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Abstract: Numerical simulations reveal that a single-stage differential boost AC module supplied
from a PV module under an Maximum Power Point Tracking (MPPT) control at the input DC port
and with current synchronization at the AC grid port might exhibit bifurcation phenomena under
some weather conditions leading to subharmonic oscillation at the fast-switching scale. This paper
will use discrete-time approach to characterize such behavior and to identify the onset of fast-scale
instability. Slope compensation is used in the inner current loop to improve the stability of the system.
The compensation slope values needed to guarantee stability for the full range of operating duty
cycle and leading to an optimal deadbeat response are determined. The validity of the followed
procedures is finally validated by a numerical simulations performed on a detailed circuit-level
switched model of the AC module.

Keywords: DC-AC inverters; fast-scale instability; slope compensation; three-loop current mode
control; AC module; boost inverter; microinverter

1. Introduction

The demand for small-scale renewable energy systems is increasingly growing [1–4].
DC-AC inverters are essential elements for these systems [4]. They are used for efficient
energy conversion either to supply local AC loads or to inject part of the electrical power
into the AC grid [3].

In conventional PV systems, the PV arrays are formed using multiple series-connected
PV modules to attain high enough DC voltage at the PV side. The resulting arrays are
then arranged in parallel according to the needed power to be generated [4]. With this
approach the partial shadowing of some of the PV modules in the arrays causes the
operating point of shaded modules to be different from the rest of modules and therefore
the total generated power is significantly decreased [2,4]. Furthermore, a high irradiance
mismatch between PV sources may lead to damaging over-voltages in the modules [2,4]. To
mitigate this problem, the AC module approach (known in the literature as micro inverter
approach) has been proposed [3,4]. With this approach, a small DC-AC inverter is used
for each individual PV module. PV systems based on AC module approach has many
advantages over central and string inverter systems and it is foreseen to be the future trend
of PV system architectures. These advantages include small size, good quality of supplied
electrical power, high conversion efficiency, good reliability, robust stability, simple and
flexible installation options and enhanced safety.

There exist mainly two kinds of architectures for integrating AC modules into a power
generation system. The first one uses a single-stage inverter with a step-up transformer [3].
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The unique stage is in charge for regulating the DC PV voltage, performing Maximum
Power Point Tracking (MPPT) and carrying out DC-AC conversion. The second one is
based on a double-stage approach where the first stage is a front-end DC-DC converter
used to sufficiently stepping-up the DC voltage at the PV side while performing MPPT and
the second stage is a DC-AC inverter used in to generate AC voltage [3,4]. Both topologies
suffer from decreased efficiency and increased size.

Single-stage transformer-less DC-AC boost inverters have recently received a consid-
erable attention from many researchers, see [3] and references therein. These structures
apart from performing DC-AC conversion they also step-up the voltage being therefore
excellent candidates for microinverter applications. The price of single-stage inverter
topologies is also low, and their size is reduced because of using small reactive components.
Furthermore, their efficiency is better [5].

The differential boost inverter has been introduced in [6] and since then many studies
have dealt with its control design [6–10]. In most of the studies, inverters with a constant
input voltage and an ohmic resistance as a load have been considered and their control
design has been accordingly tackled. In [7,10,11], a grid-connected boost inverter has been
considered and its control design has been addressed.

Like many other practical engineering systems whose dynamics are governed by
switching among different circuit topologies, power conversion systems can be classified
into to the category of nonlinear piecewise smooth systems [12]. The main research works
on the nonlinear dynamics of this kind of systems have hitherto dealt with the behavior
of simple DC-DC converters with linear and mostly resistive loads [13–18] due to the
relative simplicity of their models. The nonlinear modeling of pulse width modulated
DC-DC converters is relatively simple in the sense that their behavior is governed by
a single constant switching frequency. In contrast, the dynamics of AC-DC rectifiers
and DC-AC inverters are governed by two vastly distant frequencies: the switching
high frequency fs and the grid low frequency fg [19–25]. Their nonlinear modeling is
therefore mathematically more involved. However, if the ratio m = fs/ fg, known as
the modulation ratio, is enough high which is the case in many applications, quasi-static
approximation can be used. Specifically, when the system dynamics at the switching scale are
sufficiently fast, then the quasi-static approximation leads to enough accurate expressions
for predicting fast-scale instability in AC-DC rectifiers [25] and in DC-AC inverters [26].
This approximation is a commonly used technique for analyzing DC-AC inverters [26,27]
and AC-DC rectifiers [25,27].

