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Abstract: Aiming at the problems of “local minimum” and “unreachable target” existing in the tradi-
tional artificial potential field method in path planning, an improved artificial potential field method
was proposed after analyzing the fundamental causes of the above problems. The method solved
the problem of local minimum by modifying the direction and influence range of the gravitational
field, increasing the virtual target and evaluation function, and the problem of unreachable targets
is solved by increasing gravity. In view of the change of motion state of robot fish in amphibious
environments, the improved artificial potential field method was fused with a dynamic window
algorithm, and a dynamic window evaluation function of the optimal path was designed on the basis
of establishing the dynamic equations of land and underwater. Then, the simulation experiment
was designed under the environment of Matlab2019a. Firstly, the improved and traditional artificial
potential field methods were compared. The results showed that the improved artificial potential
field method could solve the above two problems well, shorten the operation time and path length,
and have high efficiency. Secondly, the influence of different motion modes on path planning is
verified, and the result also reflects that the amphibious robot can avoid obstacles flexibly and reach
the target point accurately according to its own motion ability. This paper provides a new way of
path planning for the amphibious robot.

Keywords: improved artificial potential field method; dynamic window method; kinetic analysis;
mobile robot

1. Introduction

Over the last few decades, mobile robots have been widely used in many circum-
stances, which improves the working efficiency and reduces the cost of work to a great
extent, and these advantages show their great developmental potential [1–3]. Amphibious
robotic fish in mobile robots are the object of this study. This is not only an underwater
robot with the efficient propulsion function of fish, but also an overland robot adapted to
complex terrestrial environments.

The tasks of a mobile robot can be divided into transport tasks and reconnaissance
tasks in general. No matter which kinds of works are completed, mobile robots all require
the capability of fulfilling their mission autonomously under the fast modern development
pace [4], and path planning as one of the crucial techniques ensures that the mobile robot
can achieve independence in its work without manual intervention [5].

Path planning requires considering the maneuverability of robots and environmental
constraints to find a trajectory from the initial point to the target point, and avoid all
obstacles [6]. In essence, it is a method to optimize a system with complex constraints.
In order to achieve this goal, many scholars have done a lot of research and put forward
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many feasible algorithms. These algorithms can be divided into global path planning
algorithms [7,8] and local path planning algorithms [9]. The grid algorithm [10], A* algo-
rithm and D* algorithm [11–13] belong to the former, and the ant colony algorithm [14,15],
artificial potential field method [16] and neural network method [17] belong to the latter.
Each algorithm has its corresponding advantages and disadvantages in different scenarios,
so it is necessary to apply the most appropriate algorithm in light of the actual conditions.

The purpose of this paper is to accomplish the reconnaissance task of amphibious
robot fish. From the environmental point of view, it belongs to the completely unknown
environment, and the obstacle avoidance problem in this kind of environment belongs to
the local path planning problem, which has wider application range and more practical
significance than global path planning. The reasons for choosing the artificial potential
field method as the local path planning algorithm are listed as follows: (1) it made many
achievements as a mature algorithm; (2) the algorithm is relatively simple and the planned
path is comparatively smooth, so robots can identify the whole path much more easily; (3) it
has a fast calculation speed, high efficiency, and is more suitable for practical application.
However, this method has some problems, such as local minimum and unreachable target
point [18]. Scholars have also proposed many solutions to solve these problems, such as the
improved algorithm combined with an ant colony algorithm or simulated annealing [19],
adding virtual obstacles [20] and modifying the force field potential function [21], etc.

In this paper, an improved method is proposed to solve the above two problems, and a
more appropriate hybrid algorithm for amphibious robots is generated by combining the
dynamic window method. The effectiveness of the proposed algorithm is validated through
experiments. The rest of the paper is organized as follows. Section 2 introduces the kinetic
analysis of the amphibious robot. We listed different dynamic equations and set parameters
according to different environments of robotic fish, so as to improve the ability of various
movements of robotic fish, so the content of the second chapter is to further examine to the
real motion and provide a theoretical basis. Section 3 briefly reviews the existing artificial
potential field method and the problem it faces. Section 4 provides a detailed description of
the improved algorithm. In short, on a macro level, the purpose of treating the amphibian
robot as a virtual mass point is to better show how the improved artificial potential field
method can plan the general direction of motion and avoid problems. At the micro level,
adding the environmental constraints and robot kinematics parameters (velocity, angular
velocity, etc.) is necessary to better fit the actual situation. Section 5 presents and discusses
the experimental results for the proposed method. Section 6 discusses the use of the two
algorithms. Section 7 concludes the paper.

