¢:

sf=s+ %sin(qo)qthc(l—cos ?) (23)
Ly .
== sin(¢) + hg(1 — cos @) (24)

in which £ is the height of the center of mass with respect to the water level (see Figure 4).
Expanding the trigonometric functions in Taylor’s series, the following equations hold:

L 2
sf:s+?h(p+hc% (25)
L 2
sh:s—ih(p—khc% (26)
The Lagrangian components of the buoyancy forces are:
ds ds
Qs = (ngV ~ PugAs f) an + (0ugV — pughsy) 5" (27)
ds ds
Qp = (ngv - ngASf) E)sz: + (PwgV — ngASh)aT; (28)

It is worth noting that second orders expressions of sy and s, are needed to take into
account the constant term (0,,gV) of buoyancy forces.
The kinetic energy of the system is:

1 2 1 .2
Ex = E(mtot + 2mmgqq)8" + §(Itot +21544) ¢ (29)

in which I is the moment of inertia of the rigid body about the global center of mass. 1,44
is the contribution of each added mass to the moment of inertia:

L 2
Loga = Magq ( (;) + hcz> (30)

Since the buoyancy forces have been already taken into account, the potential energy
only depends on the gravity force of the robot:

Ep = mtotg(hGR + S) (31)

in which hgp is the vertical position of the center of mass of the robot.
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The application of the Lagrange’s method leads to the following equations of motion
of the floating robot.

(Mot + 2Mugq)s + Mot = 2008V — 20pgAS (32)

L\2
(Itot + 21344) ¢ = 200gVhcp — ZngA<2h> ¢ (33)

Making use of the static equilibrium condition in Equation (19), the equations of
motion become:
(Mot + 2m444)s + 20wgAs = 0 (34)

. Ly, \?
(Irot + 2Iaqa) @ + 200wgA (zh) ¢ — miotghgp =0 (35)

These equations describe the free vibrations of the floating robot in the s and ¢
directions. Since they are uncoupled, the natural frequencies of the heave (s) and pitch (¢)
modes of vibration can be simply calculated:

200gA
S\ o + 2mgqq (36)

2

\l 2png(%) — miorghc @)

W,y =
¢ Ttor + 21,44

With the mass properties and the buoyancy characteristics of the robot, the two natural
frequencies result in ws = 34.2 rad/s and we = 28.8 rad/s.

The highest of these natural frequencies is by far lower than the lowest natural fre-
quency of the structural modes (108.3 rad/s). Therefore, the structural modes of vibrations,
which are important in terrestrial locomotion [23,25], are negligible in an aquatic locomo-
tion. The model for the study of aquatic locomotion can be thus developed neglecting the
structural deformation of the robot.

4. Aquatic Locomotion Model

In this section, a multibody numerical model of the amphibious robot during locomo-
tion in water is presented and discussed. The dynamic model is developed using Working
Model (WM) 2D, and the numerical and experimental locomotion speed for different angu-
lar velocities of the rotating mass will be compared. This model will help to understand
and discuss the locomotion principle in the water.

The WM model, which has been built using the geometrical and inertial parameters
of Table 1, and the interaction forces of feet with the water are presented in Figure 5. A
planar motion of the robot is assumed, and the frame of the robot is modeled as a rigid
body, which is reasonable due to the high frequencies of the structural modes, the low
interaction forces with the water, and the low locomotion speed.

The horizontal force on the front and hind foot (Fy , and F, ,, respectively) is mainly
due to drag, which is related to the front and hind foot speed along the x-axis (x; and x;,
respectively), but there is also a small lift force that arises when the foot profile moves
vertically in the water. The following equations hold:

Frx = 3pwCy fLpysif® + Fpy, if >0
Fpx = —3pwCxplpysif® + Fr, if p <0 (38)
Fry=0,ifyp >0
Fyx = 3pwCx, fLpynxn® + Fy, if X >0

Fpx = —30wCxpLpynin® + Fyy, if X4 <0 (39)
Fue=0,ify, >0
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Ff,l = %prlerzdfyfz

. (40)
Fy = 3pwciLpradny,?

