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Abstract: Field monitoring of methane emissions from landfills is of great importance for both
environmental concern and economic benefit. This study presents a highly effective method to
measure methane emissions from landfills based on tunable diode laser absorption spectroscopy
(TDLAS). Methane concentration is obtained by analyzing the absorption spectrum of the laser after
passing through the landfill gas. The relationship between methane concentration and the optical
signal was calibrated in the laboratory. As the methane concentration increased from 400 ppm to
5000 ppm, the absorption spectrum amplitude increased linearly from 0.0005 to 0.0046. In situ testing
of methane emissions at a large-scale landfill in China demonstrated the accuracy of the TDLAS
method. The methane concentrations in the well-covered areas were generally below 100 ppm. In
the working area or the coverage area with holes, the methane concentration was about 700 ppm.
The methane concentration was up to 1900 ppm, where the gas collection pipe is disconnected. Due
to to the accuracy and simplicity, the TDLAS method is suitable to detect methane emissions on a
large-scale from landfills.

Keywords: methane emissions; landfill gas; laser absorption spectroscopy; cover system; field monitoring

1. Introduction

The world generates 2.01 billion tons of municipal solid waste (MSW) annually with
a per capita rate of 0.74 kg/day [1]. By 2030 and 2050, the world is expected to generate
2.59 billion and 3.40 tons of MSW annually, respectively. Around the world, almost
40 percent of MSW is disposed of in landfills. Landfilled MSW contains large amounts
of organic matter, which will biodegrade in anaerobic and aerobic conditions to produce
large amounts of landfill gas (LFG) [2–5]. The main components of LFG are methane
(volume ratio of 55–60%) and carbon dioxide (volume ratio of 40–45%) [6–9]. The annual
production of LFG in China is about 13.2 billion m3 [10]. Landfill is ranked as the third-
largest resource of anthropogenic methane emissions. It has been reported that the annual
methane emission from landfills accounted for 22% of the total anthropogenic methane
emissions during 2000–2009 [11]. Landfill methane is not only a greenhouse gas, but it also
could be reused as a clean fuel for power generation [12,13].
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To reduce methane emissions, the surface of landfills is generally covered with a final
cover system (i.e., soil layers) or a temporary cover system (i.e., geomembrane). When
the landfill is covered well, the gas collection efficiency, which is defined as the ratio
of the collected amount of gas to the amount generated, can reach 90% [14]. However,
methane emissions from many landfills remain high due to a number of factors, including
improper cover structure, holes in geomembrane, uncovered working area, etc. [15,16].
Field monitoring of methane emissions from landfills is of great importance for both
environmental concern and economic benefit. The static chamber method (SCM) is most
widely used to monitor methane emission flux in landfills due to its simple approach and
low-cost [17–19]. The principle of SCM is to seal a known volume chamber above a gas-
emitting surface such that the emitted gas cannot escape and its accumulated concentration
in the chamber can be tested. Haro et al. [20] measured the methane and carbon dioxide
surface emissions from a landfill in Burkina Faso using the static chamber method. The flux
rate of methane was in a range of 657–1210 mg/m2/h at the fully covered area, which was
higher than the tolerable value. Bian et al. [21] investigated the methane emission fluxes
from two landfills with different surface cover conditions in China by SCM. The influence
of vegetation and climatic conditions on methane emission was discussed. Zhan et al. [22]
developed a static chamber method to measure the emissions of CH4 and CO2 from landfill
covers constructed with loess and gravel. The in situ testing results were consistent with
those of the laboratory calibration.

Although the static chamber method is proved to be feasible in methane emission
monitoring, there are still some disadvantages. For the whole landfill site monitoring, a
large number of points are needed to quantify the representative flux of the whole site [23].
In this case, the chamber method is time and labor-intensive [24]. Meanwhile, the sampling
chamber closure may create some overpressures, which can lead to overestimation of
methane concentration. To overcome the disadvantages of SCM, optical sensing techniques
based on infrared absorption spectroscopy are recently developed [25]. Shen et al. [26]
adopted a portable laser measurement detector (LMD) to monitor the methane concen-
tration at a large-scale landfill in China. The average methane concentration above the
temporary cover (geomembrane) was higher than that observed on the final cover (loess
layer). LMD measured the methane concentration of landfill gas in a range of 1 m.