2. Kinetic Analysis

It is worth noticing that the subject of this paper is the amphibious robot. The fin
surface is driven by the fin rays, as they move up and down in turn in both environments.
Its motion mode has its own characteristics in different environments. The propulsion
force is generated by waving the fin surface underwater, and on the land, it is generated
by the friction between the fin surface and the ground. The amplitude and frequency
of the oscillation need to be further adjusted according to the different environments.
The structure of the amphibious robot is generally divided into two parts: fish body and
fin surface. The fish body includes the control system, the transmission system and various
sensors on it, and the fin surface is regarded as the motion system.

2.1. Kinetic Analysis on the Land

The Newton–Euler equation is chosen to describe the dynamic equation, which can
express two motion modes of rotation and translation, respectively, and it obtains the initial
parameters that are taken as the input for algorithm. As mentioned above, the motion of the
amphibious robot is powered by the fin surface waving, and the undulation is controlled by
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the swing of the fin with certain phase differences. Therefore, the specific Newton equation
of kinetic analysis for the fin can be expressed as Equation (1).

mi
.
vi = Ti + Fa

i = Fi (1)

where i is the fin number,
.
vi is the acceleration of the center of mass of the ith fin, Ti is the

constraining force, Fa
i is the active force, and Fi is the external main force of the ith fin.

The expression of the Euler equation is denoted as follows:

IC·
.

ωi + ωi × IC·ωi = La
i + Lt

i = Mi (2)

where IC represents the inertia, ωi represents the angular velocity of the ith fin,
.

ωi repre-
sents the angular acceleration of the ith fin, La

i and Lt
i represent the main moment and the

counter main moment, respectively, and Mi is the external main moment of the ith fin.
When the amphibious robot is analyzed as a whole, the diagram of stress analysis can

be formulated, as shown in Figure 1. The friction is produced by the contact between the
fin surface and the ground, which creates the driving force to propel the amphibious robot
forward. Thus, the analysis mainly focuses on the contact point, where G is gravity, F is
the supporting force, and f . is the friction force. The summary formula can be expressed as
Equations (3) and (4).

F =
1
λ

[(
G + m

..
zg
)(

xg − x
)
−m

..
xgzg

]
(3)

f =− µsgn(v i)F (4)

where λ is the wavelength of the fin surface,
..

xg and
..

zg are the inertia force in the x axis and
the z axis, respectively, while xg and zg are the coordinates of the center of mass in the x
axis and z axis, respectively, x is the abscissa of the contact point, and µ is the coulomb
friction coefficient.
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From Equations (1)–(4), the velocity and acceleration of each fin and the amphibious
robot can be acquired. This provides the initial parameters and dynamical equation of the
amphibious robot on land for the algorithm.

2.2. Kinetic Analysis Underwater

Different from the motion mode on the land, the underwater motion mainly depends
on the water propulsion on both sides of the fin surface. Besides the rotation motion, a roll
motion should be taken into account as well. A 5–DOF motion model of the designed
amphibious robot is shown in Figure 2, which is expressed in a Cartesian coordinate system
without rotational motion around the z axis.
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In Figure 2, α, β and γ are the rotation angles corresponding to the x, y and z axes,
respectively. The expression of the kinetic equation is given as follows:

Ct= Ct0 +

t∫
t0

vt0dt (5)

θx
t = θx

t0 +

t∫
t0

ωx
t0dt (6)

θ
y
t = θ

y
t0 +

t∫
t0

ω
y
t0dt (7)

Vt = Vt0 +

t∫
t0

F
m

dt +
t∫

t0

M
IC

dt (8)

ωt = ωt0 +

t∫
t0

M
IC
× rdt (9)

where Ct is the centroid vector of the amphibious robot at time t, θx
t is the rotation an-

gle around the x axis at time t, Vt is the velocity, ωt is the angular velocity at time t,
M is the external moment, IC is the inertia, and r is the distance from any point to the
rotation centerline.

The basic motion parameters can be determined in combination with the designed
amphibious robot through the above analysis, and the specific parameters are shown in
Table 1.

Table 1. The amphibious robot motion parameters.

