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Abstract: Abstract concepts play a vital role in decision-making or recall operations because the
associations among them are essential for contextual processing. Abstract concepts are complex
and difficult to represent (conceptually, formally, or computationally), leading to difficulties in their
comprehension and recall. This contribution reports the computational simulation of the cued recall
of abstract concepts by exploiting their learned associations. The cued recall operation is realized via
a novel geometric back-propagation algorithm that emulates the recall of abstract concepts learned
through regulated activation network (RAN) modeling. During recall operation, another algorithm
uniquely regulates the activation of concepts (nodes) by injecting excitatory, neutral, and inhibitory
signals to other concepts of the same level. A Toy-data problem is considered to illustrate the RAN
modeling and recall procedure. The results display how regulation enables contextual awareness
among abstract nodes during the recall process. The MNIST dataset is used to show how recall
operations retrieve intuitive and non-intuitive blends of abstract nodes. We show that every recall
process converges to an optimal image. With more cues, better images are recalled, and every
intermediate image obtained during the recall iterations corresponds to the varying cognitive states
of the recognition procedure.

Keywords: computational psychology; computational cognitive modeling; machine learning; con-
cept blending; conceptual combinations; recall; computational creativity

1. Introduction

Concepts are an important object of research in cognitive and psychological research.
Usually, the conceptual representations are process-oriented, symbolic or distributed,
and knowledge-based [1–3]. In general, a hierarchical structure defines an organization
of concepts where the concrete concepts are placed in the lower level, and the abstract
Concepts occupy the higher levels (see the example of the vehicle and cars in Figure 1).
Therefore, abstract concepts are also seen as the generalization of concrete concepts [4,5].
Abstract concepts are studied mathematically [6] and theoretically [7,8], but computational
studies are scarce [1]. This article uses a computational model, regulated activation network
(RAN) [9–11], capable of building representation of convex abstract concepts, which are
later used in recall simulations.

The prime aspect of this article is to emulate the recall procedure, that can be viewed
as the cognitive process of remembering. Context plays an eminent role in the recall
of concrete concepts (such as the word “table”), which is often termed as concreteness
effect. The concreteness effect is expressed through the dual-coding theory [12,13] and the
context availability hypothesis [14]. According to this theory, individually, abstract concepts
are abstruse in context retrieval when compared with concrete concepts; therefore, their
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recall procedure is complex. However, an interesting work suggests that context retrieval
of abstract concepts is possible when response pairs of abstract concepts are related to
one another, thus providing context for the abstract stimuli [15]. In RAN modeling we
can learn associations among concepts (including the abstract concepts). These learned
associations provide adequate context relations among the abstract concepts. In this work,
we exploit these learned associations among the abstract concepts to simulate a regulated
recall operation.

Figure 1. Hierarchy abstraction of concrete and abstract concepts.

In recent years, advances in technologies have played an essential role in cognitive
and psychological research, e.g., use of devices like GP3 [16], TheEyeTribe [17], and elec-
troencephalography (EEG) [18,19] to study visual attention. In this article, we focus on
representations of computational models that are also very useful in understanding the
psychological and cognitive phenomena, validating the existing cognitive theories, and
helping to formulate fresh ideas related to cognition [20–23]. The representations of these
computational approaches are either symbolic (amodal), distributed (multimodal), or hy-
brid [24], which helps in simulating or understanding various cognitive phenomena. Below
are a few examples of computational models or architecture used to study psychological
and cognitive phenomena based upon their representation:

• Symbolic: Adaptive Control of Thought–Rational (ACT-R) [25] is a symbolic ar-
chitecture intended to model memory [26] and simulate attention [25,27], decision-
making [28], recognition [29], and forgetting [29].

• Distrubuted: Multimodal approaches such as artificial neural networks (ANNs), in-
cluding the restricted Boltzmann machine (RBM) [30], deep neural networks [31],
stacked auto-encoders [32], and convolution neural networks (CNN) [33], have sig-
nificant contributions in feature recognition [34] and distributed memory represen-
tation [35]. Methods like Random Forests have also been used in studies related to
visual attention [36].

• Hybrid: Cognitive architectures like Connectionist Learning with Adaptive Rule
Induction On-line (CLARION) [37] simulate scenarios related to cognitive and social
psychology.

This article makes use of the RAN’s hybrid nature and modeling to build the rep-
resentation of convex abstract concepts and further simulate recall of abstract concepts.
F First, the model generation takes place with four basic steps of the RAN approach [9],
i.e., concept identification, concept creation, inter-layer learning, and upward activation
propagation. An intra-layer procedure also takes place at all the layers to identify the
association among the concepts at the same level. Further, these learned associations are
uniquely interpreted to determine whether the impact of their learned weights is inhibitory,
excitatory, or neutral. Later, these impacts are applied to obtain a regulatory effect on peer
concepts (abstract concepts or input layer concepts) during recall operation. A Toy-data
problem was used for modeling with RAN and demonstrating the novel geometric back-
propagation algorithm for the simulation-cued recall operation. The benchmark dataset of
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the image domain, MNIST, is also used to demonstrate the cued recall experiment. These
experiments also show how blends of abstract concepts can be recalled. To summarize, the
following are the main contributions of the article: first, the impact factor calculation to
determine the inhibitory, excitatory, or neutral effect of one node over other; second, the
novel intra-layer regulation algorithm for the use of the impact factor in order to regulate
the activation of other concepts; third, the novel geometric back-propagation algorithm
and recall simulations using the geometric back-propagation algorithm.

The remainder of this article is organized in the following way: Section 2 puts forward
the state of the art related to recall operations; RAN modeling, the intra-layer regulation
algorithm, and the geometric back-propagation algorithm are detailed in Section 3 using a
Toy-data problem; the cued recall demonstration with the MNIST dataset is reported in
Section 4; Section 5 concludes the article.

2. Related Work

Recall or retrieval is a cognitive process [38] of remembering a thing or an event.
While recalling, the brain activates a neural assembly that was created when the original
event occurred [38]. In psychology, there is a plethora of articles studying the recall
process. Psychologists used free-recall, cued-recall, and serial-recall as tools to investigate
memory processes [39]. Recall has been used to study the effect of cognitive strategies,
such as chunking and the use of mnemonics for memorization of things (such as large
numbers) [40]. One interesting study reported the benefits of subsequent recall in retrieval
operations where memories are related or competing [41]. The proverb “practice makes
a man perfect” relates to the fortification of memory, and an investigation shows how
retrieval plays an important role in this memory strengthening [42]. Technologies such
as functional magnetic resonance imaging (fMRI), magnetic resonance imaging (MRI),
positron emission tomography (PET), and electroencephalography (EEG) played an active
role in validating many recall related hypotheses [41,43–45].

Notable contributions to the modeling of memory recall procedures are observed.
Based on the temporal context model [46,47] of human behavior, human memory perfor-
mance was modeled using a probabilistic approach during free-recall experiments [48]. A
computational model of interaction between the prefrontal cortex and medial temporal
lobe in memory usage was designed to study the prefrontal control in a recall process [49].
The model was a simple neural network with quick and flexible reinforcement learning
exhibiting strategic recall. Another computational model differentiates recall from the
recognition process depending upon the number of cues involved in the retrieval pro-
cedure [50]. For encoding, the model used an inference-based model of memory [51],
and retrieval was carried out using a Bayesian observer model [52]. A large number of
computational psychology contributions examining the recall process and recognition
using the neural networks are available [53–56].

An interesting study simulated the free-recall process using the ACT-R architec-
ture [57], showing that the classical effect of primacy and recency can be recreated through
rehearsal theory based upon ACT-R and Baddeley’s phonological Loop [58]. ACT-R archi-
tecture was also used to propose a new theory of memory retrieval to predict for intricate
serial and free-recall operations [59]. This research also focused on the prospects of as-
sociative learning by introducing a strengthening and decaying mechanism depending
upon the similarity of the input stimulus. The serial recall has been modeled in a scientific
contribution using ACT-R architecture to explain the processes involved while recalling
a list of words [60]. The traditional ACT-R recall operations had a limitation: here, the
memory access depends upon limiting the capacity of the activation process, consequently
inducing errors in the contents being recalled. This theory overcomes the limitations by
predicting the latency and errors in a serial recall process.

