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Abstract: The present study deals with human awareness, which is a very important aspect of hu-
man–robot interaction. This feature is particularly essential in agricultural environments, owing to 
the information-rich setup that they provide. The objective of this investigation was to recognize 
human activities associated with an envisioned synergistic task. In order to attain this goal, a data 
collection field experiment was designed that derived data from twenty healthy participants using 
five wearable sensors (embedded with tri-axial accelerometers, gyroscopes, and magnetometers) 
attached to them. The above task involved several sub-activities, which were carried out by agricul-
tural workers in real field conditions, concerning load lifting and carrying. Subsequently, the ob-
tained signals from on-body sensors were processed for noise-removal purposes and fed into a Long 
Short-Term Memory neural network, which is widely used in deep learning for feature recognition 
in time-dependent data sequences. The proposed methodology demonstrated considerable efficacy 
in predicting the defined sub-activities with an average accuracy of 85.6%. Moreover, the trained 
model properly classified the defined sub-activities in a range of 74.1–90.4% for precision and 71.0–
96.9% for recall. It can be inferred that the combination of all sensors can achieve the highest accu-
racy in human activity recognition, as concluded from a comparative analysis for each sensor’s im-
pact on the model’s performance. These results confirm the applicability of the proposed method-
ology for human awareness purposes in agricultural environments, while the dataset was made 
publicly available for future research. 

Keywords: sensor fusion, accelerometer; gyroscope; magnetometer; machine learning; deep learn-
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1. Introduction 
Agriculture employs a significant number of workers all over the world, particularly 

in the developing countries. The adoption of modern technologies, including Information 
and Communication Technologies (ICT), such as Internet of Things (IoT), Artificial Intel-
ligence (AI), Farm Management Information Systems (FMIS), wearable computers and 
robotics, has led to the so-called “agriculture 4.0” [1,2]. However, despite the plethora of 
technological advances, which have arguably ameliorated the farmers’ living standards 
to a substantial degree, their safety is frequently underestimated. Epidemiological studies 
have identified several safety and health issues associated with the agricultural occupa-
tions [3,4]. Focusing on the non-fatal health issues, work-related musculoskeletal disor-
ders (MSDs) have proved to be the most ordinary ones [5,6]. 

The most common manual operations in agriculture include harvesting, weeding, 
digging, pruning, sorting, and load lifting and carrying, with the last task having gained 
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relatively little attention. This does not conform to the gravity of the matter, as has been 
reported recently in [7]. According to the literature, during load carriage, the energy ex-
penditure increases as the load and carriage distance increase, while the possibility of get-
ting injured increases when the worker carries the load incorrectly [8]. Repetitive load 
carriage, usually combined with lifting, has strongly been related to knee injuries and cu-
mulative stresses on the lumbar region that can result in lower back pain, which have 
reached epidemic proportions among farmers [9]. Overall, the physical symptoms associ-
ated with load carriage can include aches, soreness, and feeling of fatigue that, in turn, 
can reduce noticeably farmer’s performance. Another important aspect is that pickers, in 
tree and other perennial high value crops, spend considerable amount of time in carrying 
the filled crates outside the field, which can be a long distance. Alternatively, this task is 
shouldered by other farm workers, consequently increasing the costs for the farm owners. 
Remarkably, approximately one-third of the total working time can be spent in carrying 
crates, as stressed in [8]. 

Toward meeting the challenges of both preventing farmers from musculoskeletal in-
juries and assuring safety, the adoption of a fleet of low-cost lightweight robots with high-
load carrying capacity for transporting the crates from the site of picking to the end of the 
farmyard can take place. Nevertheless, this is a multidisciplinary problem, as it entails 
issues coming from several scientific topics such as Human–Robot Interaction (HRI), IoTs, 
economics, Machine Learning (ML), clinical, safety, and ergonomics. As a consequence, 
each feature should be investigated separately, at a first stage, before integrated efforts 
are made for accomplishing a safe and economically viable solution. The present study 
focuses on a very important aspect of safe HRI, namely the activity recognition of the 
workers that can increase the situation awareness. This concept constitutes an emerging 
scientific field in HRI research to eliminate errors that usually appear in complex tasks. 
Most of the time, humans are situation aware and thus can reliably display competent 
performance. This skill is highly required also for autonomous vehicles, and ongoing re-
search is carried out toward this direction [10,11]. If a task necessitates cooperation, the 
participants (human and robot in this case) should synchronize their actions. This repre-
sents a key challenge that should be addressed in HRI, as highlighted by Benos et al. [12], 
who examined the safety and ergonomics during human–robot synergy in agriculture. 