In this study, a device for measuring methane concentration is designed based on
tunable diode laser absorption spectroscopy (TDLAS). Compared with SCM and LMD,
the TDLAS method has higher test efficiency. It can measure the methane concentration
of landfill gas within a range of 10 m and a time less than 25 s. After assembling the
apparatus, the relationship between methane concentration and the optical signal was
calibrated in the laboratory-based on Beer–Lambert law. After this, the in situ testing of
methane emissions was performed at a large-scale landfill in China to demonstrate the
accuracy of the TDLAS method.

2. Methodology
2.1. Principle of TDLAS

TDLAS is one of the most common techniques to analyze the properties and con-
stituents of gases, such as concentration, temperature, pressure, and flow velocity [27]. TD-
LAS measures the wavelength-dependent absorption of light through a gas
medium. Figure 1 shows the principle of TDLAS. The technique usually employs a
tunable-wavelength diode laser as the light source. The wavelength of the diode laser
emission is scanned over the absorption peak of the target gas; then, the photodiode is
used to detect the light signal absorbed by the target gas to get the absorption spectrum.
The gas concentration can be obtained by analyzing the absorption spectrum of the laser
after passing through the gas. The laser is eye-safe.
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Figure 1. Schematic diagram of tunable diode laser absorption spectroscopy (TDLAS).

Beer–Lambert law is used to describe the attenuation of laser intensity after passing
through the gas:

I(v) = I0(v) exp[−α(v)l] = I0(v) exp[−σ(v)Nl] (1)

where v is the photon frequency (Hz); I(v) is the light intensity after passing through the
gas (candela, cd); I0(v) is the light intensity before passing through the gas (cd); α(v) is
the absorption coefficient (m−1); σ(v) is the attenuation cross-section of a gas molecule
(m2/molecule); N is the number density of gas molecular (molecule/m3); L is the effective
absorption path (m).

The attenuation cross-section in Equation (1) consists of absorption cross-section and
scattering cross-section:

σ(v) = σabs(v) + σsca(v) (2)

where σabs(v) is the absorption cross-section of a gas molecule (m2/molecule); σsca(v) is the
scattering cross-section of a gas molecule (m2/molecule).

During the testing of methane emissions, pure gas is generally detected. There is no
scattering effect caused by solid particles, and thus the scattering cross-section is ignored.

Gas absorption cross-section can be further expressed as:

σabs(v) = S(T)ϕ(v) (3)

where S(T) represents the absorption line strength of a gas molecule (m/molecule); ϕ(v)
represents the normalized linear function (m).

The absorption line strength of gas molecules depends on the population number of
the low-state molecules and their transition probability. The population number of the
low-energy molecules follows the Boltzmann distribution. The absorption line strength
S(T) at a certain temperature T can be expressed as:

S(T) = S(T0)
Q(T0)

Q(T)
exp

[
−hcE

KB

(
1
T
− 1

T0

)] 1 − exp
(

hcv0
KBT

)
1 − exp

(
hcv0
KBT0

) (4)

where T0 is a given temperature (K); S(T0) is the absorption line strength under the given
temperature T0 (m/molecule); Q(T) is the overall partition function of gas molecules; Q(T0)
is the overall partition function under the given temperature T0; h is the Planck constant
(J·s); c is the light speed (m/s); E is the energy of the low-state molecules (J); KB is the
Boltzmann constant (J/K); v0 is the line center frequency of molecular transition (Hz).

The absorption spectrum of gas is generated by the transition between energy levels
of gas molecules after absorbing photon energy. Since the energy level has a certain width,
the resulting absorption spectrum also has a width. When the pressure is equal or greater
than the standard atmospheric pressure, the collision broadening is much greater than the
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Doppler broadening in the absorption spectrum. In this study, the gas concentration is
measured under the standard atmospheric pressure. Thus, the Doppler broadening can
be ignored in the absorption spectrum, and the width of the absorption spectrum can be
described using the normalized linear function, which is expressed as:

ϕ(v) =
∆vL/2π

(v − v0)
2 + (∆vL/2)2 (5)

where ∆vL is the collision broadening (Hz), which represents the difference between two
frequencies corresponding to half of the maximum intensity of a spectral curve.

After S(T) and ϕ(v) are determined, the gas concentration is obtained as follows:

C =
ln I0(v)− ln I(v)

S(T)ϕ(v)l
· 22.4 (6)

where C is the gas concentration (ppm).