The free recall process was also modeled using CLARION to determine the role
of distractions in an incubation task [61]. This study made a striking observation that
rehearsals play an important role in memory consolidation during the free recall procedure,
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and distractions can hinder the free recall and eventually effect memory strengthening.
CLARION was also used to emulate, acquire, and expound human-centric data relevant to
incubation and insight through free recall, lexical decision, and problem-solving tasks [62].

This article introduces a novel algorithm named geometric back-propagation, which
enable us to simulate the recall simulation using RAN modeling. The main objective of the
experiments in this paper is to demonstrate the role cue (activation) on abstract concepts
(nodes) in recall operations. An additional goal is to show that when larger number abstract
concepts participate (i.e., more cues are available) in recall operations, then better recall is
observed in the experiment.

3. RAN Methodology to Simulate Recall Operations

Here, we describe the emulation of the recall process using RAN modeling. For back-
ground understanding in Section 3.2 we describe RAN modeling along with two learning
mechanisms, i.e., inter-layer and intra-layer learning. Having explained RAN modeling,
the two contributions of this article are elucidated: first, the regulation mechanism is de-
scribed, the biological inspiration behind this operation is descibed in Section 3.1. Secondly,
a novel geometric back-propagation algorithm is proposed that propagates activations
from abstract level to input Level. RAN methodology and the article’s contributions are il-
lustrated using a Toy-data set. At the end of this section, the experiments of RAN modeling
with the Toy-data are also reported, demonstrating the recall operation.

3.1. Biological Inspiration of Regulation Operation on RAN’s Modeling

The nerve cell (neuron) consists of several main components: the dendrites, the cell
body, and the axon, as shown in Figure 2. When an electric signal traverses the whole
axon and reaches one of its terminations, it releases chemicals called neurotransmitters,
which diffuse across the synaptic gap and are absorbed by the receptive neuron’s dendrite.
Depending on the neurotransmitter, this absorption can either enhance or inhibit the
receptive neuron’s activation.

Figure 2. Biological neuron showing the axoaxonic synapses.

Other kinds of synapses occur in biological brains, such as axoaxonic synapses, as
shown in Figure 2. These synapses occur when the axon of a neuron connects to the
axon of another neuron instead of to its dendrites. Such configuration usually plays a
regulatory role by mediating presynaptic inhibition and presynaptic facilitation [63]. By
virtue of artificial axoaxonic synapses, this contribution realizes the inhibitory, excitatory,
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and neutral activation propagation phenomenon in RAN modeling, which is used to induce
a regulatory effect on the activation at nodes during recall operation.

3.2. Abstract Concept Modeling with RAN

This section is dedicated to describing convex abstract concept modeling with RAN [11].
To demonstrate RAN methodology, a Toy-data problem is used—see Figure 3. The Toy-data
are synthetically produced by generating a 2D dataset with five classes. In Figure 3, we can
see that out of the five clusters, three are far apart from one another; however, two clusters
are very close to each other. This arrangement of clusters was introduced into the Toy-data
problem to demonstrate the excitatory and inhibitory impact of concepts, representing
each cluster at an abstract level. The dataset consists of 1800 data instances with an equal
distribution in all of the classes. RAN modeling is performed using the four basic steps,
where step 1 and step 4 consist of two concurrent operations.

Figure 3. Graph of 2D Toy-data with five clusters, along with their respective cluster centers (1, ..., 5).

3.2.1. Step 1a: Convex Concept Identification (CCI)

CCI is a method to determine convex groups in a given dataset. In RAN, each data
instance is considered a point in n-dimensional geometric feature space, inspired by the
theory of conceptual spaces [64]. In this method, we also determine the cluster centers that
are used in the inter-Layer learning operation (see Section 3.2.4). Step 1a in Figure 3 shows
input Layer 0; here, nodes S1 and S2 correspond to the dimensions of the input Toy-data.
To identify the five convex groups, the K-mean [65] clustering algorithm is chosen as the
concept identifier (CI), and the value of K is set to 5 to determine five clusters. Five cluster
centers are also identified in this process, as shown in Figure 3, as cluster representative
data points (CRPD). Any clustering algorithm can act as a concept identifier provided that
it enables the identification of convex regions along with their respective cluster centers.

3.2.2. Step 1b and Step 4b: Concept Similarity Relation Learning (CSRL)

CSRL is an intra-layer operation in RAN modeling explained in [66]. The main
purpose of this process is to determine the alikeness among the concepts and associate
them through a similarity relation. This relation also simulates the behavior of activation
found in biological neurons; i.e., affine neurons are activated concurrently upon receiving
input stimuli, whereas unrelated neurons remain relatively inactive for the same input
stimulus. This phenomenon is expressed mathematically through Equation (1) to calculate
a pair-wise relation/weight wm→n between node m, and node n at a layer. The numerator
(1− |AI

m − AI
n|) calculates the similarity of activation (AI

m is the activation of Ith instance
of propagated data at node Cm in a layer, and similarly, AI

n is the activation of Ith instance
of propagated data at node Cn. m 6= n and m, n are integers.) of node m w.r.t. node n, and
the product (1− AI

m) ∗ (1− AI
n) is used to reduce the impact of similarity on weight wm→n
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when both activations (i.e., AI
m, and AI

n) are very close to 0, though similar. Consequently,
we obtain a symmetric k× k matrix as learned concept similarity relation weights (CSRW)
among the nodes within the layer.

wm→n =

∑
I
[(1− |AI

m − AI
n|)− (1− AI

m) ∗ (1− AI
n)]

∑
I
[1− (1− AI

m) ∗ (1− AI
n)]

(1)

where m ∈ 1, ...., k; n ∈ 1, ...., k; and m 6= n.
This learning mechanism is performed two times while modeling with Toy-data: First,

in Step 1b at the input layer 0, (see Figure 4, step 1b), and second, when the input data is
propagated upward to the convex concept layer 1. The learning at layer 0 has a size of 2 ×
2, as the input layer has two nodes. In contrast, the learning at layer 1 has a size of 5 × 5
(see Figure 5 for the CSRL weights).

Figure 4. Regulated activation network (RAN) convex abstract concept modeling process. The procedure displays the four
steps in RAN modeling. This figure shows the three learning procedures, i.e., two similarity relation learning procedures at
two layers, and one inter-layer learning procedure between layer 1 and layer 0. In step 1, similarity relation learning (step
1a) is performed along with the concept identification process (step 1b). Similarly, in step 4, similarity relation learning (step
4b) is performed together with the upward activation propagation method (step 4a).

3.2.3. Step 2: Convex Abstract Concept Creation (CACC)

Convex abstract concept creation is a method of dynamically creating a layer that
consists of nodes as an abstract representative of categories determined in the convex
concept identification process (see Section 3.2.1). For instance, step 2 in Figure 4 depicts the
creation of new a convex abstract concept (CAC) layer 1 with five nodes (C1, ..., C5). These
five nodes (C1, C2, C3, C4, and C5) represent clusters 3, 1, 4, 2 and 5 in Figure 3, respectively.
The count of the CAC layer nodes depends upon the number of clusters identified in the
CCI operation at the input layer; i.e., if k clusters were determined in the CCI mechanism,
then in step 2, a new layer is created consisting of k nodes.

3.2.4. Step 3: Convex Concept Inter-Layer Learning (CCILL)

Besides intra-Layer learning in Steps 1b and 4b, the second learning mechanism in
RAN modeling is used to identify the association among the nodes at the CAC layer and
input layer. Since the nodes are the abstract representative of the clusters identified in the
CCI process, and according to the theory of prototype, the cluster center (i.e., the CRPDs)
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is the most probable representative of a cluster [67–69]. Therefore, the cluster centers
are understood as an association among the CAC layer nodes and input layer nodes, as
depicted by Equation (2).