Human Activity Recognition (HAR) has received extensive attention as a result of 
the progress of advanced technologies such as ML [13] and IoT (e.g., Inertial Measurement 
Units (IMUs) and high accuracy Global Positioning Systems (GPS)) [14]. In particular, 
HAR relied on sensors has been applied to numerous areas including rehabilitation [15], 
sports [16], healthcare [17], and security monitoring [18]. HAR based on sensor data is 
considered to be more reliable compared to vision-based techniques, since the latter are 
affected by visual disturbances, such as lighting variability, and need fixed site implemen-
tations [19]. In contrast, wearable sensor-based techniques are suitable for real-time im-
plementation, as they are easy to be deployed, cost effective, and are not site dependent 
[20]. Among the most commonly utilized sensors, accelerometers, magnetometers, and 
gyroscopes are often used [21–23]. Smartphones, having multi-sensor systems, are also 
gaining attention [24,25]. In general, multi-sensor data fusion has been proved to be more 
reliable than using a single sensor, as possible information losses or the imprecision of one 
sensor can be compensated by the other sensors [24]. Remarkably, a promising technology 
is Digital Twin (DT), where multi-physics modeling can be integrated together with data 
analytics. As a result of its ability to combine data processing tools (from the digital world) 
as well as data acquisition (from the physical world), DT have been proposed as a means 
of better identifying scenarios of high-risk to optimize risk assessment and, thus, workers’ 
safety [26,27]. 

Processes, such as data preprocessing, describing data collection, data fusion, outlier 
removal, and noise reduction, precede all other processes that are involved in data-driven 
methodologies. These steps are required to bring the data into an optimal state, since they 
are derived from sensors that potentially can produce irregularities. Depending on the 



Appl. Sci. 2021, 11, 2188 3 of 21 
 

nature of the problem and the ML algorithm selected to tackle it, the data need to be fur-
ther processed and transformed into the appropriate shape for a series of mathematical or 
logical operations. In general, the purpose of a ML algorithm is to be able to produce a 
model that will fit the data in the best possible way so as to predict unknown examples 
with the highest accuracy. In the case of HAR, the aim of the ML algorithm is to learn the 
characteristic features of the signals collected from the on-body sensors in order to be able 
to classify the correct activity for a particular timeframe. Afterwards, important feature 
vectors are extracted to minimize the classification errors and computation time [28]. Fi-
nally, the classification phase serves to map the selected features into a set of activities by 
exploiting ML techniques. Through implementing ML algorithms, models can be devel-
oped via iterative learning from the extracted features, up until they are able to optimally 
model a process. ML has extensively been implemented in agriculture, thus offering val-
uable solutions to several tasks such as crop, livestock, water, and soil management [29], 
to mention but a few. As far as the HAR is concerned, a plethora of ML models have been 
utilized, such as Hidden Markov Model [30], Support Vector Machine [31], K-Nearest 
Neighbor [32], Naive Bayes [33], Decision Tree [34], and Long Short-Term Memory 
(LSTM) [35]. Nonetheless, the literature regarding the use of ML for automated recogni-
tion, by using the data from wearable sensors collected throughout agricultural opera-
tions, is very limited. Indicative studies are those of Patil et al. [36] (use of accelerometers 
to detect digging, harvesting, and sowing) and Sharma et al. [37–39] (use of GPS, accel-
erometers, and microphone sensors to detect harvesting, weeding, bed making, and trans-
plantation. 

The aim of the present study was to properly identify human activities related to a 
particular task, which is lifting a crate and placing it onto a robot suitable for agricultural 
operations with the use of ML algorithms (LSTM) for sequential data classification. Since 
the agricultural environment is a dynamic ecosystem, which is susceptible to unforeseea-
ble situations [40], other human sub-activities comprising this task were also investigated, 
including standing still as well as walking with and without the crate. Two common light-
weight agricultural Unmanned Ground Vehicles (UGVs) were used: Husky and Thorvald 
robots. For the purpose of gathering the data, 20 healthy participants took part in outdoor 
experimental sessions by wearing five IMU sensors (embedded with tri-axial accelerom-
eters, gyroscopes, and magnetometers) in different body positions. To the best of our 
knowledge, no similar study exists. This investigation, through providing the activity 
“signatures” of the workers, has the potential to increase human awareness during HRI, 
thus contributing toward establishing an optimal ecosystem in terms of both cost savings 
and safety. Finally, the present dataset is made publicly available [41] for the sake of future 
examination by other researchers. 

2. Materials and Methods 

2.1. Experimentation Setup 
The experimental tests were carried out in a farm in the region of Volos, in central 

Greece. The study involved 20 participants (13 male, 7 female), whose average age, height, 
and weight were 30.95 years (SD ≈ 4.85), 1.75 m (SD ≈ 0.08), and 75.40 kg (SD ≈ 17.20), 
respectively, where SD corresponds to the standard deviation. The participants’ de-
mographics are summarized in Table 1. To be eligible for inclusion in the present investi-
gation, all subjects should have not had any history of surgeries or sustained any muscu-
loskeletal injury during the last year that could influence their performance. All partici-
pants, prior to any experimental procedure, had to complete an informed consent form 
that was approved by the Institutional Ethical Committee. 
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Table 1. Participants’ demographics. 

