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Abstract: The distribution systems operate radially with meshed topologies thanks to tie-switches
and sectionalizing switches consisting of the systems. The power distribution systems are undergoing
evolutions strongly toward active distribution systems for reliability and quality of service enhance-
ments through reconfiguration. The distributed generations are also one effective solution for the
above objectives. A consumption time is one of the considerable issues that many existing methods
have not been achieved for reconfiguration purpose. This paper brings an adaptive solution called
modified sequential switch opening and exchange (MSSOE), which is carried out with MATLAB
and MATPOWER tool, to overcome these issues. The fundamental loop has been proposed for the
MSSOE method to reduce search space in the iteration process. In each step of the searching process,
MSSOE observes that if any switches within the same loop of the selected tie-switch are deleted to
avoid opening those switches in the next iteration. The process of MSSOE is done when the radial
topology is given. The proposed method is tested with the standard IEEE 33-bus, IEEE 69-bus, and
IEEE 119-bus distribution systems to observe the effectiveness of the MSSOE algorithm. Comparison
to existing algorithms in terms of global solution and computation time conclude that the MSSOE is
the best method.

Keywords: distributed generations; distribution systems; optimization; reconfiguration; sequential
switch opening and exchange method

1. Introduction

The power distribution systems generally operate radially with meshed topologies
thanks to normally open switches and normally closed switches consisting in the sys-
tems [1]. In addition, the electrical power distribution network reconfiguration problem is
recently becoming more interesting towards active distribution networks with and without
distributed generations. Many research papers in the literature review have investigated to
search for the switches which are optimal tie-switches and sectionalizing switches in the
distribution systems.

Regarding network reconfiguration issues, many strategies and algorithms are devel-
oped to get power loss reduction, increase power quality, and maintain radial distribution
system topology. The modern network technique for reconfiguration is provided in [2];
this paper investigated the problem formation included in multi-objective function, which
considered in minimizing the number of switches operation, voltage constraints, and load-
ing limits of feeder and transformer. The fundamental loop concept has been introduced
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into the reconfiguration of distribution system problem and tested on many evolutionary
algorithms (EA), which proved to be good integration solving power distribution system
problem with fast convergence [3]. In [4], the authors proposed a new technique called
the sequential switch opening and exchange (SSOE) method, which provides an accu-
rate result and converges to optimum solution by considering to open any sectionalizing
switch with the minimum value of power loss; this proposed method can solve the is-
sue of large-scale systems and obtain an accuracy of the result, unlike other EA, which
has a different optimum solution with a different running time. The power losses reduc-
tion through the distribution system reconfiguration have been provided using different
algorithms such as Johnson’s algorithm [5], Ant Colony [6], Expended invasive weed
optimization [7], Cuckoo search [8], Opposition learning genetic algorithm [9], Genetic
algorithm [10], Grasshopper optimization [11], Augmented grey wolf optimization [12],
Vector shift operation [13], Salp swarm optimization [14], Particle swarm optimization [15],
Improved fireworks [16], and Backpropagation neural network [17]. Furthermore, the
authors in [18] had implemented the selective firefly algorithm and search space reduc-
tion for the complex problem of distribution system reconfiguration; a set of switches for
opening based on mesh analysis is initially provided and eliminated from the switches
possibility as search space based on lowest active power of branch. The distribution system
reconfiguration using qualified binary particle swarm optimization is authorized by [19];
two different power flows have been compared to perform the optimal reconfiguration. An
optimal reconfiguration with multi-objective of reduced active power and reactive power
losses as well as reliability improvement are studied in [20]; the authors had also applied
particle swarm optimization to search for that optimal reconfiguration. This multi-objective
is also investigated in [21] using an evolutionary algorithm. Moreover, to tackle with huge
search space for reconfiguration, recent researchers have implemented novel techniques
for reconfiguration. Two-stage optimizations as a fast optimal system reconfiguration have
been provided in [22]; the authors have proposed a method to simplify the system into a
simplified system graph, and this is applied for initializations and generations guiding of
the algorithm, and it is implemented with firefly algorithm. A sequential switch opening
method is implemented in [23] to aim at searching for feeder reconfiguration; this paper
is based on minimum active power flow due to replacing impedances by resistances in
the branches. The sequential opening of branches has been developed in [24] to search for
optimal distribution topology in the real system; the authors had compared the simulation
and experiment based on the active distribution system testbed for research and teaching.
Three steps of a switch opening and exchange method have been also implemented in [4]
to cope with distributions system reconfiguration; this method is based on sequentially
opening the switches and exchange from a looped system to obtain the optimal radial
distribution system.