Wk,i =


W1,1, W1,2, . . . , W1,na

. . .
Wt,1, Wt,2, . . . , Wt,na

. . .
WnA ,1, WnA ,2, . . . , WnA ,na

 =


C1
. . .
Ct
. . .

CnA

 (2)

where k = 1, 2, ..., nA, and i = 1, 2, ..., na
In Equation (2) we can see that the coordinates (feature values of data) of centers

identified in the CCI process are assigned as learning W, i.e., convex concepts inter-layer
wiights (CCILW). In the experiment with Toy-data, we learned a 5 × 2 weight matrix
between the five nodes at CAL layer 1 and two nodes of input layer 0, as shown in Figure 4,
step 3. Having completed step 3, a basic RAN model is obtained consisting of input layer 0,
CAC layer 1, learning between two layers, and learning among the nodes at input layer 0.

Figure 5. The concept similarity relation learning (CSRL) weight matrices learned with Toy-data and
their corresponding impact dactor (σ) at layer 0 and layer 1. σ is calculated using Equation (5).

3.2.5. Step 4a: Convex Abstract Concept Upward Activation Propagation (CACUAP)

This step is used to propagate i-dimensional input data vector ai to the CAC layer
and to obtain k-dimensional data vector Ak. This mechanism is used in two stages: in the
first stage, Euclidean distance is calculated among the input data ai and all the CCILWs
Wk,i. This distance is further normalized (using the denominator in Equation (3)) to obtain
distance in the range [0, 1](in RAN’s modeling, the activation values of are, by definition,
real values in the [0, 1] interval—and in such a setting, in an n-dimensional space, the

maximum possible Euclidean distance between any two points is
√

∑n
i=1(ai − 0)2=

√
n,

where ai = 1.).

dk =

√
∑na

i=1(Wk,i − ai)2

√
na

(3)

In the second stage, the normalized distance obtained from Equation (3) is transformed non-
linearly, establishing a similarity relation conforming to the following three conditions: (1)
f (d = 0) = 1, i.e., when distance is 0, similarity is 100%; (2) f (d = 1) = 0 i.e., when distance
is 1, similarity is 0%; and (3) f (d = x) is continuous, monotonous, and differentiable in the
[0, 1] interval.

f (x) = (1− 3
√

x)2 (4)

This similarity relation equation (Equation (4)) transforms the distance values observed at
each node in the CAC layer into its similarity value. These similarity values act as degree
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of confidence (DoC) values to recognize the category being represented by the nodes at
the CAC layer. Upon propagating all input values to the CAC Layer, the observed outputs
Ak are used to perform concept similarity relation learning (CSRL), as shown in Figure 4,
step 4b. After completing step 4b, the RAN modeling procedure terminates, and a model is
obtained, as shown in step 3 in Figure 4.

In order to build more than one layer, all of the steps are repeated iteratively, and the
output of all the intermediate CAC layers is pipelined as input to the new layer being built.

3.3. Regulation Mechanism

The regulation operation in RAN modeling is performed in three steps: first, an impact
factor of the CSRL matrix is deduced; second, the intra-layer (IL) contribution of activation
at a node by another node in the same layer is determined; third, activation at a node by a
function of self-activation and intra-layer activation induced by other nodes on the latter
are obtained.

3.3.1. Impact Factor (σ) Construction and Interpretation

The impact factor is a function that interprets the CSRL weight values (in the range
[0, 1]) as excitatory, inhibitory, or neutral weights. The purpose of CSRL weights is to
determine how concurrently two nodes (e.g., S1 and S2) are active. If the CSRL weight is
intermediate, i.e., 0.5, it signifies that the two nodes are 50% concurrently active (depicting
a state of confusion). Therefore, these nodes do not have an impact on each other in the
same layer. If the CSRL weight of the two nodes were ’‘0”, then the two nodes were never
active simultaneously. This also indicates that the two nodes are inhibitors of each other.
Finally, if the CSRL weights of the two nodes were ‘’1”, then the nodes were always active
conjointly, exciting the activation of each other.

σm→n = [2 ∗ (Wm→n − 0.5)]3 (5)

The aforementioned comprehension of CSRL weights W is exhibited by a mathemat-
ical Equation (5), where σm→n is the impact of node m over node n. Figure 6 shows a
graphical view of the impact factor σ (Equation (5)), depicting the excitatory, inhibitory,
or neutral interpretations of CSRL weights. Figure 5 shows the CSRL and their respective
σ weights for both layers. At layer 0, the nodes S1 and S2 have a very minimal excitatory
impact on each other (in Figure 3, every node at layer 1 can be related to clusters C1, ...,
C5 serially). However, at layer 1, node C1 has no impact on node C2 (and vice versa).
There are many negative weights in the σ matrix of layer 1, indicating that these nodes
inhibit each other. In Figure 3, we see that the clusters C2 and C5 are very close, and the
activations observed at both of the nodes must be very similar. Hence, high CSRL weight is
learned between nodes C2 and C5. Notably, both exhibit good excitatory behavior towards
each other.

3.3.2. Intra-Layer Activation

The objective of calculating intra-layer (IL) activation is to determine the amount of
activation a node n receives from all the other m nodes of the same Layer. To obtain the
intra-layer activation at node n, the approach must address three prospects. First, intra-
layer activation must consider the impact (σ) of excitatory, inhibitory, or neutral effects of
all m nodes over node n. Second, the current activation of m nodes and their CSRL weight
(Wm→ n) to node n should be considered in calculating the activation of node n. Third,
the intra-layer activation computed for node n must be in the range [0, 1]. Equation (8)
conforms to all three requirements.

χm = (am ∗Wm→n) (6)

¬χm = (1− am) ∗ (1−Wm→n) (7)
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IL(an) =
∑
m

σm→n(χm + ¬χm)

∑
m

σm→n
(8)

Figure 6. Excitatory, inhibitory, and neutral effect of CSRL weights (W) when transformed using the
impact factor σ.

3.3.3. Intra-Layer Regulation

To identify the actual activation AA(an) at node n, this operation uses a regulation
factor (ρ) to decide the share of self-contribution of activation by node n and intra-layer
activation at node n, i.e., IL(an). Equation (9) shows the mathematical function for the
intra-layer regulation operation. From Equation (9), we can observe if the ρ is ‘0’; i.e.,
without any regulation, only the activation of node n contributes to the actual activation.

AA(an) = (1− ρ) ∗ an + ρ ∗ IL(an) (9)

Algorithm 1 presents the intra-layer regulation operation in an algorithmic form. This
regulation operation has its importance when propagating the activation from an abstract
concept layer to the input layer, as described in Section 3.4.

Algorithm 1: Intra-Layer Regulation
Input: current activation an at node n at layer L.
Input: CSRL W at layer L
Input: impact matrix σ at layer L
Initialization: regulation factor ρ, between [0, 1];
foreach an in L do

Calculate IL(an), using Equation (8);
Calculate actual activation AA(an), using Equation (9);

end
return AA(an)

3.4. Geometric Back-Propagation Operation

Geometric back propagation (GBP) is a downward propagation mechanism in RAN
modeling. This method enables us to determine an activation vector am (< a1, .., ai, .., am >)
at layer L-1, for an expected activation (E-A) vector A′n (< A′1, .., A′j, .., A′n >) at layer L. This
operation is a window operation that takes place between two adjacent layers, i.e., layers
L and L-1. For instance, if the RAN model has three layers, L0 (input layer), L1, and L2
(output layer), then two GBP operations take place, first between L2 and L1, and then
between L1 and L0. Figure 7 shows the single-window operation between two layers.
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Figure 7. Single-window operation in geometric back-propagation operation. The figure also shows
the error calculation and propagation.