Name Symbol Underwater Land

Total mass m 10 kg 10 kg
Length of the fin surface l 75 cm 75 cm

Wavelength λ 20 cm 20 cm
Coulomb friction coefficient µ / 0.85

Velocity V 0.23 m/s 0.13 m/s
Angular velocity ω 0.31 rad/s 0.12 rad/s

Through the kinetic analysis of the motion modes in different environments, a more
vivid, clear and accurate motion description is obtained, which can theoretically explain
the basic principle of the motion propulsion mode of the amphibious robot. Meanwhile,
these parameters also provide the motion information of the amphibious robot for the
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algorithm, so that the simulation process can be closer to the practical case and also deliver
more convincing results.

3. Artificial Potential Field Method
3.1. Traditional Artificial Potential Field Method

The traditional artificial potential field method assumes that there is a virtual repulsion
field around the obstacles, and there is also a virtual attraction field around the target
point. The robot is affected by the attraction field to approach the target point, then avoids
the obstacles under the repulsion field, and finally reaches the target point without any
collisions.

The functions of the attraction field Uatt(q), repulsive field Urep(q) and resultant field
U(q) are denoted as follows:

U(q)= Uatt(q)+Urep(q) (10)

Uatt(q) =
1
2

katt (q − qg
)2 (11)

Urep(q) =

{
0, ρ(q) ≥ ρ0

1
2 krep

(
1

ρ(q) −
1
ρ0

)2
, ρ(q)< ρ0

(12)

ρ(q) = ||q− q0|| (13)

where katt and krep are the attraction coefficient and repulsive coefficient, respectively, q is
the current position of the robot, qo is the position of the obstacle, qg is the position of the
target point, and ρ0 is the influence distance of the obstacle. When the distance between
the obstacle and the robot is greater than ρ0, the robot cannot be affected.

By deriving the distance from the above Equations (10)–(12), we can get the attrac-
tive force Fatt(q), repulsion force Frep(q) and resultant force F(q). Their functions are
represented as follows:

F(q)= Fatt(q)+Frep(q) (14)

Fatt(q) = −5Uatt(q) = −katt(q − qg
)

(15)

Frep(q) =

{
0, ρ(q) ≥ ρ0

krep

(
1
ρ0
− 1

ρ(q) )(
q−qo
ρ3(q) ), ρ(q)< ρ0

(16)

3.2. Facing Problems

The traditional artificial potential field method mainly faces two problems; one is the
local minimum problem, the other is the goal unreachable problem.

The first problem is shown in Figure 3. In these two cases, the resultant force of the
robot at this position is 0. As the robot’s movement is in the direction of the resultant force,
the robot may stop moving so that it cannot arrive at the target point.

The second problem is shown in Figure 4. The goal is near the obstacle. While the
robot is approaching the goal, the repulsion force is greater than the attractive force because
the attractive force is directly proportional to the distance between the robot and the goal,
which makes the robot unable to reach the target point and move away from the goal.
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4. Improved Artificial Potential Field Method
4.1. Improved Attraction Field

A large number of scholars have improved and optimized the traditional artificial
potential field method from various aspects. Most of them paid attention to modifying the
potential field function, and there are some reasons for this, as follows: (1) the expression
of the potential field function is easy to modify; (2) the potential field is more in line with
actual physics, so it is easy to understand; (3) the modification of the potential field can
improve the efficiency of the algorithm in essence. Considering the following reasons,
this paper focuses on the improvement of the attraction potential field.

First of all, the core of the local minimum problem is that the values of the attraction
force and repulsion force are the same, and the directions are opposite, which can be
improved by modifying one of them. As shown in Figure 3a, it can be found that modifying
the value of the force field cannot solve this problem. No matter how the values of attraction
force and repulsion force are modified, it can only aggravate the instability of the robot’s
motion, inducing vibration. This paper chooses to modify the direction of the attraction
potential field to solve this problem. The general idea is as below: taking the goal as
the center, a quadrilateral is generated within a certain distance. When the value of the
resultant force is 0, the four corners of the created quadrilateral will be regarded as interim
goals for navigation, and choosing which one is the goal relies on the evaluation function.
After the robot reaches a position at a certain distance d0 from the goal, the four virtual
goals will be invalidated, so that the robot can reach the real goal. In addition, if the
target point cannot be reached, it means the goal is too close to the obstacles, so we could
increase the attraction force to make it reach the goal. According to the traditional attraction
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potential function, the attraction force is inversely proportion to the distance between the
robot and the goal. Therefore, we can assume the attraction force as a constant within
a certain range d0 from the goal. In order to avoid the situation where the value of the
resultant force is still 0 when the robot is near the goal, we can increase d0 to solve this
problem. The improved attraction potential field (Equation (17)) and schematic diagram
(Figure 5) are as follows:

Uatt(q) =


1
2 katt (q − qg

)2, U 6= 0 ρ(q) ≥ d0
1
2 katt (q − qgi

)2, U = 0 ρ(q) ≥ d0
1
2 kattd0

2, U 6= 0 ρ(q)< d0

(17)
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Equation (18) mainly compares the angle value θ between attraction force and re-
pulsion force. When the value of the resultant force is 0, the angle value is equal to 180◦.
As such, the greater the difference is between the real angle value and 180◦, the higher the
evaluation function value’s virtual goal can be; the robot is much more likely to move in
the direction of the virtual goal a with higher evaluation function value.

C(q)=|arccos

∣∣(q− q0)
(
q− qg

)∣∣∣∣∣q − q0g

∣∣∣∣∣q− qg
∣∣ − 180| (18)

4.2. Combing with Dynamic Window Method

The essence of the dynamic window method [22] is to sample the velocity space (v, ω)
of the robot according to its dynamic characteristics, and generate new velocity v and
angular velocity ω under the influence of various factors over time. The series of velocity
spaces (v, ω) are simulated and analyzed to obtain a variety of paths; then, the optimal
velocity space (v, ω) is obtained through the evaluation function. Finally, the whole optimal
path will be obtained by repeating the process above.

The motion equation of the amphibious robot can be summarized as follows:
xt= xt−∆t+v∆tcosα
yt= vyt−∆t+∆tcosβ
zt= zt−∆t+v∆tcosγ

θt= θt−∆t+ω∆t

(19)

where xt represents the displacement of the amphibious robot in the x axis at time t, yt and
zt similarly represent the displacement in the y axis and z axis, θt represents the motion
angle of the robot at time t, ∆t represents the time step, v and ω represent the velocity
and acceleration, respectively, and the specific values can be obtained from the above
kinetic function. α, β and γ represent the angle between velocity v and the x axis, y axis,
z axis, respectively.
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This algorithm needs to be constrained by the robot’s motion ability and environment,
which consists of three points: (1) the velocity constraint Vm, which is the velocity and
angular velocity within the range of the robot’s own motion ability; (2) the acceleration
constraint Va, which measures the influence of the acceleration range of the robot on the
speed; (3) the obstacle constraint Vd, which is to ensure that the robot will not collide with
the obstacle under the range of braking ability. The expressions are as follows:

Vm= {(v, ω)|v ∈ [vmin, vmax], ω ∈ [ωmin, ωmax]} (20)

Va= {(v, ω)|v ∈
[
vt −

.
vb∆t, vt +

.
va∆t

]
, ω ∈

[
ωt −

.
ωb∆t, ωt +

.
ωa∆t

]
(21)

Vd= {(v, ω)|v ≤
√

2dist(v, ω)
.

vb, ω ≤
√

2dist(v, ω)
.

ωb

}
(22)

where
.

va and
.

ωa represent the maximum acceleration of the robot at time t,
.

vb and
.

ωb rep-
resent the maximum deceleration, and dist(v, ω) represents the nearest distance between
the robot and the obstacle.

The evaluation function is given as Equation (23).

G(v, ω)= a ∗ heading(v, ω)+b ∗ dist(v, ω)+c ∗ velocity(v, ω) (23)

where heading(v, ω) is the angle between the velocity direction and the goal, velocity(v, ω)
is the value of the velocity, and a, b, c are the influence factors of angle, distance and
velocity, respectively.

This paper concentrates on the path planning in an amphibious environment. The tra-
jectory and motion state of the robot can be restored as much as possible by combining
with the artificial potential field method and the dynamic window method. The impact
on the whole trajectory can be observed more precisely when the motion state changes,
and this provides the data support for the further adjustment and optimization later on.