2.2. Testing Apparatus

Figure 2 shows the framework of the gas concentration testing system based on TDLAS.
The system mainly consists of the laser transmitting unit, the operation control unit, and
the signal receiving unit. First of all, the system program is used to input a triangular wave
signal into the laser driver. The wavelength of the diode laser emission is scanned over the
absorption peak of the target gas. According to the background temperature, the current,
the drift coefficient of wavelength change with current, and the transmission coefficient of
voltage change with current, the output wavelength range of the laser can be calculated.
The output wavelength range should cover the absorption wavelength of the target gas. On
this basis, a sinusoidal signal is added to modulate the wavelength signal. The tail fiber of a
diode laser emits a laser, which passes through a collimator. The direct light passes through
the target gas and scatters over a block at a certain distance. Then the scattered signal
is input into the photoelectric detector with a lens. The signal captured by the detector
is transmitted to the lock-in amplifier. Finally, the processed signal is transmitted to the
LabVIEW program through the data acquisition card so as to realize the demodulation of
the signal and the calculation of the gas concentration. The distance between the collimator
and the block was 10 m, which meant 10 m long gas samples were measured.
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Figure 2. The framework of the gas concentration testing system.

Figure 3 shows the structure and photographs of the self-designed testing appara-
tus. It mainly includes a laser emitter, photoelectric detector, focusing lens, collimator,
controller, data acquisition card and power. The choice of the laser emitter depends on
the absorption wavelength of the target gas (i.e., CH4 in this study). Based on the HI-
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TRAN database [28], the absorption spectrum of CH4 is least disturbed by other gases
(e.g., N2, CO2, NH3, H2S) in the wavelength ranges of 1640–1770 nm 1320–1410 nm, and
1150–1168 nm. Among the three wavelength ranges, the absorption of CH4 at the wave-
length range of 1640–1770 nm is greater than that of the other two wavelength ranges.
Referring to the common laser emitter types, the absorption wavelength of CH4 in this
experiment is chosen as 1653 nm. The DFB laser device (produced by Sichuan Tengguang
Technology Co. Ltd, Mianyang, Sichuan) is used with a central output wavelength of
1653 nm and a line width of 2 MHz. The mode-hop free tuning range of the diode laser was
over 50 GHz. The laser emitter is equipped with a TED200C temperature control device
and an LDC205C current drive device (both produced by Thorlabs Company, Newton,
NJ, USA). It has a limit operating current of 120 mA and an operating temperature range
of −20 ◦C–+70 ◦C. During the test, the signals with wavelengths of around 1653 nm are
detected, and the PDA50B-EC photoelectric detector (produced by Thorlabs Company)
is selected for this experiment. The detector is a germanium detector with an adjustable
gain (0–70 dB), and the appropriate detector gain is chosen according to the strength of the
signal. Using the focusing lens as the receiving unit of the system, the axes of the focusing
lens and the output beam of the laser are controlled at the same height to facilitate the
feedback of the optical signal to the photoelectric detector.
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3. Gas Concentration Calibration

Before the in situ testing, the relationship between methane concentration and the
optical signal was calibrated in the laboratory. The testing apparatus emitted a laser to
pass through a gas sample with a methane mass concentration of 500 parts per million
(ppm). Figure 4 shows the received signal amplitude. There was an obvious dent in data
points between 11,000 and 13,000. This was because that when the laser-scanned to CH4
absorption peak, part of the laser was absorbed by the CH4 molecular. It led to the detected
intensity being weaker than that without the absorption.
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Figure 4. Received signal amplitude after laser passing through the gas sample with methane
concentration of 500 ppm.

After the absorption data of CH4 gas was measured, the absorption spectrum could
be obtained through these data by two methods. One method was to measure a set of
background signals (i.e., the signals without CH4 gas) and then subtracted the measured
background signals from the absorption signals so as to obtain the absorption spectrum of
CH4. Another method was to directly use the non-absorbed part of the CH4 absorption
signal to fit the background signal and then subtract the fitted background signal to obtain
the absorption spectrum of CH4. The accuracy of the absorption spectrum obtained by the
first method was high, but it needed to collect a background signal for each measurement,
which was time-consuming. The second method was to directly use the algorithm to fit
the background signal, which was high-efficiency and suitable for practical application.
Therefore, the second method was adopted in this study to obtain the absorption spectrum.
The background signal was fitted using a linear function, and the results are shown in
Figure 4 (with correlation coefficient R2 = 0.98). According to the fitted curve, the accuracy
of the method is the CH4 concentration corresponding to the detected signal without
CH4 absorption.