Variable Mean ± Standard Deviation 
Age 30.95 years ± 4.85 

Height 1.75 m ± 0.08 
Mass 75.40 kg ± 17.20 

Gender 13 males, 7 females 

Following informed consent, each participant had to perform a specific activity. In 
particular, they have to walk an unobstructed distance of 3.5 m, lift a crate, and carry it to 
their point of departure, where they have to place it on an immovable agricultural robot. 
This task can be divided in six continuous sequential sub-activities, namely: 
1. Standing still until the signal is given to start; 
2. Walking a distance of 3.5 m without carrying any crate; 
3. Bending down to approach the crate; 
4. Lifting the crate from the ground to an upright position; 
5. Walking back the distance of 3.5 m with carrying the crate; 
6. Placing the crate onto the robot. 

For the purpose of the present study, two UGVs were utilized (Husky and Thorvald), 
which are usually used in outdoor environments (Figure 1) [42,43]. The two available 
UGVs correspond to a deposit height of the crate equal to 40 cm (Husky) and 80 cm (Thor-
vald). Furthermore, the crate was either empty (tare weight equal to 1.5 kg) or full with 
weight plates with a total mass (crate and plates) approximately equal to 20% of each 
participant’s mass, similarly to [44,45]. The mass of the available weight plates was 1 and 
2.5 kg for the purpose of easily adjusting the required mass to be lifted and carried. An 
open plastic crate, commonly used in agriculture, was used with handles on both sides at 
28 cm height above its base. The dimensions of the crate were 31 × 53 × 35 cm (height × 
width × depth). Consequently, each participant carried out four sub-cases: 
1. Empty crate—Husky; 
2. Crate full of the required weight—Husky; 
3. Empty crate—Thorvald; 
4. Crate full of the required weight—Thorvald. 

Each sub-case was performed three times in a randomized order and at each partici-
pant’s own pace, which stands for 12 efforts for each subject. Finally, all participants were 
instructed to carry out a five-minute warm-up in order to avoid possible injuries. The in-
clusion of different subjects, as per genre, age, weight, height, and loading heights on ro-
bots, was targeted toward a large variability on the collected data, so the trained model 
was able to identify the activities conducted under a broad range of conditions. 

 
(a) (b) 
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Figure 1. The available agricultural robots that were used in the present analysis, namely (a) 
Husky and (b) Thorvald robots. 

2.2. Data Acquisition and Sensors 
At the start of the day of experiments, the five VICON IMeasureU Blue Trident sen-

sors were calibrated according to the manufacturer’s directions [46]. These IMUs are small 
enough and lightweight (12 gr). Prior to the start of each effort, the sensors were attached 
to the chest (breastbone), cervix (approximately T1 vertebra), lumbar region (approxi-
mately L4), right and left wrist, as can be depicted in Figure 2. IMUs were attached via 
special Velcro straps at the two wrists (provided by the manufacturer), while the remain-
ing three sensors were attached via double-sided tape similarly to studies such as [47]. 
Each IMU encompasses a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial mag-
netometer. The specifications of the IMUs are summarized in Table 2 according to [48]. 
These kinds of sensors have been used in several recent studies, including [49–52]. The 
sampling frequency that was used throughout the experimental sessions was 50 Hz, 
which is considered to be adequate for such kind of investigations, similarly to experi-
mental investigations such as [21,24,52]. 

 
Figure 2. Locations of the five wearable sensors on the human body during experiments. 

Table 2. The specifications of the VICON IMeasureU Blue Trident sensors, as mentioned in [48]. 

Sensor Measured Magnitude Range Units Sensitivity Axes 
Accelerometer Acceleration ±16 g 16 bit 3 axes 

Gyroscope Angular velocity ±2000o/sec 16 bit 3 axes 
Magnetometer Direction/position ±4900 μT 16 bit 3 axes 

The Capture.U software (provided by VICON) [53] was used to synchronize the sen-
sors and capture the data, while the latter were saved directly to the sensors for further 
processing. Since Capture.U is available only for iOS devices, an Αpple iPad mini (64 GB) 
[54] was utilized for the present investigation. 