The GBP mechanism commences with an expected activation (A′n) vector at layer
L. Next, a starting input vector am (< a1, .., ai, .., am >) is injected in layer L-1. Now, we
enter into a cycle where we propagate the activation of the nodes in layer L-1 upwards
to layer L and determine the observed activation (O-A) vector An (< A1, .., Aj, .., An >)
at layer L. Furthermore, an error vector e is calculated using A′n and An (expected and
observed activation vector) through Equation (10). The error vector e is used to determine
an accumulated delta value 4ai (see Equation (12)) based upon the function expressed
by Equation (11). This 4ai value is then added to the activation vector at layer L-1 (see
Equation (13)) to obtain a new input vector anew

m . Additionally, the cycle is repeated
with the new anew

m input at layer L-1 until the error is minimized or the cycle equals the
user-defined maximum iteration threshold. Algorithm 2 presents the detailed geometric
back-propagation algorithm. As mentioned earlier, the GBP operation takes place between
two consecutive layers. However, if the hierarchy has more than two layers, then with the
window operation, it is possible to propagate down the injected E-As at the nodes of the
top-most layer L, to input layer 0.

ej = A′j − Aj (10)

4ai ,Aj = (Wj,i − ai) ∗ (ej) (11)

4ai = ∑
j=1,..,i

4ai ,Aj (12)

anew
i = ai +4ai (13)

3.5. Recall Demonstration with Toy-Data

There are two types of experiments performed in this section: first, the single-cue recall
(SCR) operation, where the recall is performed based upon the expected activation by one
node in an abstract concept layer and, second, the multiple-cue recall (MCR) mechanism,
where the recall procedure is carried out for the expected activation at all the nodes in the
abstract concept layer. The experiments demonstrated in this section use the two-layered
model generated with RAN methodology (see the two-layered model obtained at step 3
in Figure 4 in Section 3.2). In the generated RAN model, the five abstract concept nodes
(C1, C2, C3, C4, and C5) correspond to clusters 3, 1, 4, 2 and 5, respectively (see Figure 3 for
the clusters). In both SCR and MCR operations, the five abstract concept nodes at layer 1
are injected with an expected activation set. Furthermore, the geometric back-propagation
algorithm (Algorithm 2) performs one thousand iterations of downward propagation of
activation to obtain appropriate values at input layer 0 as recalled activation. In all of the
recall simulations, the GBP operation is initialized with values 0 and 0.60 as Starting-Point,
and maxIter is set for 1000 iterations. The expected activation varies with the experiment,
and two sets of the regulation factor were determined empirically to demonstrate both
recall procedures.
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3.5.1. Single-Cue Recall (SCR) Experiment

In SCR experiments, the objective was to determine the recalled activation at input
layer 0 by injecting binary activation values as expected activation in abstract concept layer
1. The expected activation vector contains value 1 for only one abstract concept node, and
for the remaining nodes, 0 is assigned. In all SCR experiments, six regulation factors ρ
(0%, 0.5%, 0.75%, 1%, 1.25% and 1.5%) were used. Table 1 logs the E-A and the thousandth
iteration value of O-A for the five SCR experiments. The following are the five experiments
to demonstrate the SCR operation along with observations:

• Exp-1: This is the first experiment in which we injected an E-A vector [0, 0, 0, 0, 1]
of activation at abstract concept layer 1. The objective was to recall activations at
input layer 0 for which a very high activation was observed at node C5 at layer 1
and comparatively lower activation for the other four nodes at layer 1. The GBP
algorithm was executed six times with an E-A of [0, 0, 0, 0, 1] for the six different
regulation factors (ρ). The observation for Exp-1 (see Table 1) shows that with a ρ of
0.75%, the maximum activation of 0.85 was observed at node C5. As expected, the
node C2 received good activation because nodes C2 and C5 represent clusters 1 and
5 (see Figure 3), which are close to one another. Figure 8a shows the six trajectories
for the six regulation factors; each trajectory is formed by one thousand iterations. In
Figure 8a, the yellow marker shows the CRDP of cluster C5 and the trajectory with ρ
of 0.75% converge closest to this CRPD. Thus, an activation vector [0.1, 0.24] is recalled
at input nodes [S1, S2] for the given E-A vector [0, 0, 0, 0, 1].

• Exp-2: In this experiment, the E-A provided to the GBP algorithm was [0, 0, 0, 1, 0]
to recall activation at layer 0, which is strongly represented by node C4. For each
regulation factor, the GBP algorithm was run; the O-As obtained at layer 1 are listed
in Table 1, and the corresponding recalled activation at layer 0 is shown in Figure 8b.
From the observations, it can be deduced that the experiment with ρ of 0.75% produced
the best outcome and recall activation [0.9, 0.9] for input layer 0.

• Exp-3: In this experiment, the GBP algorithm was supplied with an E-A vector of [0,
0, 1, 0, 0] to recall the input layer 0 vector, which is represented by node C3 at layer
1. Figure 8c and Table 1 shows the recall trajectories at layer 0 and the O-A vector at
layer 1, respectively. The experiment with the regulation of 0.75% displayed the best
representation. A vector [0.92, 0.11] was recalled at layer 0 for the injected E-A vector.

• Exp-4: The aim of this experiment was to recall an input vector that closely represents
the abstract concept node C2 by feeding the GBP algorithm with an E-A vector of
[0, 1, 0, 0, 0]. After applying the six regulation factors to each GBP operation, it was
observed that the experiment with ρ of 0.75% displayed the best result. Table 1 shows
the O-A for the E-A. Figure 8d shows the trajectories of the recalled values and shows
the best outcome with ρ of 0.75% that converges to an activation vector [0.14, 0.07].

• Exp-5: This experiment shows the recall vector obtained by initializing an E-A vector
[1, 0, 0, 0, 0] with all GBP experiments with the six regulation values. Unlike the
previous experiments, the best O-A was obtained with a regulation factor of 1%.
Figure 8d shows the recall outcome for all six regulation factors. At input layer 0, the
recall operation with ρ of 1% results into an activation vector [0.15, 0.91] for the given
E-A.
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Algorithm 2: Geometric Back-Propagation Operation

Input: A ExpectActivation activation A′n (< A′1, .., A′j, .., A′n >) at layer L, with n
nodes

Input: Desired Maximum Iteration maxIter
Output: An activation pattern am (< a1, .., ai, .., am >) at layer L-1, with m nodes
Set Regulation Factor ρ between [0, 1];
Set currentActivation = Starting-Point (a vector of activation < a1, . . . , am >);
Set previousActivation = currentActivation;
Set PropagateActivation= CCUAP of currentActivaiton to layer L (see
Section 3.2.5);

Set ObservedlActivation (A)= Regulate PropagateActivation via Algorithm 1;
Calculate error vector (e) at layer L using Equation (10);
Set iter = 0;
repeat

Set iter = iter + 1;
foreach ai in previousActivation do

Calculate the delta (4ai ,Aj ) using Equation (11);
Calculate the sum of delta for ai, i.e.,4ai , using Equation (12);
if4ai > 0 then

atemp = ai +4ai ∗ (1− ai);
if atemp > 1 then

Assign ai = 1;
end
else if atemp < 0 then

Assign anew
i = 0;

end
else

Assign anew
i = atemp;

end
end
else

atemp = ai +4ai ∗ (ai);
if atemp > 1 then

Assign anew
i = 1;

end
else if atemp < 0 then

Assign anew
i = 0;

end
else

Assign anew
i = atemp;

end
end

end
Set currentActivation = < anew

1 , .., anew
i , .., anew

m > (new activation vector at layer
L-1);

Set previousActivation = currentActivation;
Set PropagateActivation= CCUAP of currentActivaiton to layer L (see
Section 3.2.5);

Set ObservedlActivation (A)= Regulate PropagateActivation via Algorithm 1;
Calculate error vector (e) at layer L using Equation (10);

until iter = maxIter;
return currentActivation
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(a) Exp-1 (b) Exp-2 (c) Exp-3

(d) Exp-4 (e) Exp-5

Figure 8. The trajectories of activation observed at input layer 0 while carrying out one thousand iterations of the geometric
back-propagation (GBP) algorithm. The red circle is the starting point of trajectory, and the black circle is the activation
value after the thousandth iteration. The graphs also depict the trajectories observed at input layer 0 with six regulation
factors ρ (0%, 0.5%, 0.75%, 1%, 1.25%, and 1.5%). Each graph visualizes the recalled activation for five single-cue recall (SCR)
experiments.