The laser wavelength was determined according to the input current. The relationship
between the laser wavelength and current was calibrated in the laboratory, and the result
is shown in Figure 5. When the current increased from 40 mA to 80 mA under the
temperature of 16.2 ◦C, the laser wavelength increased from 1653.54 nm to 1654.22 nm. The
drift coefficient of wavelength with the current was 0.017 nm/mA. When the laser current
was constant at 60 mA, as the temperature increased from 14.8 ◦C to 17.7 ◦C, the laser
wavelength increased from 1653.68 nm to 1654 nm. The drift coefficient of wavelength
with temperature was 0.11 nm/◦C. For a given current and temperature, the wavelength
was determined based on the calibration relationship.
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Figure 6 shows the absorption spectrum of CH4 after subtracting the fitted background
signal. Thirteen CH4 samples were tested with mass concentrations ranged from 400 ppm
to 5000 ppm. The absorption spectrum amplitude (at a wavelength of 1653.7 nm) showed
an increasing trend with the increasing CH4 concentration. Under different CH4 concentra-
tions, the absorption spectrum in the non-absorbed part (i.e., wavelength < 1653.6 nm and
wavelength >1653.8 nm) was very close.
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The absorption spectrum amplitudes (which are the peak values of the absorption spec-
trum in Figure 6) of CH4 samples at 13 mass concentrations of 5000 ppm,
2590 ppm, 1890 ppm, 1380 ppm, 1040 ppm, 860 ppm, 780 ppm, 650 ppm, 580 ppm, 520 ppm,
470 ppm, 430 ppm and 400 ppm were obtained. Each group of data was collected 5 times,
and an average value was calculated. The standard deviation of the five data was less than
5 ppm. Figure 7 shows the variation of absorption spectrum amplitude with CH4 mass
concentration. As the CH4 mass concentration increased from 400 ppm to 5000 ppm, the
absorption spectrum amplitude increased linearly from 0.0005 to 0.0046. This relationship
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was fitted as y = 9.05 × 10−7x + 1.36 × 10−4 (R2 = 0.995), where y represents the absorption
spectrum amplitude and x represents the CH4 mass concentration. This equation was used
to determine the CH4 mass concentration during the in situ testing.
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Figure 8 shows the absorption spectrum of the gas sample with a methane concentra-
tion of 5000 ppm at a distance of 2 m. The signal amplitude and noise amplitudes were
0.0045 and 5.4 × 10–5, respectively. The signal-to-noise ratio (SNR) was calculated to be
83.33. The signal is taken as the detection limit of the apparatus when SNR = 1. Thus, the
detection limit at the distance of 2 m was 5000/83.33 = 60 ppm. For the testing distance of
10 m, the detection limit was 60 × 2/10 = 12 ppm.
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4. In Situ Testing at Xiaping Landfill
4.1. Site Description

The in situ testing of methane emissions was carried out at Xiaping landfill. Xiaping
landfill is located in Shenzhen City, southeastern China. It was designed and constructed
in the manner of modern sanitary landfills. It is a valley-type landfill, high in the west and
low in the east. The elevations of the west and east were +230 m and +140 m (coordinate
system of WGS 84/UTM zone 55 N). The elevations of the surrounding mountains are
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approximately in a range from +286 m to +314 m. As shown in Figure 9, this landfill
was divided into two parts. The first part covers an area of 23.4 ha and was put into
operation in 1997. It has a designed capacity of 14.93 million m3 and a service life of
12 years. The average mass of landfilled MSW was nearly 3000 tons per day. By the end
of May 2012, the first part was closed with a total landfilled MSW of 15 million tons. The
second part lies on the west of the first part, which covers an area of 55.8 ha. It has a design
capacity of 12 million m3 and a service life of 10 years. With the continuous increase of
MSW production in Shenzhen City, the daily amount of the landfilled MSW in the second
part was much larger than that of the first part. At present, the second part received
approximately 5700 tons of MSW per day. The accumulated landfilled MSW was about
5.67 million tons in the second part. The maximum thickness of the waste body waste was
about 60 m.
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Figure 9. Plan view of the Xiaping municipal solid waste (MSW) landfill.