2.3. Signal Preprocessing 
2.3.1. Distinguishing the Sub-Activities 

The Capture.U software in conjunction with the iPad offers the choice of simultane-
ously recording the experimental session at hand. This feature was particularly useful for 
distinguishing the sub-activities and finding out the critical instant, where the transition 
between them took place similarly to [55]. Each sequence starts with the subject standing 
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still (labeled as sub-activity “0”) and is used as a two-fold baseline; (a) for establishing a 
distinctive and realistic “idle” activity and (b) for allowing the timely synchronization of 
the sensors before starting the sequence. The rest of the sub-activities are described next: 
• Walking without the crate sub-activity (labeled as “1”) begins immediately after one 

of the feet first leaves the ground (beginning of stance phase of gait [56]; 
• The third sub-activity (labeled as “2”) begins when the participant starts bending 

their trunk, kneeling, or simultaneously performs them both, which are usually re-
ferred to as stoop, squat, and semi-squat techniques, respectively, in the relative lit-
erature [57]; 

• The fourth sub-activity (labeled as “3”) begins when the participant starts lifting the 
crate from the ground [58]; 

• The fifth sub-activity (labeled as “4”) begins when the participant starts the stance 
phase of gait similarly to the above description, however, by carrying the crate this 
time; 

• The sixth sub-activity (labeled as “5”) begins when the participant starts bending 
their trunk, kneeling, or simultaneously performs them both, as described above, 
while it ends when the entire surface of the crate is placed onto the UGV. 
Obviously, as the required tasks are continuous in nature, the beginning of one task 

corresponds to the end of the other. Since the participants performed the tasks in their 
own way and at their own pace, following the above well-defined criteria was of major 
importance in order to assure the reliability of the results. In this fashion, it should be 
highlighted that in case at least one of the sensors was not synchronized with the others 
(this was recognized during processing the dataset), the corresponding measurements of 
the remaining four sensors were also discarded. The aforementioned labeling of the sub-
activities was used for the rest of the signal pre-processing, as will be elaborated below. 

2.3.2. Outlier and NaN Handling 
Under normal conditions, data collection from sensors in real-life applications can be 

problematic. Throughout experimentation, hardware failures and malfunctions can occur, 
resulting in gaps or irregular values in the dataset. During experimental sessions, sensors 
could randomly stop collecting data, thus creating gaps in the dataset. These gaps were 
identified in the early stages, and the entire experiment was discarded completely. On the 
other hand, in some cases, the sensors would record all data properly. However, during 
the pre-processing phase, irregular values, i.e., outliers, could appear in the dataset. These 
outliers usually differ from most values by orders of magnitude, and they do not represent 
the physical behavior of the subject. In the present study, there was a limited number of 
outliers, which were all removed manually from the dataset. 

2.3.3. Noise Reduction 
Signals or one-dimensional data usually contain unwanted or unknown components 

that can be the result of the capturing, transmitting, or storing device. In this investigation, 
the focus was on removing the noise from the collected data and not identifying its root. 
Noise removal techniques serve so as to remove irregular fluctuations by running filters 
(mathematical operations) throughout the entire signal and replace the “noisy” values 
with “smooth” ones. These methods enable the ML algorithms to better learn the trends 
and fluctuations instead of random value variations. In this analysis, the median filter [59] 
was used as a noise removal method. This kind of filter is a nonlinear one within which 
each output sample is calculated as the median value of input samples under the selected 
window. This corresponds to a result after the sorting of the input values. Furthermore, 
the median filtering of signals includes a horizontal window having an odd number of 
taps. After examining various values, eleven taps were utilized. In addition, no isolated 
extreme values (such as a possible large-valued sample as a result of impulse noise) ap-
peared in the filtering phase, since outliers were removed manually beforehand. The me-
dian filter’s effect on the signals is demonstrated in Figure 3. 
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Figure 3. Collected raw signals and processed signals after median filter application. 

2.3.4. Activity Count and Class Imbalance 
In the present study, the experimental sessions, which were designed for the partici-

pants, included six sub-activities, as described in Section 2.1. As expected, these sub-ac-
tivities did not need the same time to be executed. More specifically, bending to approach 
the crate, lifting it from the ground to an upright position, or placing it on a loading sur-
face were very short activities. On the contrary, walking with and without the crate lasted 
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approximately triple time as compared to the other sub-activities, as shown in Figure 4a, 
as the crates and the robots were initially at 3.5 m with each other. 

The observed imbalance, existing in the training set, may become troublesome. In 
fact, class imbalance can create problems pertaining to the ML algorithms’ performance, 
particularly in cases where classes are identified that can be wrongly interpreted to each 
other owing to commonalities. For the purpose of reducing the existence of the above 
classes, with the least effect associated with the remaining information, an under-sam-
pling technique was implemented. The under sampling was performed via taking out 
every other entry on the dataset in case the sub-activity matched one of the two most 
populated classes. The classes do not include an equal number of instances. Nonetheless, 
there exists a better balance between them, as can be gleaned from Figure 4b. 