Table 1. Observations of activations at abstract concept layer 1 for SCR experiments.

Regulation Experiment E-A at Layer 1 O-A at Layer 1

% ———— C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 Exp-1 0 0 0 0 1 0.08 0.61 0.07 0.01 0.47
0.5 Exp-1 0 0 0 0 1 0.14 0.70 0.09 0.03 0.72

0.75 Exp-1 0 0 0 0 1 0.16 0.64 0.10 0.04 0.85
1 Exp-1 0 0 0 0 1 0.19 0.56 0.11 0.05 0.82

1.25 Exp-1 0 0 0 0 1 0.19 0.54 0.12 0.06 0.75
1.5 Exp-1 0 0 0 0 1 0.20 0.52 0.12 0.06 0.71

0 Exp-2 0 0 0 1 0 0.08 0.01 0.08 0.61 0.02
0.5 Exp-2 0 0 0 1 0 0.10 0.02 0.11 0.83 0.03

0.75 Exp-2 0 0 0 1 0 0.11 0.02 0.11 0.93 0.04
1 Exp-2 0 0 0 1 0 0.12 0.03 0.12 0.90 0.04

1.25 Exp-2 0 0 0 1 0 0.12 0.03 0.13 0.83 0.05
1.5 Exp-2 0 0 0 1 0 0.13 0.03 0.13 0.78 0.05

0 Exp-3 0 0 1 0 0 0.01 0.07 0.57 0.07 0.06
0.5 Exp-3 0 0 1 0 0 0.02 0.09 0.76 0.10 0.08

0.75 Exp-3 0 0 1 0 0 0.02 0.10 0.84 0.11 0.09
1 Exp-3 0 0 1 0 0 0.03 0.11 0.93 0.11 0.09

1.25 Exp-3 0 0 1 0 0 0.03 0.11 0.91 0.12 0.10
1.5 Exp-3 0 0 1 0 0 0.03 0.12 0.84 0.13 0.10

0 Exp-4 0 1 0 0 0 0.06 0.57 0.07 0.01 0.42
0.5 Exp-4 0 1 0 0 0 0.08 0.75 0.10 0.02 0.50

0.75 Exp-4 0 1 0 0 0 0.09 0.80 0.12 0.02 0.52
1 Exp-4 0 1 0 0 0 0.10 0.77 0.13 0.03 0.53

1.25 Exp-4 0 1 0 0 0 0.10 0.73 0.14 0.03 0.54
1.5 Exp-4 0 1 0 0 0 0.11 0.69 0.15 0.04 0.54
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Table 1. Cont.

Regulation Experiment E-A at Layer 1 O-A at Layer 1

% ———— C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 Exp-5 1 0 0 0 0 0.58 0.07 0.01 0.07 0.13
0.5 Exp-5 1 0 0 0 0 0.78 0.09 0.02 0.10 0.15

0.75 Exp-5 1 0 0 0 0 0.85 0.10 0.02 0.11 0.16
1 Exp-5 1 0 0 0 0 0.88 0.10 0.03 0.12 0.17

1.25 Exp-5 1 0 0 0 0 0.84 0.11 0.03 0.13 0.17
1.5 Exp-5 1 0 0 0 0 0.79 0.11 0.04 0.13 0.18

E-A, expected activation, O-A, observed activation.

3.5.2. Multiple-Cue Recall (MCR) Experiment

The MCR experiments were carried out to determine the recall vector at input layer 0
for an E-A vector at layer 1. The constituents of the E-A vector are degree of confidence
(DoC) values that define the expected representation of each abstract concept node at layer
1. To demonstrate MCR, five experiments were performed, and in every experiment, six
regulation factors ρ (0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%) were used to make inferences.
Table 2 lists the observations of O-A for the respective E-A in each MCR experiment.
Figure 9 displays the trajectories of recalled activation in layer 0 for six regulation factors
with respect to each experiment. The E-A vectors used in the MCR experiments are vectors
obtained by propagating an input activation from layer 0 to layer 1. Hence, in MCR
simulation, we also have an expected recall (E-R) vector to perform evaluations. The
following are the MCR experiment descriptions along with observations:

• Exp-6: In this experiment, an E-A vector of [0.57, 0.16, 0.06, 0.15, 0.25] was provided
to the GBP algorithm. With this E-A, we wanted to recall activation at input layer
0, that is 57%, 16%, 06%, 15% and 25% represented by nodes C1, C2, C3, C4, and C5,
respectively. Table 2 lists the O-A observed for the six regulation factors. The results
with ρ of 0% and 0.1% show the outcome, which is almost identical to that of E-A. The
E-R vector of this experiment was [0.2256, 0.7610]. With ρ of 0% and 0.1%, the observed
recall was [0.2260781, 0.7647118] and [0.2343844, 0.7602842], respectively, which are
also similar to the expected recall vector. Figure 9a shows the trajectories of all the
recalled activation vectors at layer 0 for the E-A vector w.r.t. their six regulation factors.

• Exp-7: For this experiment, the GBP algorithm was injected with an E-A vector of
[0.07, 0.04, 0.23, 0.46, 0.05] for recalling an activation vector at input layer 0. The six
O-A vectors obtained for the six regulation factors can be seen in Table 2. The O-A
vector for ρ of 0% and 0.1% was almost the same as the E-A vector. The recalled
activations regulation factor 0% was [0.9875402, 0.6551013], which is almost similar to
the E-R vector [0.9896, 0.6568]. Figure 9b shows all the recalled trajectories for this
experiment.

• Exp-8: In this experiment, the GBP algorithm was initialized with the E-A vector of
[0.09, 0.5, 0.22, 0.05, 0.52]. The E-R vector for this experiment was [0.3458, 0.1157], and
two similar vectors, [0.3444873, 0.1032499] and [0.3489568, 0.1284956], were recalled
in this experiment using regulation of 0% and 0.1%, respectively. Figure 9c shows all
recalled trajectories. The O-A vectors obtained with the regulation of 0% and 0.1%
were also identical to the E-A vector of this experiment—see Table 2.

• Exp-9: The recall simulation in this experiment was instantiated with an E-A vector of
[0.09, 0.40, 0,28, 0.07, 0.35], and a recall vector of [0.4410, 0.1341] was expected at input
layer 0. Upon using the GBP algorithm with six regulation factors, the recall operation
without regulation, i.e., ρ of 0%, produced the most similar recall vector [0.4370989,
0.1308456] and the corresponding O-A vector at layer 1. However, the outcome with
0.1% regulations was also similar to a recalled vector [0.4392012, 0.1518065] at input
layer 0—see Figure 9d.

• Exp-10: This experiment used an E-A vector [0.07, 0.09, 0.44, 0.26, 0.10] in order to
obtain an E-R vector [0.8813, 0.4145] at input layer 0. The six simulations were carried
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out with different regulation factors, and it was observed that the results with ρ of
0% and 0.1% produced results very near those of the E-R, i.e., [0.8873921, 0.4137484]
and [0.8702277, 0.4153301], respectively—see Figure 9e for all trajectories. The same
observations were made at the O-A vectors for ρ of 0% and 0.1% at layer 1—see
Table 2.

(a) Exp-6 (b) Exp-7 (c) Exp-8

(d) Exp-9 (e) Exp-10

Figure 9. The trajectories of activation observed at input layer 0 while carrying out one thousand iterations of the GBP
algorithm. The red circle is the starting point of trajectory, and the black circle is the activation value after the thousandth
iteration. The graphs also depict the trajectories observed at input layer 0 with six regulation factors ρ (0%, 0.1%, 0.2%, 0.3%,
0.4%, and 0.5%). Each graph visualizes the recalled activation for five multiple-cue recall (MCR) experiments.

Table 2. Observations of activations at abstract concept layer 1 for MCR experiments.