\ H | H \ | | 1 i L/ H |
F - Fre ®F
h,x t F hy fy

Figure 5. The Working Model (WM) model and interaction forces of feet with the water.
In Equations (38) and (39), py is the density of water, ¢, and ¢, are the drag
coefficients in the forward and backward directions along the x-axis, respectively, and y ¢

and v, are the vertical positions of the front and hind foot, so that ’pr f‘ and |L,yj| are the

areas (subject to drag forces) of the submerged part of the front and hind foot, respectively.
In Equation (40), Ff; and F; are the lift forces on the front and hind foot, respectively,
c; is the lift coefficient of the foot subject to a vertical flow, dy and d), are the ratio of the
submerged length of the front and hind foot with respect to the total foot length (2r¢),
respectively, and y; and y,, are the front and hind foot speed along the y-axis, respectively.
As indicated in Equations (38) and (39), the drag forces are always opposite of the foot
speed (usually y, < 0, i.e., the foot is partially submerged). As indicated in Equations (38)
and (39), the horizontal force is null if the foot is completely out of water.

The vertical force on the front and hind foot (Ff, and Fy, respectively) is composed
of two terms:

Fry="Fryp+Frya )
Fy = Fuyp + Fuyd

where Fy , , and F, , , are the buoyancy forces on the front and hind foot, respectively, and
F¢,q4 and Fy, 4 are the vertical drag forces on the front and hind foot, respectively.
The buoyancy forces on each foot can be modeled as in Section 3.2:

F = — Lyr
fyb pwg P 2,eqYf (42)
Ff,y,b = 0, lf]/f Z 0
F = — L,r
hyb ng pr2.eqYh (43)
Fh,y,b =0, if Yn >0
where g is the acceleration of gravity, and 15, = 72 is the width of an equivalent rectan-
gular cuboid with the same length (L), height (2r1), and volume (2r172 ¢, Ly = %m’l r2Lp)
of the real foot. This is an approximation that allows to model the buoyancy force on each
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foot as a linear function of y (or y;). Equations (42) and (43) show that the buoyancy force
is null if the foot is completely out of the water.

The vertical drag force on the front and hind foot, which is due to the front and hind
foot speed along the y-axis (y fand V), respectively), can be modeled as:

Ff,y,d = _%pwcy,fl‘prz,eqyfzr if yf Z 0
Ff,y,d = %chy,thrZ,eqyfzr if ]/f <0 (44)
Ff,y,d = O, lf]/f 2 0

Fh,y,d = —%pwcy,prrZethz, if yh Z 0
Fuyd = 30wCybLpraeqiy?, if ), < 0 (45)
Fyya =0, ify, >0

where ¢, r and ¢, are the drag coefficients in the forward and backward directions along
the y-axis, respectively, and L,77 ¢, is the equivalent area of the cross section (orthogonal to
the y-axis) of the submerged part of the foot. As indicated in Equations (44) and (45), the
drag forces always have the opposite sign with respect to the foot speed, and are null if the
foot is completely out of the water.

Due to the shape of the foot, ¢, r and ¢, ; have different values. In the dynamic
simulations, it is assumed [45-47]: Cx,f=115¢y =2.15,¢, 5 =038, ¢y, =038, and ¢; = 0.045.

In Figure 6, a sequence of screenshots is presented, which have been derived from a
simulation performed with angular velocity of the rotating mass w = 24 rad /s (counter-
clockwise). The configurations reported in Figure 6 match well with the ones observed
during the experimental tests. After an initial transient, the motion of the robot is periodic.
Thus, the same motion (and the related sequence of configurations) is repeated every time
period T = %T In Figure 7, the forces on the front (Fy ,, Ff,) and hind foot (F,y, F, ) as
a function of time (f) are reported for a couple of cycles. It can be noticed that Fy , and
Fy » have a very similar profile and are almost in phase. In addition, Ff, and F,, have a
similar profile, but Fy , is shifted to about 0.065 s (which corresponds to a phase shift of
about 90 deg) with respect to F ,, since the robot oscillates backward and forward (see
Figure 6) as it advances.