 
(a) 

 
(b) 

Figure 4. Histograms illustrating (a) counts of each sub-activity on the original dataset and (b) the 
result after the under sampling. 
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2.4. Feature Engineering 
2.4.1. Temporal Window Definition 

As a temporal window, we define the time that is needed to identify an activity by 
the sensors’ data. Depending on the addressed problem, this window can be set as small 
as 1 s [60], or as large i.e., >6 s [61]. The effect of the temporal window has been thoroughly 
investigated for a multitude of HAR problems; however, a similar approach defines the 
window at 2.56 sec [31]. For the present analysis, the temporal window was set to 2 s after 
extensive investigation of values that ranged from 0.5 to 5 s. For each temporal window, 
a class is assigned, representing the sub-activity that the subject was conducting for the 
particular time. An indicative schematic on the temporal window and class assignment is 
presented in Figure 5. 

 
Figure 5. Temporal windows on signals and class assignment. 

2.4.2. Overlap 
Class assignment, based on temporal windows, can identify some activities accu-

rately; however, there can be activities that fall between temporal windows and are not 
represented in either. With the intention of solving this issue, an overlapping of the tem-
poral windows was conducted automatically for all signals. Consequently, every next 
temporal window does not start at the end of the previous one, but exactly in its middle 
in order to achieve 50% overlap. This technique offers double benefit: one being that it 
minimizes the chances to miss an activity due to falling between windows, and second 
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because it increases the training examples for the ML algorithm to train to. A representa-
tive schematic of the overlapping technique is presented in Figure 6. 

 
Figure 6. Temporal window overlapping. 

2.4.3. Categorical Variables 
By definition, the sub-activities that were assigned as classes to each temporal win-

dow are categorical variables, since they are descriptive qualitative variables. Each sub-
activity’s description was set as a class, and for each class, a number was assigned to sim-
plify the data collection process. ML models work with categorical variables, but with the 
intention of including them into the calculations; they need to be transformed to numeri-
cal representations. Human intuition points toward the use of a simple integer represen-
tation as a numerical value to an abstract categorical variable. Nevertheless, integer num-
bers contain order and, therefore, they imply order and operations to each activity, i.e., 
walking with the crate is two times bending, which makes no sense. This issue can be 
solved by transforming the integers into one-hot vectors, which are of the same magni-
tude, i.e., one, and their length is the number of the sub-activities. These vectors contain 
zero values, except for one digit that is different for each activity. By using this technique, 
all numerical representations have the same magnitude, have no order between them, and 
can be used in the calculations of the ML algorithms. The sub-activity description, its as-
signed value, and the resulting vector are presented in Table 3. 
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Table 3. Sub-activity description, assigned value, and vectorial transformation. 

Sub-Activity Assigned Value One-Hot Vector 
Standing 0 (1,0,0,0,0,0) 

Walking (without crate) 1 (0,1,0,0,0,0) 
Bending 2 (0,0,1,0,0,0) 

Lifting crate 3 (0,0,0,1,0,0) 
Walking (with crate) 4 (0,0,0,0,1,0) 

Placing crate 5 (0,0,0,0,0,1) 

2.4.4. Train/Test Split 
The dataset was split into a training portion containing the examples, which will be 

used for training the model, and a testing portion containing the examples that will be 
used to evaluate the model’s performance and robustness. The testing portion was com-
pletely removed from the dataset prior to any operation that would result in having the 
training set leak information and compromise the validity of the model’s predictions. Due 
to the amount of data obtained from the experimentation phase, an 80/20 split was se-
lected for the training/test datasets. The split was conducted on the subject level in order 
to evaluate the performance of the trained model on the specific characteristics of an un-
known subject’s movements. Thus, four subjects were randomly selected for testing pur-
poses, i.e., to have the trained model predict their activities as recorded. The data from the 
remaining sixteen subjects are to be used for training the ML algorithm. 

2.4.5. Normalization 
Normalization is the process where all features of a dataset are scaled into a common 

range. In the present study, the StandardScaler from Python’s Sklearn library was utilised 
[62] which calculated the standard score as: 

z = (x − u)/SD (1) 

where u is the mean of the training samples and SD is the standard deviation of the train-
ing samples. 

Normalization is applied only to the training dataset so as to prevent information 
leaking toward the test dataset, which needs to be completely unknown during the train-
ing process. Better optimization during training can also be achieved via normalization, 
as it appropriately speeds up the convergence of the non-convex cost function to the 
global minimum. 