Regulation Experiment E-A at Layer 1 O-A at Layer 1

% ———— C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 Exp-6 0.57 0.16 0.06 0.15 0.25 0.579 0.162 0.063 0.148 0.246
0.1 Exp-6 0.57 0.16 0.06 0.15 0.25 0.567 0.163 0.066 0.151 0.247
0.2 Exp-6 0.57 0.16 0.06 0.15 0.25 0.556 0.164 0.068 0.154 0.249
0.3 Exp-6 0.57 0.16 0.06 0.15 0.25 0.546 0.166 0.070 0.156 0.250
0.4 Exp-6 0.57 0.16 0.06 0.15 0.25 0.537 0.167 0.072 0.159 0.251
0.5 Exp-6 0.57 0.16 0.06 0.15 0.25 0.529 0.168 0.074 0.161 0.252

0 Exp-7 0.07 0.04 0.23 0.46 0.05 0.072 0.039 0.233 0.465 0.051
0.1 Exp-7 0.07 0.04 0.23 0.46 0.05 0.086 0.048 0.235 0.482 0.061
0.2 Exp-7 0.07 0.04 0.23 0.46 0.05 0.093 0.052 0.235 0.486 0.067
0.3 Exp-7 0.07 0.04 0.23 0.46 0.05 0.099 0.055 0.236 0.487 0.071
0.4 Exp-7 0.07 0.04 0.23 0.46 0.05 0.103 0.058 0.236 0.487 0.074
0.5 Exp-7 0.07 0.04 0.23 0.46 0.05 0.107 0.061 0.236 0.485 0.077

0 Exp-8 0.09 0.50 0.22 0.05 0.42 0.091 0.502 0.218 0.051 0.414
0.1 Exp-8 0.09 0.50 0.22 0.05 0.42 0.099 0.497 0.221 0.056 0.424
0.2 Exp-8 0.09 0.50 0.22 0.05 0.42 0.105 0.492 0.223 0.061 0.430
0.3 Exp-8 0.09 0.50 0.22 0.05 0.42 0.110 0.486 0.224 0.064 0.434
0.4 Exp-8 0.09 0.50 0.22 0.05 0.42 0.114 0.481 0.225 0.067 0.437
0.5 Exp-8 0.09 0.50 0.22 0.05 0.42 0.117 0.476 0.226 0.070 0.439

0 Exp-9 0.09 0.40 0.28 0.07 0.35 0.090 0.401 0.280 0.070 0.350
0.1 Exp-9 0.09 0.40 0.28 0.07 0.35 0.096 0.397 0.281 0.076 0.355
0.2 Exp-9 0.09 0.40 0.28 0.07 0.35 0.101 0.394 0.282 0.080 0.358
0.3 Exp-9 0.09 0.40 0.28 0.07 0.35 0.105 0.391 0.282 0.084 0.360
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Table 2. Cont.

Regulation Experiment E-A at Layer 1 O-A at Layer 1

% ———— C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0.4 Exp-9 0.09 0.40 0.28 0.07 0.35 0.109 0.388 0.282 0.087 0.362
0.5 Exp-9 0.09 0.40 0.28 0.07 0.35 0.112 0.385 0.281 0.090 0.363

0 Exp-10 0.07 0.09 0.44 0.26 0.10 0.068 0.093 0.440 0.263 0.099
0.1 Exp-10 0.07 0.09 0.44 0.26 0.10 0.073 0.098 0.437 0.264 0.105
0.2 Exp-10 0.07 0.09 0.44 0.26 0.10 0.076 0.103 0.434 0.264 0.110
0.3 Exp-10 0.07 0.09 0.44 0.26 0.10 0.079 0.106 0.431 0.264 0.114
0.4 Exp-10 0.07 0.09 0.44 0.26 0.10 0.082 0.109 0.428 0.265 0.117
0.5 Exp-10 0.07 0.09 0.44 0.26 0.10 0.084 0.112 0.425 0.265 0.120

E-A, expected activation, O-A, observed activation.

3.5.3. Discussion

The experiments in Sections 3.5.1 and 3.5.2 demonstrate a notable behavior of RAN
by simulating the cued recall operation through a Toy-data problem. The intra-Layer
learning (i.e., CSRL) is uniquely utilized by RAN modeling to interpret the association
among the concepts as inhibitory, excitatory, or neutral. Furthermore, the intra-layer reg-
ulation (Algorithm 1) uses intra-layer learning (CSRL) and its interpretations to produce
a regulatory effect over the activation of the concepts (at the same layer). The geometric
back-propagation operation (Algorithm 2) is a method analogous to remembering some-
thing learned in an abstract form and recalling its concrete features. For example, while
remembering the abstract concept “house”, we recall concrete features related to the house,
such as “mother”, “father”, “wife”, and “pets”.

In the graphs in Figures 8 and 9, we can see that all the trajectories commence from
a starting point (red dot) and converge to a point after one thousand iterations. Each
point in a trajectory represents a temporal mental state while recalling a concrete concept.
Every time a concrete concept (activation vector in layer 0) is recalled, its corresponding
abstract concept (at layer 1) is compared with the expected abstract concepts. The difference
between expected and observed activation is propagated back as the error to the previously
recalled activations at layer 0. In the next instance, the corrected recalled activation at layer
0 repeats the process until one thousand iterations are completed.

It was observed that without regulation, i.e., 0% ρ, the trajectory converges to a point
but with a minimal amount of regulation, and the result improves. For instance, in the
graphs in Figure 8, only one abstract concept was being recalled and the results improved
when the regulation was introduced. In the two experiments (SCR and MCR), we can see
that the two different sets of regulation factors are considered. These sets were obtained
empirically, but we can see that the set of the regulation factors for the SCR experiment has
a higher value. This is because the GBP algorithm strives to minimizes the error at each
abstract concept node at layer 1, and in the geometrical context, similarity cannot be the
same for more than one abstract concept. Thus, the trajectory converges to a point, but the
result improves when a minimal amount of regulation is induced. In the MCR experiment,
the best outcome is observed with little or no regulation because the expected similarity
(DoC and E-A) is a non-zero value. The other reason is that these are possible expected
similarity vectors, unlike those in the SCR experiments.

4. Cued Recall Demonstration with MNIST Data

The MNIST [70] dataset is a collection of handwritten images of digits (0, 1, 2, 3, 4, 5, 6,
7, 8 and 9), where each image is black and white in color and has a 28× 28 pixel size. This
dataset of image domains is used to demonstrate the Ccued recall operation of learned
abstract concepts representing different digits. Two types of investigations were conducted
with this dataset: first, multiple binary valued cue recall (MBVCR), where the E-A vector is
a binary value ([0, 1]) vector, and second, multiple-cue recall (MCR).

For this experiment, one thousand images were selected randomly from the MNIST
dataset. The 28× 28 image was transformed in a single vector of 784 attributes, where
each attribute corresponds to a pixel of the image. Additionally, the attribute values of the
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data were normalized between 0 and 1 using min–max normalization (black pixel is min,
i.e., 0, and white pixel is max, i.e., 255). Having preprocessed the data, the RAN modeling
procedure was instantiated by selecting the K-mean clustering algorithm as the concept
identifier. K was initialized with 30 to determine thirty categories in the input space. The
model was configured to grow one level deep and build convex abstract concept (CAC)
layer 1. After carrying out all four steps of RAN modeling (see Section 3.2), a model was
obtained—see Figure 10.

Figure 10. RAN model generated with MNIST dataset.

In Figure 10, layer 0 has 784 nodes representing each pixel; CAC layer 1 has 30 nodes rep-
resenting the thirty categories identified during the CCI process in RAN modeling. The inter-
layer weights (ILWs) are the cluster centers (CRDPs) of the thirty clusters. Figure 11 shows
the ILWs reconstructed in image form of 28× 28 pixels. In RAN modeling, a CRDP is the
optimum representative of an input level category at CAC layer 1. Therefore, Figure 11a–ad
are the best represented by CAC node N1, ..., N30, respectively. In Figure 11 it is noticeable
that each digit is represented by at least two CAC node of layer 1. The digit 9 is represented
by the largest number of nodes, i.e., N2, N15, N18, and N24. In contrast, digit 4 is represented
by two nodes, N1 and N10. Figure 11d,m,u,x show that the CAC nodes N4, N13, N21, and
N24 do not represent an individual digit. Node N4 and N13 jointly represent digits 3 and 8;
node N21 looks like two digits, 3 and 5; and N24 depicts digits 7 and 9.