Besides, distributed generation (DG) is one factor that overcomes the issue of under-
voltage and power loss in the power distribution system. The sitting and sizing of DGs
were described in detail in [25–28] and presented a particular algorithm that results to
get the best sitting and sizing of each studied system. The authors in [29] have proposed
a method of DG placement and reconfiguration simultaneously to address the issue of
not only power loss and voltage profile but also system in critical condition like tripping
distributed transformer and control increasing short circuit level; they have also studied on
real topology 33 bus of the city in Iran. In [30,31], the authors have presented separately
case studies focusing on DG injection into the grid system before, during, and after re-
configuration with the objective of loss reduction and voltage profile improvement. The
planning of a distribution system with integration of renewable energy source (RES) and
energy storage (ES) has been studied in [32,33]; the optimal capital and operation costs of
components (i.e., line, RES, and ES) as the development cost over a 1-year time horizon
based on its sizing, allocation, and curtailment is provided using mixed-integer linear
programming (MILP) model.
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However, a huge search space, time consumption, and obtaining optimal solution
are still a big challenge to solve in large systems with these existing methods. In addition,
this existing algorithm development has been attracted the current authors to propose
a modified method based on search space reduction for each iteration process. This
research paper proposes to modify the existing sequential opening switch and exchange
in [4] for optimal reconfiguration challenges in comparison to an optimal solution and
computation time.

The rest section of the paper is organized as follows. Section 2 provides the proposed
method and problem formulation to achieve the research objectives in reconfiguration.
Section 3 describes the simulation results and discussion. Finally, the conclusions are
addressed in Section 4.

2. Materials and Methods

This paper purposes to develop a modified method for optimal reconfiguration in
distribution systems with and without integrated distributed generations.

2.1. Problem Formulation

This part aims at minimizing the power losses through distribution system reconfigu-
ration. The following equation expresses the objective function of the reconfiguration.

Min : Ploss =
Nbr

∑
i

Ri
P2

i + Q2
i

V2
i

, (1)

where Nbr is the total branches’ number, Ri is the branch resistance i, Vi is the voltage at
sending end node of ith branch, and Pi and Qi are the active and reactive power at the
sending end node of ith branch.

Subject to the following constraints:

• Voltage constraint

Vi,min ≤ Vi ≤ Vi,max, (2)

where Vi,max (1.1 pu) and Vi,min (0.9 pu) are the voltage limit at the sending end node of
ith branch.

• Current constraint

Ii ≤ Ii,max, (3)

where Ii and Ii,max are the current and the maximum current of ith branch respectively.

• Radial topology constraint

The topology of distribution systems must be a radial configuration and there is no
isolated node in the system. The radial topology constraint expresses as follows.

Nnode − Nbr = 1, (4)

where Nnode is the number of nodes in the system.

2.2. Methodology

In this part, the proposed method to achieve the research objectives on distribution
system reconfiguration using a modified sequential switch opening and exchange (MSSOE)
is presented. The comparison between a proposed method and existing methods is also
discussed to figure out the contribution of the research paper. Two sequential steps of the
MSSOE method were implemented to achieve the objectives.
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2.2.1. Sequential Switch Opening and Exchange (SSOE)

The SSOE method works by searching switch in a topology to open to be a tie-switch
in the system. From one iteration to another, there was a repeating switch that was in
the same loop as the opened switch. It is necessary to open just a switch in a loop to
reach the radial system. However, loops of the switch were integrated into this problem to
avoid this repeating process. A novel proposed method in the paper called as a modified
switch opening and exchange (MSSOE) method found a tie switch in the first iteration by
considering the smallest power loss. Once we got the tie switch, we started to check in the
loop in which the tie-switch was in and deleted all switches within the same loop of that
tie. By doing this, any switches in the same loop of the tie did not appear in the search
space for the next iteration.