This kind of systems is also featured with multi-time scale operation and their dynam-
ical behavior has received and still receiving a great attention from researchers all over the
world. The fast-scale operation in DC-AC inverters is usually averaged and the switching
details have been conventionally overlooked. Although some past works dealing with
nonlinear dynamical behavior of DC-AC inverters exist, the PV-fed grid-tied DC-AC boost
inverter for AC module applications has not been studied from the perspective of nonlinear
dynamics and its slope compensation has not been addressed. Fast-scale instability in such
AC modules can cause the power generation system to be subject to faults or unfavorable
conditions and the system reliability may be degraded which can negatively impacts the
system performance. This is because fast-scale instability could increase the ripples of the
electrical variables which results in higher overall losses and current stress on the switching
devices. The power quality can also be compromised by this fast-scale instability since it
can increase the Total Harmonic Distortion (THD). That being the case, accurate modeling
of the dynamical behavior of the modules and their fast-scale stability analysis are needed.
To have a reliable functioning, the instability must be avoided for the full range of system
parameter values. For that, the right compensating must be used.

In general, it can be claimed that the methods of analysis and modeling applied
to power electronics systems are based, to a large extent, on the averaging approach.
DC-DC converters have been also studied by using accurate discrete-time approaches.
However, to date little has been done to study the qualitative dynamical aspects of DC-AC
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inverters based on accurate modeling and analysis approaches. The aim of this study is to
faithfully determine the outbreak of fast-scale instability in a grid-tied differential boost
AC module by combining numerical and analytical procedures and to obtain the required
compensation ramp signal slope ensuring stability of the module for the full range of the
operating duty cycle.

The rest of this paper is structured as follows. In Section 2, the PV-fed DC-AC grid-
tied AC module under a three-loop differential Current Mode Control (CMC) is briefly
described. In Section 3, the dynamics of the AC module is explored disclosing that its
behavior depends on parameters of different nature but all affecting the operating quasi-
static operating duty cycle. In particular, the AC module is shown to manifest fast-scale
instability over specific intervals within the grid period causing bubbling phenomenon in
some of the state variables waveforms. Thereafter, in Section 4, approximate analysis and
prediction of fast-scale instability is preformed obtaining the required compensating slope
for achieving stability for all operating duty cycle values and for an optimum fast-scale
deadbeat response of the AC module using an adaptive compensation scheme. Finally, in
Section 5 the concluding remarks of this study are outlined.

2. Differential Boost AC Module Under Three-Loop Control

The system studied in this paper is a grid-tied differential boost inverter supplied by
a PV generator for AC module applications. The circuit schematic diagram of its power
stage and the block diagram of its controller are shown in Figure 1. The system is under a
differential CMC strategy to decide the state of its four switches. Specifically, its strategy is
based on three control loops: a first loop which oversees regulating the DC PV voltage to
the value provided by the MPPT controller, a second loop synchronizes the grid current to
the grid voltage and a third differential peak CMC loop for limiting the peak value of the
difference between its inductor currents. Specifically, a comparator is used to compare the
signal Rs(i1 − i2) + vr with the signal Rsiref, where vr is an artificial ramp signal with slope
mr = VM/T, VM being its amplitude and T its period. The output of the comparator is
connected to the RESET pin of a flip-flop and a periodic clock signal is connected to its SET

input. The Q and Q outputs of the flip-flop are the driving pulses for the switches Q1–Q4
as shown in Figure 1. A type-III controller was demonstrated to be effective for controlling
the grid current in the system [10]. Its transfer function in the Laplace s—domain can be
expressed as follows [28]:

Hc(s) = κpc
ωz

s
(s/ωz + 1)2

(s/ωp + 1)2 . (1)

where κpc is a suitable proportional gain of the controller, ωz is its double zero and ωp is its
double pole. The placement of the poles and zeros can be performed according to the rules
explained in [28]. The signal Rsiref for the current difference Rs(i1 − i2) is the output of the
type-III controller which is responsible for making the grid current ig to track its reference
Rsgigref. For active power control, this reference signal is made proportional to the grid
voltage vg = Vg