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i) 9 (j) 10 (k) 11

(l) 12 (m) 13 (n) 14 (o) 15 (p) 16 (q) 17 (r) 18 (s) 19 (t) 20 (u) 21

(v) 22 (w) 23 (x) 24 (y) 25 (z) 26 (aa) 27 (ab) 28 (ac) 29 (ad) 30

Figure 11. The thirty CRDPs (cluster centers). Each node in layer 1 of Figure 10 acts as the abstract
representative of each CRDP.

For simplicity, Figure 10 shows only inter-layer learning; intra-Layer learning (CSRL
weights) was also performed on both the input layer 0 and CAC layer 1. The CSRL weights
at input layer 0 were a 784× 784 matrix, and at CAC layer 1, a 30× 30 matrix was learned.
These two intra-layer learning procedures were utilized by the GBP algorithm to simulate
the recall operations. In all of the experiments, the GBP algorithm was configured to iterate
five hundred times. The GBP algorithm was initialized with a vector with activation 1 for
all 784 nodes of input layer 0. The image at Iter-0 (see Tables 3 and 4) is white because
activation 1 corresponds to pixel value of 255 depicting white color.
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Table 3. Intuitive multiple binary valued cue recall (MBVCR) observations with RAN model of
MNIST data.

Digit æ Iter⇒ 0 3 5 8 11 19 25 35 41 71 81 91 101 151 201 251 301 351 401 451 501

0 0%

0 0.009%

1 0%

1 0.009%

2 0%

2 0.009%

3 0%

3 0.009%

4 0%

4 0.009%

5 0%

5 0.009%

6 0%

6 0.009%

7 0%

7 0.009%

8 0%

8 0.009%

9 0%

9 0.009%

Table 4. Observations of multiple-cue recall operation with RAN model of MNIST data.

Digit æ Iter⇒ 0 3 5 8 11 19 25 35 41 71 81 91 101 151 201 251 301 351 401 451 501

0 0%

0 0.009%

1 0%

1 0.009%

2 0%

2 0.009%

3 0%

3 0.009%

4 0%

4 0.009%

5 0%

5 0.009%

6 0%

6 0.009%

7 0%

7 0.009%

8 0%

8 0.009%

9 0%

9 0.009%

In each experiment, the two cued recall demonstrations, MBVCR and MCR, use the
expected activating (E-A) vector as listed in Table 5. The experiments of single digits and
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combined digits for the MBVCR operation used an E-A vector of binary values, where
binary 1 at a node N was assigned w.r.t the digit(s) being recalled. For instance, the
E-A vector of digit 2 was formed by initializing the E-A vector with binary 1 for nodes
N16, N22, and N29 and binary 0 for the remaining 27 CAC nodes (see Table 5). The E-A
vectors of MCR experiments are the actual activation values obtained by propagating the
inter-layer weights upwards (CRDPs, see Figure 11) as input. The weights represented by
Figure 11a–c,e,f,i,l–n,p were provided as input to the CCUAP operation to observe their
respective activation at CAC layer 1. These observed activation vectors were used as E-A
for each digit recall operation (see last ten MCR E-As in Table 5).

Table 5. Expected activation injected at thirty convex abstract concept (CAC) nodes in layer 1 of RAN model for MNIST data.

Digit Exp Expected Activation (E-A)

0 MBVCR [ 0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ]
1 MBVCR [ 0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
2 MBVCR [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0 ]
3 MBVCR [ 0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0 ]
4 MBVCR [ 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
5 MBVCR [ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0 ]
6 MBVCR [ 0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0 ]
7 MBVCR [ 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ]
8 MBVCR [ 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ]
9 MBVCR [ 0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0 ]
2 and 5 MBVCR [ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,1,0 ]
3 and 5 MBVCR [ 0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,0 ]
0 and 1 MBVCR [ 0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0 ]
0 MCR [ 0.26,0.25,0.22,0.30,0.27,1.00,0.23,0.30,0.28,0.30,0.35,0.26,0.32,0.26,0.25,0.28,0.22,0.23,0.23,0.25,0.33,0.28,0.25,0.29,0.28,0.39,0.28,0.31,0.27,0.30 ]
1 MCR [ 0.29,0.37,1.00,0.35,0.43,0.22,0.49,0.33,0.34,0.32,0.26,0.31,0.31,0.28,0.34,0.39,0.38,0.35,0.34,0.39,0.31,0.35,0.43,0.31,0.42,0.27,0.36,0.24,0.31,0.33 ]
2 MCR [ 0.28,0.35,0.39,0.38,0.40,0.28,0.38,0.36,0.33,0.31,0.26,0.29,0.36,0.35,0.29,1.00,0.34,0.31,0.37,0.34,0.36,0.43,0.34,0.29,0.47,0.32,0.37,0.33,0.37,0.34 ]
3 MCR [ 0.31,0.38,0.31,0.46,0.35,0.32,0.32,0.31,0.35,0.33,0.26,0.32,1.00,0.33,0.31,0.36,0.31,0.33,0.31,0.30,0.40,0.34,0.33,0.35,0.38,0.34,0.46,0.35,0.27,0.37 ]
4 MCR [ 1.00,0.46,0.29,0.32,0.38,0.26,0.30,0.38,0.37,0.44,0.31,0.42,0.31,0.39,0.44,0.28,0.31,0.48,0.36,0.37,0.29,0.34,0.37,0.42,0.34,0.34,0.34,0.31,0.32,0.40 ]
5 MCR [ 0.37,0.42,0.34,0.44,0.47,0.28,0.36,0.41,1.00,0.29,0.39,0.36,0.35,0.34,0.37,0.33,0.36,0.42,0.43,0.40,0.42,0.33,0.38,0.35,0.43,0.37,0.45,0.29,0.33,0.41 ]
6 MCR [ 0.39,0.40,0.28,0.38,0.33,0.26,0.31,0.45,0.34,0.38,0.28,0.31,0.33,1.00,0.34,0.35,0.32,0.36,0.42,0.32,0.32,0.40,0.33,0.35,0.35,0.36,0.34,0.42,0.33,0.33 ]
7 MCR [ 0.42,0.45,0.31,0.34,0.35,0.26,0.34,0.32,0.36,0.34,0.28,1.00,0.32,0.31,0.41,0.29,0.35,0.47,0.33,0.35,0.29,0.32,0.43,0.47,0.38,0.30,0.34,0.25,0.28,0.34 ]
8 MCR [ 0.38,0.41,0.43,0.39,1.00,0.27,0.40,0.38,0.47,0.32,0.33,0.35,0.35,0.33,0.40,0.40,0.37,0.44,0.42,0.44,0.38,0.39,0.45,0.32,0.44,0.34,0.44,0.29,0.39,0.48 ]
9 MCR [ 0.46,1.00,0.37,0.40,0.41,0.25,0.39,0.38,0.42,0.38,0.29,0.45,0.38,0.40,0.40,0.35,0.39,0.51,0.40,0.39,0.32,0.40,0.43,0.44,0.43,0.32,0.44,0.32,0.30,0.40 ]

4.1. Multiple Binary Valued Cue Recall (MBVCR) Operation

For the MBVCR operation, the RAN model generated with MNIST data (see Figure 10)
was used in order to obtain the recalled activation at input layer 0 for a given expected
activation vector at CAC layer 1. As described earlier, the E-A vector for MBVCR is a vector
of binary values, which is provided as input to the GBP algorithm to perform the recall
operation. The experiments themselves are divided into two categories, i.e., intuitive and
non-intuitive recall.