2.2.2. Procedure of Step 1 for MSSOE

A flowchart presenting the several steps of the proposed method based on the sequen-
tial switch opening technique is provided in Figure 1. First, all switches were closed to
perform a meshed system. Then, the power losses in the system for each open switch were
determined. Next, we selected a switch with the smallest power loss as a first tie-switch.
The rest tie-switches were selected respectively based also on the smallest power loss and
maintained radial system. With this proposed method, all switches in the same loop of the
previous tie-switches were completely removed from the search space of possible switches
to be tie-switches for further iterations. However, all switches in the same loops were not
removed from possible tie-switches in the existing method. An optimal radial topology
was finally provided.
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Moreover, the detailed procedure of step 1 for MSSOE is described as follows:
Step 1-1: Read the data of the system.
Step 1-2: Close all ties switches and find out all the switches in loops.
Step 1-3: Open a switch in a loop of topology and calculate power loss.
Step 1-4: Check the opened switch in the loop based on minimum loss and delete all

switches in the loop.
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Step 1-5: Repeat steps 1–3.
Step 1-6: Find minimum loss satisfied objective function in Equation (1)
Step 1-7: Repeat steps 1–2 to 1–5 until Equation (4) is satisfied.

2.2.3. Procedure of Step 2 for MSSOE

To get more accurate solution, step 2 was proposed to searches for an optimal topology
based on the solution obtained in step 1. To do so, it needed to change a sectionalizing
switch in the initial topology to a tie-switch, and step 1 was run to get a different topology.
Moreover, three excluded switch types were presented (Type-1 switch, Type-2 switch, and
Type-3 switch). The different switch types were defined as follows:

Type-1 switch: Any switch whose shortest path was close to the substation node.
Type-2 switch: Any switch whose shortest path was placed at upstream of end-

ing node.
Type-3 switch: Any switch that consisted of the substation node.
The flowchart of step 2 for MSSOE is figured out in Figure 2.
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Moreover, the detailed procedure of step 2 for MSSOE is provided as follows:
Step 2-1: Let S be set of all close-switches obtained in step 1 topology and l is the

switch in set S to open.
Step 2-2: Excluded type-1, type-2, and type-3 from S.
Step 2-3: Set switch l open to be a tie-switch.
Step 2-4: Execute step 1 to obtain radial topology and store topology and power loss.
Step 2-5: Close switch l back to a closed switch.
Step 2-6: Repeat steps 2–3 to 2–5 for each switch in S.
Then, the next process of MSSOE were executed by obtaining radial topology given

from sub-steps as initialization, which focused on the type-2 switch but not on type-1 and
type-3. Switches close to the ending node were set to open and then close a tie switch called
open-1-close-1 action [4].
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2.2.4. Distributed Generation Integration

The restoration with distributed generations (DGs) integration was proposed to reduce
system power loss and to improve the voltage profile in the system. The distribution
system already existed DGs on a specific bus [30] as a hypothesis in this paper, i.e., when
the reconfiguration is performed, DG starts injecting its power into the grid then the
reconfiguration algorithm will be employed.

3. Simulation Results and Discussion

In this part, the simulation results and discussion of the proposed method for optimal
reconfiguration with and with distributed generations with selected test systems are
provided. The optimal result of the standard distribution systems of the Institute of
Electrical and Electronics Engineers (IEEE) of IEEE 33 [34], IEEE 69 [35], and IEEE 119 [30],
are performed in MATLAB R2018a on a Dell PC XPS 8930, Intel Core i7-9700, 3 GHz
processor with 16 GB RAM and manufactured by Dell in Texas, U.S.

3.1. Reconfiguration without DGs
3.1.1. Standard IEEE 33-Bus Distribution System

The initial configuration of the standard IEEE 33-bus system is shown in Figure 3
followed by the performance results in Table 1. The initial active power loss of the system
is 202.69 kW and the minimum voltage node is 18 with 0.9131 pu. After reconfiguration
based on SFS [30], SSOE [3], and MSSOE, the power loss for all algorithms is reduced to
139.55 kW with a minimum voltage of 0.9378 pu. Regarding time consumption, MSSOE
has shown the fastest speed but we notice that it is not much different (i.e., 0.0166 s) for
33 bus system (0.2496 and 0.2330 s). The voltage profiles of the base case and after the
reconfiguration are provided in Figure 4. As seen in the figure, the voltage profile of the
system is improved with reconfiguration.
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Figure 3. Single-line diagram of IEEE 33-bus distribution system.

Table 1. Simulation result of reconfiguration for IEEE 33-bus without the integration of distributed
generations (DGs).