From the analysis of Figures 6 and 7, the following considerations can be done. In
the screenshot (a), the rotating link (carrying the eccentric mass) is vertical and pointing
upwards and the feet of the robot are moving forward. In this configuration, the minimum
(directed backwards and largest in modulus) horizontal drag forces are applied to the feet
of the robot (see Fy , and F}, , at t = 0.04 s in Figure 7). Moreover, in this configuration, the
centrifugal force due to the rotating mass is pointing upwards, so the submerged part of
the feet is less than in the static equilibrium configuration (rotating mass not moving).

In the screenshot (e) (which is a dual configuration with respect to (a)), the rotating
link is vertical and pointing downward and the feet of the robot are moving backward. In
this configuration, the maximum (positive, i.e., directed forward) horizontal drag forces
are applied to the feet of the robot (see Fy, and F,, at t = 0.17 s in Figure 7). In this
configuration, the centrifugal force due to the rotating mass is pointing downward, so the
submerged part of the feet is more than in the static equilibrium configuration. Therefore,
the submerged area of the feet subject to horizontal drag forces is higher than in (a), and
this contributes to have a higher value (in modulus) of the forward force with respect to the
backward force related to (a). Nevertheless, the main reason why the absolute value of the
maximum forward force (for each foot) is higher than the absolute value of the minimum
(backward) force is because ¢, > ¢y .
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(a) t=0.04 s —Minimum F; , and F;, ,

(b) t =0.08 s —Minimum F;,

(c) t=0.10 s — Maximum backward inclination

(d)t=0.14 s —Maximum Fj, ,

(e) t=0.17 s —Maximum F; . and F), .

(f) t=0.19 s — Maximum F ,,

(g) t =0.23 s —Maximum forward inclination

Figure 6. Screenshots of robot configuration for a WM simulation with w =24 rad/s.

(h)t=0.26 s — Minimum Fj, ,,
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Figure 7. Total forces on the hind (sx) and front (dx) foot.

Similarly, in all the other configurations, the robot motion is dominated by the corre-
sponding direction of the centrifugal force generated by the rotating mass. In particular,
in configuration (b), the minimum value of Fy , is reached, as it can be verified in Figure 7
for t = 0.08 s and, indeed, the direction of the centrifugal force (i.e., the direction of the
rotating link) is such that it reduces the vertical load on the front foot (and, thus, reduce
the buoyancy force and Fy ). In configuration (c), the maximum backward inclination of
the robot (about —2.5 deg) is reached and the centrifugal force is horizontal so that the
maximum destabilizing torque on the robot is achieved. In configuration (d), the maximum
value of Fy , is reached, as it can be verified in Figure 7 for t = 0.14 s, and the direction of the
centrifugal force (i.e., the direction of the rotating link) is such that it increases the vertical
load on the hind foot (and, thus, increases the buoyancy force and F ;).

Exactly the same considerations can be done for configurations (f), (g), and (h), in
which the centrifugal force makes the vertical load on the front foot increase (together with
the related buoyancy force), makes the robot achieve its maximum forward inclination
(about —2.5 deg), and makes F,, (and the related buoyancy force) reach its minimum
value, respectively.

It can be concluded that the main reason for robot net forward motion is thatc, , > cy, f
due to the asymmetric shape of the feet. In the periodic forward-backward motion of the
feet with respect to the water (due to the centrifugal force of the eccentric mass that pulls
forward and backward the robot), a positive integral force due to horizontal drag forces
allows the robot to advance. This can be easily verified looking at the profile of F, and
Fp, x in Figure 7. The area of the positive part of the plot is higher than the area of the
negative part of the plot for both feet. This phenomenon is similar to the one exploited in
vibration conveying [48], in which the inclination of the inertia force caused by vibrations
increases the static friction force in a direction and decreases the static friction force in the
opposite direction.