2.5. Machine Learning Algorithm (LSTM) 

LSTM networks constitute a type of neural network architecture being built upon a 
recurrent manner, via introducing memory cells, as well as the in-between connections, 
with the intention of constructing a graph directed in a sequence. In a general sense, re-
current neural networks process the sequences by employing these memory cells in a dis-
similar way as compared to simple artificial neural networks. Although they are designed 
for handling problems with a sequential nature, recurrent neural networks frequently 
comfort the problem pertaining to vanishing gradients or being unable to “memorize” 
many sequential data. However, the characteristic cell structures found in LSTMs, also 
called gates, render the network capable of variating the retained information [63], while 
they can regulate which part of information is going to be either discarded or stored in the 
long memory. This leads to the much desired optimization of the memorizing process. 
Problems with dynamic sequential behavior have been proven to be suitable for such 
kinds of problems. HAR can fall under this premise, because all activities are time-de-
pendent sequences, which makes LSTM a suitable algorithm for the problem the present 
study tackles. 
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2.6. Performance Metrics 

In this subsection, the utilized performance metrics are briefly described. Generally, 
this type of metrics is employed with the objective of offering a common measure con-
cerning the trained classifier’s performance against the unknown examples originated 
from the testing set. The result of this prediction, as compared with the actual class label 
assigned to each activity, can acquire one of the following values: 
• True Positive (TP) or True Negative (TN), in case that it is classified correctly; 
• False Positive (FP) or False Negative (FN), in case that it is misclassified. 

Subsequently, the aforementioned values are implemented as a means to compute 
the performance metrics, commonly appeared in classification problems [64]. In Table 4, 
the performance metrics, which were used in the present investigation for the sake of ap-
praising the classifier’s performance, are summarized in conjunction with a concise de-
scription of them and their mathematical relationship. 

Table 4. Performance metrics used in the present study. 

Name Description Formula 
Accuracy Ratio of correctly predicted observation 

to the total observations (preferred in 
balanced datasets) 

(TP+TN)/(TP+FP+FN+T
N) 

Precision Ratio of correctly predicted positive ob-
servations to the total predicted positive 

observations 

TP/(TP+FP) 

Recall Ratio of correctly predicted positive ob-
servations to all observations in actual 

class 

TP/(TP+FN) 

F1 score The weighted average of Precision and 
Recall (preferred in unbalanced da-

tasets) 

(2 × Recall × Precision) / 
(Recall + Precision) 

Finally, for the purpose of assessing the performance of the present algorithm with 
respect to the given data, a loss function is utilized, which is also known as an objective 
or cost function. Since the present study deals with a multiclass classification problem, the 
categorical cross-entropy was adopted, which calculates the loss among the probability 
one-hot vectors of the real and the predicted class [65]. The mathematical formula for the 
cross-entropy loss that was used is given by: 

Cross-entropy = −Σp(x)logq(x). (2) 

In the above equation, p(x) is the probability vector for the real class, and q(x) is the 
probability vector for the predicted class. This function minimizes the loss relative to how 
good the predictions are, and it increases the loss in a steep manner for bad predictions 
(reaching up to infinity when the prediction is completely wrong). 

2.7. Proposed Machine Learning Pipeline 
The complete ML pipeline of the proposed methodology is summarized in this sec-

tion. The pipeline starts with the signal preprocessing, which includes the loading of the 
data, the fusion of variables and axes from all sensors, the removal of NaNs (i.e., Not a 
Number) and outliers, the removal of noise, and the balancing of the classes. The next step 
is the feature engineering and data transformation that is needed so that the data will be 
in proper condition for the training. This includes the temporal window definition, the 
overlap of temporal windows, the class assignment and labeling, the splitting of the train-
ing and test datasets, and the normalization of the training dataset. The following process 
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is the ML model training with the use of an LSTM algorithm architecture, which learns 
each sub-activity’s features the training dataset. Finally, validation of the model is done 
with a 10-fold cross-validation, where the training and test dataset shuffle after each train-
ing is over and the performance metrics are calculated. With the completion of the 10-fold 
cross-validation, the performance metrics are averaged and presented. A schematic of the 
pipeline is presented in Figure 7. 

 
Figure 7. Schematic of the Machine Learning (ML) pipeline proposed in the present study. 

3. Results 

3.1. LSTM Architecture 
Extensive investigation and tryouts were conducted with the aim of identifying the 

optimal specifications and hyper-parameter values for the LSTM architecture. The se-
lected architecture is illustrated in Figure 8. 
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Figure 8. Schematic representation of the proposed Long Short-Term Memory (LSTM) architec-
ture. 

The three LSTM cells are constructed by 10 memory units each. The first and second 
fully connected layers have 10 nodes. All the aforementioned layers use Rectified Linear 
Unit (ReLU) activation [66], and each one is followed by a dropout layer with 50% drop 
rate. The output layer has six nodes, one for each class and uses the softmax activation 
[67]. The total number of trainable parameters sums up to 12,701. 

Training of the model ranged from 25 to 50 epochs. A typical plot of the training and 
validation loss decrease over the epochs is shown in Figure 9. 

 
Figure 9. Training and validation plot loss during a complete training. 