Figure 6 shows the flow-process diagram of the hybrid algorithm. Firstly, information
related to the environment, obstacles and the robot itself must be obtained. The former two
items of information are identified by sensors mounted on the robot, while the latter infor-
mation is obtained by its own parameters, kinematics and dynamics equations. Since this
paper mainly studies amphibious bionic robotic fish, it is necessary to determine whether
the environment of the robot is land or underwater. This can be identified by mounting
a pressure sensor on the top of the robot. Before the environment is confirmed, the robot
is in a static state. Then, the corresponding motion parameters are selected through the
controller based on the environment. After the above preparation work is completed, the
potential field function is established and the path planning for the unknown environment
is carried out; meanwhile, the constraint function also constrains the robot itself. In the
process of movement, whether the resultant force of the potential field is counteracted is
constantly judged. If it is counteracted, the virtual target is added, and the potential field
function is re-established. This process is repeated continuously until the resultant force
is not counteracted. On this basis, it is also necessary to constantly determine whether
the environment of the robot has changed, and if so, the motion parameters will be trans-
formed. Finally, when approaching the target point, it is necessary to determine whether
the distance between the robotic fish and the target point is less than the influence distance
of the target point. If it is within the influence range of the target point, it is necessary to
delete the virtual target point so as not to affect the accuracy when the virtual target point
is confirmed as the real target point.
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5. Simulation Analysis

It is necessary to carry out a simulation to verify the effectiveness of the proposed hy-
brid algorithm. In this paper, the CPU of the experimental computer is i7–9750h, the mem-
ory of the computer is 16GB, and the operating system is windows 10. The algorithm is
simulated and verified by the MATLAB 2019a.

5.1. Simulation of Improved Artificial Potential Field

In order to verify that the improved artificial potential field method can overcome the
problems of local minimum and goals being unreachable, the traditional artificial potential
field method and the improved artificial potential field method are compared and tested.
In the process of several simulations, they performed the same, and all could reach the
target point. However, in order to highlight the advantages of the improved algorithm,
we specifically find this special case and record the coordinate points to present it.

The specific parameters are shown in Table 2.

Table 2. The parameters of the improved potential field method.

Name Symbol Value

Attractive field factor katt 15
Repulsive field factor krep 5

Obstacle influence distance ρ0 1 m
Goal influence range d0 3 m

Maximum number of iterations n 200
Time step ∆t 0.1 s

Angle influence factor α 0.2
Velocity influence factor β 0.1
Distance influence factor γ 0.1
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The simulation experiment is conducted for the problem of goal unreachable. The pur-
pose is to verify whether the improved artificial potential field method can solve this
problem and whether the execution time and path length can perform better than the tradi-
tional artificial potential field method. The results are shown in Figures 7–9, as follows:
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It is very important to prove the conclusion with data. Table 3 is obtained by inte-
grating the data in Figures 7–9. The main parameters are execution time and path length,
due to these two data can well prove the performance of a path algorithm.
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Table 3. The comparison results between the improved and traditional algorithm.

Method Figure Execution time Path Length

traditional artificial
potential field method

7a 0.8230 s 14.1421 m
8a 0.7760 s 11.0143 m
9a 0.7990 s 17.8513 m

improved artificial
potential field method

7b 0.7910 s 14.1421 m
8b 0.6930 s 9.7637 m
9b 0.5430 s 8.9057 m

Although the goal can be reached and the path lengths of both methods are the same,
as shown in Figure 7, the improved algorithm is less time-consuming than the traditional
algorithm, which means that the improved algorithm is more efficient. The advantages
of the improved artificial potential field method can be obviously highlighted as given in
Figures 8 and 9, as the robot cannot reach the goal by choosing the traditional artificial
potential field method, and its execution time and path length are significantly longer than
the improved method. As such, the results confirm that the improved artificial potential
field method can solve the problem of goal unreachable, which reflects its effectiveness,
efficiency and reliability.

The purpose is to verify whether the improved artificial potential field method can
also solve this goal unreacheable problem, and whether the execution time and path length
can perform better than the traditional artificial potential field method. The results are
shown in Figures 10 and 11, as follows:
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The left side pictures represent the simulation results of traditional artificial potential
field method, and the right side is the improved artificial potential field method. In the
same environment, it can well show the excellent performance of the improved traditional
artificial potential field method, which not only solves the local minimum problem, but
also has shorter running path, and also proves the effectiveness of the improved algorithm.

It can be seen from Table 4 that the robot using the traditional artificial potential field
method halts and vibrates when halfway, since the value of the resultant force is equal to 0
in the case of the local minimum problem. The improved artificial potential field method
solves this problem well, which again verifies the superiority of the improved artificial
potential field method compared with the traditional artificial potential field method.

Table 4. The comparison results between the improved and traditional algorithm.