Items Base Case SFS [30] SSOE [4] MSSOE

Tie-switches 33,34,35,36,37 7,9,14,32,37 7,9,14,32,37 7,9,14,32,37
Power loss (kW) 202.69 139.55 139.55 139.55

Loss reduction (%) N/A 31.15 31.15 31.15
Vmin (pu) 0.9131 0.9378 0.9378 0.9378

Voltage node 18 32 32 32
Computation time (s) N/A N/A 0.2496 0.2330
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3.1.2. Standard IEEE 69-Bus Distribution System

The initial configuration of the standard IEEE 69-bus system is provided in Figure 5
followed by the performance indicator listed in Table 2. For IEEE 69-bus system, both SSOE
and MSSOE has found the same result but different computation time; the MSSOE is the
fastest one. The initial active power loss is 224.95 kW and the minimum voltage node is
65 with 0.9092 pu. After reconfiguration, the power loss is reduced to 99.69 kW and the
minimum voltage node is 61 with 0.9428 pu. The voltage profile is also improved with the
reconfiguration as provided in Figure 6.
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Table 2. Simulation result of reconfiguration for IEEE 69-bus without DGs.

Items Base Case SFS [30] SSOE [4] MSSOE

Tie-switches 69,70,71,72,73 14,55,61,69,70 13,57,61,69,70 13,57,61,69,70
Power loss (kW) 224.95 99.59 99.69 99.69

Loss reduction (%) N/A 55.74 55.68 55.68
Vmin (pu) 0.9092 0.9428 0.9428 0.9428

Voltage node 65 61 61 61
Computation time (s) N/A N/A 0.4797 0.4325
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Figure 6. Voltage profile of IEEE 69-bus before and after the reconfiguration without DGs.

3.1.3. Standard IEEE 119-Bus Distribution System

Figure 7 shows the standard IEEE 119-bus distribution systems. The power loss and
minimum voltages are 1296.57 kW and 0.8688 pu, respectively, at the initial configuration.
As seen in Table 3, all the three algorithms have given power loss of 853.6, 853.6, and
854.03 kW after system reconfiguration, respectively. Regarding SSOE and MSSOE, it can
be noticed that the computation time is reduced from 4.0328 to 2.5256 s. Refer to the voltage
profile, the performance is increased considerably with reconfiguration. Figure 8 illustrates
the voltage profile before and after the reconfiguration.

3.2. Reconfiguration with DGs

In this part, we presented the reconfiguration with DG integration into the test systems
obtained in [30] with its size and location.

3.2.1. Standard IEEE 33-Bus Distribution System

Three distributed generations at buses of 14, 24, and 30 are proposed to integrate
into the standard test system before the reconfiguration. The initial configuration of the
system provides a power loss of 71.46 kW with a minimum voltage of 0.9687 pu. After
the reconfiguration using three different methods, it can be noticed that the topologies
are slightly different with increased minimum voltage (i.e., 0.9774 pu). Additionally, the
computation time of MSSOE is faster compared to the existing method as seen in Table 4.
The voltage profile of the system is shown in Figure 9. Regarding power loss, it has been
reduced dramatically to 57.7 kW due to the reconfiguration.

3.2.2. Standard IEEE 69-Bus Distribution System

This standard test system is also proposed to have the three distributed generations in
the systems which are at 11, 18, and 61 with the sizing as provided in Table 5. We observe
that the voltage profile before reconfiguration (i.e., 0.9793) is higher than reconfiguration
(i.e., 0.9690 pu). However, the power loss is dramatically reduced to 39.64, which equals to
42.88 % reduction compared to the base case as seen in the table. In addition, the MSSOE is
computed fastest compared to SSOE, i.e., it is 0.1291 s faster. Figure 10 shows the voltage
profile before and after the reconfiguration with integrated distributed generations.
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Figure 7. Single-line diagram of IEEE 119-bus distribution system.

Table 3. Simulation result of reconfiguration for IEEE 119-bus without DGs.

Items Base Case SFS [30] SSOE [4] MSSOE

Tie-switches

118,119,120,121,
122,123,124,125,
126,127,128,129,

130,131,132

23,25,34,39,42,50,
58,71,74,95,97,109,

121,129,130

23,25,34,39,42,50,
58,71,74,95,97,109,

121,129,130

23,26,34,39,42,50,
58,71,74,95,97,109,

121,129,130

Power loss (kW) 1296.57 853.6 853.6 854.03
Loss reduction (%) N/A 34.16 34.16 34.13