3.2. Confusion Matrix 
Based on the results of the performance metrics, the model’s performance can be vis-

ualized in confusion matrices. In particular, the confusion matrix is a table that displays 
the aforementioned values in such a way that one can easily view the number of properly 
classified examples, as well as false positives and false negatives. In this analysis, a mul-
ticlass classification, the confusion matrix is of size 6 × 6, where six is the number of activ-
ities that are predicted, as seen in Table 5. 
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Table 5. The confusion matrix for the present model’s performance. 

Confusion Matrix 

Predicted Classes 

Standing 
Walking 
(Without 

Crate) 
Bending 

Lifting 
Crate 

Walking 
(With 
Crate) 

Placing 
Crate 

 

Standing 135 5 0 0 1 7 
Walking (with-

out crate) 2 227 5 0 0 0 

Bending 1 16 101 9 1 0 
Lifting crate 1 1 30 165 11 0 

Walking (with 
crate) 

1 1 1 11 215 0 

Placing crate 12 0 0 0 31 106 

3.3. Classification Report 
The classification report displays the prediction, recall, and F1-score for each class. 

Individual performance metrics for each class is a useful tool to comprehend a model’s 
weaknesses and strengths. The classes were engineered in the preprocessing phase to be 
generally balanced. Nevertheless, both the macro (not weighted) average and the 
weighted average of all metrics are calculated. Since the accuracy is calculated considering 
all predictions, there is only one value, and it describes the general performance of the 
trained model. The classification report is shown in Table 6. 

Table 6. Classification report for the proposed model’s performance. 

Activity Precision Recall F1-Score 
Standing 0.887 0.919 0.902 

Walking (without crate) 0.904 0.969 0.937 
Bending 0.741 0.790 0.763 

Lifting crate 0.888 0.788 0.833 
Walking (with crate) 0.834 0.897 0.864 

Placing crate 0.860 0.710 0.777 
    

Accuracy   0.856 
Macro average  0.853 0.843 0.845 

Weighted average 0.860 0.856 0.854 

Overall, the “Walking without crate” sub-activity presents the higher predictions by 
achieving 0.904 for precision, 0.969 for recall, and 0.937 for F1-score. In contrast, the “Bend-
ing” sub-activity achieves the lowest values for precision (0.741) and F1-score (0.763), 
while the “Placing crate” one achieves the lowest recall (0.710). The trained model’s total 
performance is measured by the accuracy metric, which demonstrates a total of 85.6% for 
all the defined activities. 

3.4. Feature Selection 
Investigation regarding the effect each variable has on the performance of the model 

was also conducted. The accelerometer, gyroscope, and magnetometer data were used 
both individually and combined, in order to compare with the result, the model achieved 
when all variables were utilized. Next, the accuracy of each approach was measured along 
with its error, and the results are presented in Table 7. 

Tr
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Table 7. Feature selection for the model’s variables and their respective accuracies. 

Accelerometer 
(x,y,z) Gyroscope (x,y,z) 

Magnetometer 
(x,y,z) Accuracy (±Error) 

x   82.708% (±1.468) 
 x  82.987% (±1.380) 
  x 73.412% (±2.180) 

x x  83.619% (±0.877) 
x  x 81.200% (±1.261) 
 x x 85.532% (±0.604) 

x x x 85.677% (±0.972) 

As can be deduced from Table 7, the combination of all sensors performed better as 
compared to the case where each sensor was used individually. This was an expected 
result that has been highlighted by several relative studies, such as [24,68]. On the other 
hand, considering the usage of a single sensor, gyroscopes appear to slightly outweigh 
accelerometers, demonstrating an accuracy of 82.987% and 82.708%, respectively. Con-
cerning the magnetometer, it was observed to have the poorest performance, while its 
supplemental usage, as part of a case considering only two types of sensors, is suggested 
only in combination with a gyroscope, leading to approximately 3.07% increase of the 
accuracy. In contrast, the synergy of accelerometers and gyroscopes resulted in approxi-
mately 1.10% and 0.76% increase of the accuracy as compared to the purely usage of ac-
celerometers and gyroscopes, respectively. 

4. Discussion and Main Conclusions 
HAR is of major importance in the design process of agricultural collaborative robotic 

systems, as they should be able to operate in dynamic and crowded farm environments, 
where almost nothing is structured. In addition, these collaborative systems do not use 
isolated cells as occurs with conventional industrial robots. Toward optimizing the re-
quired activities, robots are working in the same working region concurrently with their 
“co-workers”, namely humans. “Cobots”, as these robots are usually referred to [69], can 
carry out either the same task or distinct tasks. The present envisioned application focuses 
on the latter scenario, where the robot can follow the workers while harvesting and, sub-
sequently, place the crate onto the robot. Afterwards, the robot can safely transfer the full 
crates outside the field. Aside from the aim to provide safety and time saving, this coop-
eration can contribute to the prevention of the fatigue of agricultural workers, because the 
arduous task of carrying the crates for a long distance is performed by robots based on 
human-aware planning. Apart from the HRI, the results of this study are also applicable 
to conventional in-field operations such as lifting crates and loading to platforms for trans-
ferring to storage. 