Method Figure Execution Time Path Length

traditional artificial
potential field method

10a 0.7830 s 2.6717 m
11a 0.7770 s 1.3853 m

improved artificial
potential field method

10b 0.8030 s 4.1231 m
11b 0.7940 s 4.4283 m

5.2. Simulation of the Hybrid Algorithm

In order to enhance the simulation performance of the path planning for an amphibi-
ous robot, it is very important to take into consideration the impact of different motion
modes on path planning. The dynamic window method is combined with the improved
potential field method for simulation, because its algorithm requires the dynamics and
kinematics equations of the robot as its own constraints, which is more in line with the
actual situation. Figures 12–15 are the simulation results as follows, the right side figures
show the curve which means the distance between the robot and the obstacle, and the left
side is the whole process of the robot running.

Here, the numbers from 1 to 10 represent the obstacles’ serial numbers. The horizon-
tal axis represents the number of iterations, and the vertical axis represents the distance
between the robotic fish and the obstacle. Every curve has this pattern: with an increase in
time, the robot approaches the obstacle and then moves away from it, and finally, the fluc-
tuation is caused by the constant correction of distance (essentially local minima problem).
In the end, the vibration can approach and flatten quickly, indicating that at this time,
it keeps a certain distance from the obstacle, and does not take a repeated road section.
In other words, it can continue to move towards the target point. Meanwhile, it can also
prove the correctness of the establishment of the artificial potential field equation. The bot-
tom horizontal blue line indicates the minimum boundary distance, and our simulation
is always within the safe range. In addition, the intersection of 10 lines with different
distances in the figure is precisely due to the change of the environment, which changes
the motion mode.
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We divide these into two groups. Figures 12 and 13 are group 1, and Figures 14 and
15 are group 2. Among all the environmental parameters and the parameters of robot
fish itself, the only difference lies in the transformation time of the dynamic equation.
This is because, according to the improved equation, only this parameter is easy to control.
Figures 12 and 14 show that there is no time step for the transformation progress; however,
Figures 13 and 15 show the results of the transformation motion mode with 20 times steps.
It can be seen that the robot can reach the goal in all cases, which proves that the hybrid
algorithm is effective. As shown in group 1, the transformation time has little impact
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on path planning; however, in the second group, which has a local minimum problem,
the transformation time has a significant impact on the efficiency and stability of the whole
path planning. We set the duration of the conversion so that the wavelength is shorter,
faster and more stable. Therefore, the hybrid algorithm increases the transformation time
as much as possible to ensure that it can be more efficient and effective.

6. Discussion

The artificial potential field method is widely used in local path planning because of
its simple and real-time performance. Many scholars have studied the improved algorithm
to further improve its performance. It is usually used as follows: through the improvement
of the gravitational field model to avoid the problem of encountering obstacles, when the
distance is too far and the gravitational force is too large; on the basis of the original
repulsion field and considering the influence of the relative position and velocity between
the target and the robot, a new repulsion function is introduced to reduce the strength
of the repulsion potential field of the obstacle near the target, and solve the problem
that the obstacle near the target leads to an unreachable target. By adding a random
perturbation, the robot can jump out of the local optimal value, similar to the local optimal
value solution of the gradient descent method, or react in advance by introducing the
method of predicted distance.

Dynamic path planning in a complex environment is required for the environmental
adaptability of amphibian robotic fish. This paper combines the advantages of the two
methods: on the premise of exploring in the unknown environment and reaching the
target, at the same time, the robot itself is constrained to ensure that the path planned
according to the robot’s own conditions can be achieved by the algorithm. This fusion
algorithm can restore the motion track and motion state of the robot as much as possible,
and the result is more convincing. Meanwhile, it can more accurately observe the influence
degree of the change of motion state on the whole motion track, which is convenient for
targeted improvement.

7. Conclusions

In this paper, an improved path planning algorithm for an amphibious robot is pro-
posed, which overcomes the shortcomings of the existing algorithm. The simulation
experiment in this paper can be divided into two parts: one is to verify that the improved
artificial potential field method has a greater ability to solve the target unreachable and local
minimum problems than the traditional artificial potential field method. Secondly, the fea-
sibility of the fusion algorithm is verified, and the performance of the fusion algorithm
is improved by adjusting the conversion time. The simulation is suitable for describing
the path planning of amphibious robot. The results verify the efficiency, instantaneity, and
reliability of the hybrid algorithm. This provides a new approach to path planning for this
kind of amphibious robot with a variable motion pattern.
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