The dynamic behavior of the robot using a constant motor torque as an input has
also been investigated. In particular, simulations have been carried out with torques
(directed counterclockwise) from 0.00001 Nm to 0.01 Nm. For low torque values, i.e., from
0.00001 to 0.00004 Nm, the torque is not sufficient to rotate the eccentric mass. For torque
values between 0.00004 and 0.0005 Nm, a stable periodic locomotion is obtained, after an
initial transient. The locomotion speed, expressed in body length/mm (the body length is
Lj, = 85 mm), the motor speed, and their mean values (0.173 body length/s and 31 rad/s,
respectively) are reported in Figure 8 for an input torque of 0.00005 Nm.
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Figure 8. Locomotion speed (left) and motor speed (right) using a motor torque of 0.00005 Nm as an input.

For torque values higher than 0.00005 Nm, the rotating mass is continuously accel-
erated until the robot reaches a stable periodic locomotion with rotational speeds higher
than 200 rad /s, which is not reasonable for this type of robot. For torque values higher
than 0.01 Nm, the robot tips over.

It can be concluded that the use of a constant torque as an input allows for a stable
locomotion only for motor torques between 0.00004 and 0.00005 Nm. The use of a constant
angular velocity as an input is much more reasonable, since it allows us to excite the
resonances of the system. Moreover, it is more flexible (since the locomotion speed can be
precisely tuned), and it results in higher locomotion speeds, as detailed in Section 5.

5. Experimental Results

During the experiments (see video S1 published as Supplementary Material), the
angular velocity of the eccentric mass is controlled by the voltage applied to the DC
motor. The aquatic and terrestrial locomotion of the robot is recorded with a high-speed
camera while the robot is moving in a 0.7 x 1.5 m aquarium, and the locomotion speed,
the rotating mass rotational speed, and the robot foot positions are measured thanks to
high-speed camera recordings. The DC motor voltage is increased from 0.8 V to 2.7 V in
0.1 Volt increments.

In Figure 9, the experimental and numerical aquatic locomotion speed as a function of
w (counterclockwise rotation) are overlapped. The numerical curve has been derived using
the WM model presented in Section 4. It can be observed that there is good agreement
between the resonance frequencies of the numerical and experimental model. A first
resonance peak appears at about 26.5 rad /s and a second resonance peak appears at about
33-35 rad/s in both cases. These values are also in good agreement with the resonance
frequencies computed with the linear model of Section 3.2 (28.8 rad/s and 34.2 rad/s).
Moreover, the numerical and experimental curves are in good agreement and nearly
overlapped. For higher values of w (>40 rad/s), the numerical model cannot be used due to
the increasing importance of the effect of waves generated by the robot (which are observed
in the experiments). It is worth noting that the natural frequencies of aquatic locomotion
are well below the natural frequencies of the structural modes studied in Section 3.1. Hence,
the assumption of rigid robot in the model of aquatic locomotion is consistent with the
actual operation of the robot.

In Figure 10, the displacements of the hind foot are presented both for terrestrial and
aquatic locomotion, which have been measured in experiments with w = 38 rad/s. The
experimental curves are almost linear, and this is related to constant locomotion speeds. In
the case of aquatic locomotion, the experimental points are overlapped with the numerical
curve, which is almost linear with small local peaks due to the periodic locomotion. The
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experimental and numerical results are in good agreement. A more detailed comparison
between the experimental and numerical positions of the robot feet is depicted in Figure 11
considering a couple of periods of motion. Experimental and numerical data are in good
agreement in this time scale as well: the period of the oscillations is the same and the error
between the numerical curve and the experimental points is always less than 1.3 mm.