The activity recognition of workers is closely related to an essential feature of HRI, 
which is usually mentioned as “social-aware robot navigation” [70,71]. While autono-
mous navigation is restricted to obstacles’ avoidance and reaching the target destination 
[72–74], the social navigation, apart from that, takes into consideration other factors asso-
ciated with human naturalness, comfort, and sociability [75,76]. More specifically, natu-
ralness is related to navigation in paths such as those for humans via adjusting the robot’s 
speed and its distance from farmers. Comfort offers also the feeling of safety, whereas 
sociability has to do with abstracting decisions pertaining to robot’s movements by con-
sidering ethical and regional notions [71]. In a nutshell, HAR within agricultural human–
robot ecosystems has a great potential to assure a sociable acceptable safe motion of robots 
and provide a free space to farmers to perform their activities unaffected by the simulta-
neous existence of robots, while the latter can approach them when it is required 
[12,77,78]. 
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The present study focuses solely on HAR. To this end, data originated from 20 
healthy participants, carrying out a particular task, were gathered by five wearable IMUs. 
This task included walking an unobstructed distance, lifting a crate (either empty or with 
a total mass of 20% of each participant’s body mass), and carrying it to the point of depar-
ture, where they have to place it onto an immovable UGV (either a Husky or a Thorvald). 
By carefully distinguishing the sub-activities comprising the above task, the obtained sig-
nals were properly preprocessed for the purpose of using them in the learning phase 
(training of the model) and the testing phase (evaluating the model’s performance and 
robustness) of an ML process (LSTM). 

Overall, the problem of properly classifying stationary activities was challenging. 
The “Bending”, “Lifting”, and “Placing” activities were initially misclassified by a large 
margin. However, noise removal and normalization increased the overall performance of 
the trained model significantly. One of the factors that improved the performance of the 
model was the width of the temporal window which, when it varied more than one sec-
ond, the performance of the overall model would decrease substantially. The LSTM archi-
tecture has provided the appropriate tools for the model to be able to learn the features of 
the activity signals. Early experimentation with artificial neural networks (ANN) and one-
dimensional convolutional neural networks (CNN) has resulted in low performance on 
the trained model. Nevertheless, further investigation on more elaborate architectures uti-
lizing the benefits of multiple methods, such as CNN-LSTM [77] or convolutional LSTM 
[78] networks might be worth conducting. However, being a characteristic of data-driven 
approaches, the volume and variability of data play a significant role in a model’s perfor-
mance. That being stated, this study has shown that by obtaining data from 20 subjects, 
equipped with five IMU sensors each, performing a few recordings and fine-tuning a 
state-of-the art LSTM network can help train a robust model, which can properly classify 
all activities with an accuracy of larger than 76%. Toward increasing the volume and var-
iability of data (and, thus, the overall accuracy), a study with a sample that consisted of 
more participants covering a wider range of ages, physical strength, and anthropometric 
characteristics exists in the immediate plans of the authors. Moreover, with the intention 
of providing real-world data, these experimental tests are planning to be performed in a 
real agricultural environment by workers at their own pace, according to the complex 
conditions that they may face. 

Additionally, it can be concluded that the gyroscope and the accelerometer can be 
both used independently for recognizing the specific sub-activities, which are commonly 
performed in agricultural environments. However, their synergetic contribution can 
somewhat increase the overall performance. In contrast, the use of a magnetometer alone 
cannot lead to equally reliable results and should only be considered for supplementary 
use. The best performance was presented when the data from all sensors were fused. Fur-
thermore, for the sub-activity of walking without the crate, the present methodology in-
dicated the higher precision. On the contrary, as anticipated, the sub-activity presenting 
the smallest precision was that of bending down in order to approach the crate, since it 
can be executed in several ways, depending on each participant. For example, it was ob-
served that most of the time, participants could solely bend their trunks (stooping) or 
kneel without bending their trunk enough, or simultaneously stoop and kneel to catch the 
crate. This resulted from the instruction of participants to carry out the task in their own 
way. This is justified from our intention to increase the variability of the dataset for cap-
turing, as widely as possible, most of the different manners in which someone can perform 
the desired task. 

Obviously, assuring a fluid and safe HRI in agriculture involves a plethora of differ-
ent issues. However, each issue must be addressed separately, at a preliminary stage, be-
fore a viable solution is proposed. This study demonstrates the framework for both con-
ducting direct field measurements and applying a ML approach to accurately identify the 
activities of workers automatically, by analytically presenting the applied methodology 
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at each phase. Finally, the examined dataset is made publicly available, thus assuring re-
search transparency while allowing for experimental reuse and lowering the barriers for 
meta-studies. 
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