The surface of the landfill was covered to avoid methane emissions and rainfall
infiltration. As the first part was closed, it was covered with soil. From bottom to top, the
final cover of the first part was composed of 0.7 m thick clayey soil, 0.5 mm thick linear
low-density polyethylene (LLDPE) geomembrane, 1.3 m thick clayey soil, and plants. The
surface of the second part was temporarily covered using a 1.5 mm thick high-density
polyethylene (HDPE) geomembrane. Below the temporary cover, the gas produced by
waste biodegradation was collected using pipes for power generation. The gas collection
volume was about 41,000 m3/h for the whole landfill. The gas collection efficiency, which is
defined as the ratio of the collected amount of gas to the amount generated, was calculated
to be approximately 90% for this landfill.

4.2. Results and Discussions

Figure 10 shows the field testing of methane concentration using TDLAS. By placing
six mirrors around a point, the methane concentration in six different directions can be
measured. The flat mirror was made of glass coated with Al film and had a diameter of
15 cm. The mirror was placed to be perpendicular to the emitted laser. The testing distance
was up to 10 m by this method. For a point, the measured methane concentration in six
different directions is shown in Figure 11. Within 40 seconds of the testing time, there were
some fluctuations in methane concentration due to the change of wind direction. However,
the percentage change of methane concentration within testing time was basically less than
20%, which indicated the stability of the test data. The average methane concentration in
six different directions was 56 ppm, 57 ppm, 59 ppm, 59 ppm, 46 ppm, and 40 ppm. The
close values in different directions show the accuracy of the testing method.
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Figure 11. Measured methane concentrations in six different directions: (a) direction 1, (b) direction
2, (c) direction 3, (d) direction 4, (e) direction 5, and (f) direction 6.

Figure 12 shows the methane concentration distribution above the surface of the
Xiaping landfill. There were about 170 measured points in total. All the tests were carried
out in one day. The measurements were conducted from 8 a.m. to 6 p.m. There was
no rain, and the wind speed was lower than 3 m/s during the testing. According to the
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data of the local environmental protection bureau, the background methane concentration
at 2 km away from the landfill was 3.7 ppm. The methane concentrations in most areas
were below 100 ppm. This showed that the air-tightness of the final cover and temporary
cover was good. However, the local methane concentrations were too high in three areas.
The methane concentration was 617 ppm in the working area (i.e., uncovered area). The
methane concentration was 701 ppm, where there were holes in the geomembrane. The
methane concentration was 1959 ppm, where the gas collection pipe is disconnected.
The testing results of methane concentration were consistent with the field observations.
The TDLAS method can be used to accurately detect the spatial distribution of methane
emissions in landfills.
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5. Conclusions

This study presents a method to measure methane concentration using tunable diode
laser absorption spectroscopy (TDLAS). Beer–Lambert law is adopted to analyze the
wavelength-dependent absorption behavior of light through a gas medium. Based on
TDLAS, the testing apparatus is designed and assembled for in situ testing.

The relationship between methane concentration and the optical signal was calibrated
in the laboratory. When the laser-scanned to CH4 absorption peak, part of the laser was
absorbed by the CH4 molecular, causing the detected light intensity to decrease. As the CH4
concentration increased from 400 ppm to 5000 ppm, the absorption spectrum amplitude
increased linearly from 0.0005 to 0.0046. This linear relationship was used to determine the
CH4 mass concentration during the in situ testing.

The in situ testing of methane emissions at the Xiaping landfill demonstrated the
accuracy of the TDLAS method. The methane concentrations in the well-covered areas
were generally below 100 ppm. In the working area or the coverage area with holes,
the methane concentration was about 700 ppm. The methane concentration was up to
1900 ppm, where the gas collection pipe is disconnected. Owing to the accuracy and
simplicity, the TDLAS method is suitable to detect methane emissions on a large-scale
from landfills.

Although the TDLAS method showed good performance in quick testing of methane
emission from landfills, this method also has some weaknesses. During the field test, the
laser signal is easily disturbed by aerosol scattering, humidity and other environmental
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factors, which will affect the testing accuracy. For example, the scattering phenomenon is
serious in foggy weather, and the accuracy of the long-distance measurement by TDLAS
will be significantly reduced. In bad weather, such as heavy fog, heavy rain and strong
wind, the static chamber method is less disturbed and has higher accuracy.
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