4.1.1. Intuitive MBVCR Experiment

In this experiment, by intuition, we hypothesize that if all CAC nodes (representing
a digit) are activated with value 1, then its recall at layer 0 must depict that digit. For
example, if the CAC nodes N6, N11, and N26 (see Figure 11) are activated with a value of 1
(and 0 for others), then we should obtain an image depicting a blend of zero digits after the
recall operation. We performed this intuitive recall experiment for all ten digits. The binary
E-A vector of all ten digits for the intuitive MBVCR operation is listed in Table 5. Table 3
displays the recalled images of all twenty experiments. For every digit, two investigations
were made; the first without regulation, i.e., ρ = 0; the second with a regulation of 0.009%.

The first observation is that there is a very insignificant difference between the images
recalled with and without regulation. After the second iteration, the digit being recalled
begins to appear. Beyond the 80th iteration, no significant change is observed in the recalled
images. The recalled images of digits 0, 1, 2, 3, 7, and 8 are recognizable after the 500th
iteration. However, the digits 4, 5, and 9 are not very discernible in their last iteration; this
is because these digits are cross-represented by CAC nodes (see Figure 11). All the images
recalled in this experiment contain noise (i.e., the gray shades), because the E-A vector has
two values, either 0 or 1, and a node can be 100% similar to only one other node. Therefore,
the GBP algorithm adjusts the activation at the CAC node such that the best representation
of the E-A is achieved.
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4.1.2. Non-Intuitive MBVCR Experiment

In these experiments, the E-A vector contains an activation value of 1 for CAC nodes
representing two different digits. The objective of the experiment was to determine what is
recalled at the input layer 0 when the CAC nodes, representing two different digits, expect
high activation. The three E-As used in this experiment are a combination of activation
2s-with-5s, 3s-with-5s, and 0s-with-1s (see Table 5 for E-A vectors with the coupled digits).
The observations without regulation and with regulation are similar—see Table 6. The
blend of the 2s-with-5s recalls an image that looks like the letter x. The fusion of 3s-with-5s

recalls an image similar to the digit 3. The combination of 0s-with-1s in the beginning
looked like the symbol Φ, but this was distorted later. It is also observed that the images
obtained after all the iterations had less noise when compared to the those of the intuitive
MBVCR experiments. This is probably because a number of CAC nodes were expecting
activation, i.e., more cues were provided.

Table 6. Non-intuitive MBVCR observations with RAN model of MNIST data.

Digit æ Iter⇒ 0 3 5 8 11 19 25 35 41 71 81 91 101 151 201 251 301 351 401 451 501

2 and 5 0%

2 and 5 0.009%

3 and 5 0%

3 and 5 0.009%

0 and 1 0%

0 and 1 0.009%

4.2. Multiple-Cue Recall (MCR) Experiment

This experiment is the same as the experiment discussed in Section 3.5.2. The E-A
vectors are the activation values observed at CAC nodes by propagating the inter-layer
weights using the CCUAP operation of RAN modeling.

Figure 11 shows the images re-constructed for each inter-layer weight. The E-As
corresponding to Figure 11a–c,e,f,i,l–n,p are listed in Table 5 and are used in MCR demon-
strations of this section.

The objective of this experiment was the same as that of MBVCR experiments, i.e., ob-
taining an activation vector at input layer 0 that corresponds to an E-A vector. However, in
this experiment, an expected recall (E-R) was already known. Therefore, the E-As of ten dig-
its (see MCR E-As in Table 5) were expected to recall the images in Figure 11a–c,e,f,i,l–n,p.

In this experiment, the observations with and without regulation are identical. It is
also worth noting that after the 500th iteration, the recalled images of all ten digits were
similar to the E-R images of each digits.

4.3. Discussion

There are a few things worth mentioning in the recall demonstrations of RAN mod-
eling with the MNIST dataset. First, we can reconstruct cognizable images of a digit by
activating the CAC nodes representing that digit. Second, it is possible to recall both an
intuitive and non-intuitive blend of learned abstract concepts (in these experiments, the
abstract concepts are a generic representations of digits). Third, the recalled activations,
with and without regulation, are similar for a complex dataset like MNIST. Last, the more
cues we provide in the E-A vector, the more accurate the recall operation becomes. The
recall capability of RAN modeling was applied to the reconsctruction of an encoded image,
where the image was encoded using RAN convex concept modeling and reconstruction
was performend via the geometric back-propagation (or recall) operation [71].

5. Conclusions

Recall is a cognitive process that can also be seen as an act of remembering a concept.
Concepts are normally perceived in a hierarchical form, where the concrete concepts occupy
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the lower level, and the abstract concepts take up the relatively higher level in the hierarchy.
According to context availability theory, the context among the concrete concepts is easily
determined when compared to abstract concepts; hence, their comprehension and recall
are also difficult. However, if we can relate abstract concepts to one another, it is possible
to deduce a contextual relationship among them. In this article, we exploited the intra-
layer associations learned among the concepts (including abstract concepts) using RAN
modeling to establish context among the concepts. We use this context-related information
to induce a regulatory effect on the concepts and further to simulate the recall operations.

To demonstrate the effect of regulation of the recall process, a Toy-data problem
was considered. First, we modeled with Toy-data to identify five abstract concepts. The
proposed regulation algorithm utilized the learned intra-layer weight to determine the
excitatory, neutral, and inhibitory impact induced by peer nodes on one another. Two types
of cued recall experiments were performed using the unique geometric back-propagation
algorithm: first, single-cue recall (SCR), simulation where the recall was simulated by
activating only one abstract concept; second, multiple-cue recall (MCR) operation to
retrieve the activation vector at the input level by injecting multiple cues at the abstract
nodes. In SCR experiments, the regulation induced by peer nodes improved the recalled
values. However, the observations with MCR operations were promising because they
retrieved identical activation, as expected.

The benchmark MNIST dataset was used to exhibit cued recall as blends of learned
abstract concepts. A two-layered model was generated with RAN to obtain thirty abstract
concepts generically representing digits. In the multiple binary valued cue recall (MBVCR)
experiment, multiple abstract nodes were injected with high activation to recall as blends
of digits. Interestingly, it was observed in all the experiments that the blend of abstract
nodes recalled an image of the digit that they represent at the abstract Level. The blend
of different digits also produced some intriguing outcome; for exmaple, a blend of 2 and
5 recalled x, and a blend of 0 with 1 looked like a Φ symbol. The MCR operations were
interesting as upon injecting the multiple cues, the recalled image was very similar to the
expected recalled image.

Both the experiments displayed how oncepts can be contextually associated and
impact each other’s activation through regulation. Furthermore, with cue recall operations,
it can be concluded that the more cues injected to an abstract concept, the better the
obtained recall results. For future work, we intend to perform conceptual combination
experiments and study the aspects of creative concept retrievals with the geometric back-
propagation algorithm.
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Abbreviations
The following abbreviations and Notations that are used in this manuscript:

Abbreviations Description
CAC Convex Abstract Concept
CACC Convex Abstract Concept Creation
CACUAP Convex Abstract Concept Upward Activation Propagation
CCI Convex Concept Identification
CCILL Convex Concept Inter-Layer Learning
CCILW Convex Concepts Inter-Layer Weights
CI Concept Identifier
CRPD Cluster Representative Data Points
CSRL Concept Similarity Relation Learning
CSRW Concept Similarity Relation Weights
E-A Expected Activation
GBP Geometric Back Propagation
IL Intra-Layer
ILWs Inter-Layer Weights
MBVCR Multiple Binary Valued Cue Recall
MCR Multiple Cue Recall
RAN Regulated Activation Network
SCR Single Cue Recall
Notations Description
W Convex Concept Inter-layer weight matrix
w Similarity Relation weight matrix
C Cluster center or Centroids
A Output Activation
a Input Activation
i, k, j Variables to represent node index for 0th, 1st and 2nd layer respectively
m, n Arbitrary node indexes for any layer
I Ith instance of input data
f (x) Transfer function to obtain similarity relation
t Variable used to depict intermediate index
na Size of input Vector at Layer-0
nA Size of Convex Abstract Concept vector at Layer-1
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