Vmin (pu) 0.8688 0.9323 0.9323 0.9323
Voltage node 77 111 111 111

Computation time (s) N/A N/A 4.0328 2.5256

3.2.3. Standard IEEE 119-Bus Distribution System

The distributed generations at buses of 50, 71, and 109 with the capacities of 2.88, 2.97,
and 3.11 MW are proposed to be integrated into the standard IEEE 119-bus distribution
system, respectively. The minimum voltages for before and after reconfiguration based on
three methods are slightly different (i.e., 0.9545 pu vs. 0.9549 pu). The voltage profiles of
the system before and after the reconfiguration are illustrated in Figure 11. However, the
power losses are reduced considerably from 666.04 to 620.65 kW (SFS), 617.9 kW (SSOE),
and 616.8 kW (MSSOE), respectively. The result in Table 6 shows that the power loss
reduction is not much different, however, the time consumption of the proposed method is
less compared to the existing method. The computation time of MSSOE is 1.2727 s faster
than SSOE as provided in the Table 6. Therefore, distributed generators into the system are
the key solution for loss reduction in the power system network.
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Table 4. Simulation result of reconfiguration for IEEE 33-bus with DGs.

Items Base Case SFS [30] SSOE [4] MSSOE

Tie-switches 33,34,35,36,36 7,8,32,34,37 7,9,27,34,36 7,9,27,34,36
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Power loss (kW) 71.46 57.7 57.7 57.7
Loss reduction (%) N/A 19.25 19.25 19.25

Vmin (pu) 0.9687 0.9717 0.9774 0.9774
Voltage node 33 33 18 18

Computation time (s) N/A N/A 0.2313 0.1903
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Table 5. Simulation result of reconfiguration for IEEE 69-bus with DGs.

Items Base Case SFS [30] SSOE [4] MSSOE

Tie-switches 69,70,71,72,73 13,55,64,69,70 13,58,64,69,70 13,58,64,69,70

PDGs in kW (placement)
526.8 (11),
380.4 (18),
1719 (61)

526.8 (11),
380.4 (18),
1719 (61)

526.8 (11),
380.4 (18),
1719 (61)

526.8 (11),
380.4 (18),
1719 (61)

Power loss (kW) 69.40 39.64 39.64 39.64
Loss reduction (%) N/A 42.88 42.88 42.88

Vmin (pu) 0.9790 0.9693 0.9693 0.9693
Voltage node 65 64 64 64

Computation time (s) N/A N/A 0.5104 0.3813
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Table 6. Simulation result of reconfiguration for IEEE 119-bus with DGs.

Items Base Case SFS [30] SSOE [4] MSSOE

Tie-switches

118,119,120,121,
122,123,124,125,
126,127,128,129,

130,131,132

21,25,33,39,43,53,60,
70,74,121,125,128,129,

130,131

22,25,33,39,42,58,
70,74,76,82,121,122,

125,130,131

22,26,33,39,42,59,
70,74,121,122,125,128,

129,130,131

PDGs in kW (placement) 2883.3 (50), 2978.6 (71),
3119.9 (109)

2883.3 (50), 2978.6 (71),
3119.9 (109)

2883.3 (50), 2978.6 (71),
3119.9 (109)

2883.3 (50), 2978.6 (71),
3119.9 (109)

Power loss (kW) 666.04 620.65 617.9 616.8
Loss reduction (%) N/A 6.80 7.22 7.39

Vmin (pu) 0.9545 0.9549 0.9599 0.9549
Voltage node 99 85 85 85

Computation time (s) N/A N/A 3.8419 2.5692

4. Conclusions and Future Work

In this research paper, the modified sequential switch opening and exchange (MSSOE)
has been developed for reducing power losses through distribution system reconfiguration
with and without the integration of distributed generations. The novel approach is based
on the existing method in which the search space for each iteration process is modified
for reconfiguration thanks to predefined individual loops of the distribution systems. The
simulation results of selected three different standards of IEEE 33-bus, IEEE 69-bus, and 119-
bus systems provide the effectiveness of the proposed method over the existing methods.
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Moreover, the more the large systems, more is the difference of computation time; this is
compared to the proposed method. The global optimization solution and fast computation
time compared to existing methods are also a challenge in this research paper. It can be
concluded that the proposed method based on MSSOE is the fastest algorithm compared to
existing methods. To extend the implementation of the proposed method, the integration
of distribution generations and load demand uncertainties over various times will be
investigated. In addition, the challenge of allocation and sizing of distributed generations
including its maximum penetration with the proposed reconfiguration technique will be
considered. A prototype development at the laboratory to narrow a gap between simulation
and experiment is also considered in the future work.
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