® Aquatic locomotion speed - Experiment

——Aguatic locomotion speed - Simulation

0.45

0.4

= 0.35

0.3

0.25

=}
[
w

Locomotion speed (body lenght/

10 15 20 25 30 35 40 45
Angular velocity (rad/s)

Figure 9. Simulated vs. experimental locomotion speed.

@ Xr, Terrestrial locomotion - Experiment
@ Xr, Aquatic locomotion - Experiment

—Xr, Aquatic locomotion - Simulation
250

Position{mm)

Time(s)

Figure 10. Displacements of the hind foot in terrestrial and aquatic locomotion.
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Figure 11. Positions of the hind and front foot: comparison between experimental and numerical results.

The differences between numerical and experimental data in Figures 9-11 are mainly
due to all the simplifying assumptions (detailed in Section 4), the disturbance forces
related to the electrical cables of the motor, and the effect of the small waves present in
the experiment, which are not considered in the numerical model. The overlap between
the experimental points and numerical curves could be improved by using computational
fluid dynamics to simulate the flow around feet for different relative velocities and angles,
or by using experimentally determined drag and lift coefficients. However, these activities
are beyond the scope of the present work.

Figure 12 shows both the terrestrial and aquatic locomotion speed as a function of w,
as measured in the experiments. The figure shows that the robot reaches the highest speed
on the ground when the eccentric mass rotates at an angular velocity of about 38 rad/s,
and it reaches the highest speed on the water when the eccentric mass rotates at an angular
velocity of about 35 rad/s, which is in accordance with the resonance peak found with the
mathematical and numerical models of Sections 3 and 4. In Figure 13, a sequence of photos
showing an aquatic locomotion test with w = 25 rad/s is presented.
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Figure 12. Terrestrial and aquatic locomotion speed vs. angular velocity of the eccentric mass.

Figure 13. Sequence of locomotion during an experimental test (w = 25 rad/s).

The proposed robot is able to carry out the transition ground-water and vice-versa
as shown in Figure 14 and in video S1 (published as Supplementary Material). Even if
the ground locomotion is not the focus of the present work, it should be noted that the
robot is very robust against big variations in the coefficients of friction (both static and
dynamic) of the surface. In the transition water-ground, the feet are wet (which causes a
significant decrease in the friction coefficients); nevertheless, the robot is able to successfully
perform the transition. The investigation of the effect of friction coefficients in the ground
locomotion and in the transition phases will be part of future work.
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Figure 14. Transition ground-water (left) and water-ground (right).

6. Conclusions

An amphibious robot is introduced, which is made of a simple U-shaped beam forced
to vibrate and two buoyant feet with different drag coefficients in the forward and backward
directions. The terrestrial locomotion of a similar robot, based on beam structural vibrations,
was already demonstrated in previous studies. This paper demonstrates that the proposed
robot has a significant locomotion capability in the water as well. The mathematical model
of the system shows that the natural frequencies of the system in terrestrial locomotion are
very high if compared with the typical ones in water locomotion, and, therefore, structural
stiffness can be neglected in the latter case. A numerical model is then developed using
Working Model (WM) 2D, and a good agreement between numerical and experimental
results is found. In particular, both the numerical model and the experiments show the two
resonances of the system, and the displacement and locomotion speed curves overlap with
a reasonable approximation. The numerical model helps to gain a better understanding of
the locomotion principle. The study of a novel foot structure will be part of future work:
it will enable both higher locomotion speeds in the water and higher energy efficiency,
closer to the one of water creatures. Moreover, even if the current robot is able to carry out
the transition ground-water and vice-versa, the foot design will be improved to optimize
the performance in these transition phases, taking also into account different surfaces and
surface inclinations.

Supplementary Materials: The following is available online at https:/ /www.mdpi.com/2076-3417/
11/5/2212/s1. Video S1: experimental tests of the amphibious robot in terrestrial and aquatic locomotion.
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