√
2 sin(ωgt), ωg = 2π fg. This is achieved by means of a Phase-Locked

Loop (PLL) which generates a sinusoidal signal sin(ωgt) in phase with the grid voltage.
The signal obtained by multiplying the output of the PLL and the output of the PV voltage
controller gives the time varying reference Rsgigref that can be expressed as follows

Rsgigref = Rsg Igref sin(ωgt) (2)

The PV voltage vdc is regulated by a simple PI controller that aims to make it equal
on average to the reference voltage Vmpp. This reference voltage is decided by an MPPT
controller. To reduce the harmonic content in the feedback loop, a low-pass filter is also
placed after the PV voltage sensor. Therefore, the controller processes the error voltage
v f − Vmpp, where v f is the filtered PV voltage. The cut-off frequency ωc of the filter is
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selected at the grid frequency wg. The resulting s—domain vdc-to-Rsg Igref transfer function
can be accordingly written in the following form

Hv(s) =
κpv

τs
(1 + τs)

(1 + s/ωc)
. (3)

where κpv is a suitable proportional gain of the controller and τ is its time constant. There-
fore, the amplitude Rs Igref of the grid current reference signal Rsgigref can be expressed
as follows

Rs Igref = κpv(v f −Vmpp +
vi2
τ
) (4)

where the variable vi2 =
∫
(v f − Vmpp)dt is the integral of the error signal v f − Vmpp.

Therefore (2) becomes as follows

Rsgigref = κpv(v f −Vmpp +
vi2
τ
) sin(ωgt) (5)

The MPPT inputs are the PV current ipv and the PV voltage vdc. From these inputs the
PV power ppv is obtained and sampled at a constant frequency rate fmppt = 1/Tmppt.
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Figure 1. Single-stage grid-tied PV-fed differential boost AC module.

3. Nonlinear Behavior and Fast-Scale Instability in the Differential Boost Inverter

For the purpose of gaining insight on appropriate ways of obtaining an accurate
mathematical model that can be used for accurately performing stability analysis, the
system dynamical behavior is explored here by using numerical simulations performed on
the switched model of the inverter implemented in PSIM© software [29]. The simulations
have been performed using the parameter values for the inverter power stage shown in
Table 1 and the values of the control parameters shown in Table 2. The PV source used
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consists of a string of four series-attached modules. The parameter values of one module
are specified in [30] and outlined in Table 3.

The focus here is on fast-scale system stability as affected by time varying sinusoidal
voltage reference under different weather conditions. For that, only steady-state operation
of the closed-loop system will be shown. A fixed value of temperature (Θ = 25 ◦C) was
used while changing the irradiance. The output of the PV-fed differential boost AC module
is tied to a 230 V AC, 50 Hz grid voltage performing active power control as described
previously. The MPPT is performed using a conventional Perturb and Observe (P&O)
algorithm providing the voltage reference Vmpp for the average value of the DC PV voltage
vdc. The MPPT controller uses a sampling period Tmppt = 0.2 s equal to 10 times the PV
voltage loop settling time which was designed to be equal to one grid cycle (ts = 0.02 ms).
The perturbation amplitude applied to Vmpp is ∆Vmpp = 5 V. The irradiance S was varied
between two different levels representing a sunny and a cloudy day. The time-domain
response was obtained, and only steady-state behavior is represented. All the variables
are sampled at the switching frequency rate to have a clear picture of the system steady-
state behavior. Sampling the state variables helps in clearly illustrating the bubbling
phenomenon.

Table 1. Parameter values for the power stage circuit.

Parameter Value

L1 = L2 = L and Lg 100 µH and 5 mH

C1 = C2 = C 22 µF

Cdc 2 mF

fs 50 kHz

fg 50 Hz

Vg 230
√

2 V

Table 2. Parameter values of the controllers.

Parameter Value

Rs and Rsg 0.1 Ω and 1 Ω

τ 0.0247 s

κpv 0.2

ωc/(2π) 50 Hz

ωz/(2π) and ωp/(2π) 500 Hz and 50 kHz

κpc 2

Table 3. The used parameter values for one single module.

Parameter Value

Number of series-connected cells in a module 72

Open-circuit voltage Voc 46.5 V

Short-circuit current Isc 9.60 A

Maximum power voltage Vmpp 38.4 V

Maximum power current Impp 9.13 A
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3.1. Test 1: S = 1000 W/m2 and Θ = 25 ◦C

Figure 2 shows the waveforms of the extracted power ppv from the PV source and the
maximum available power Pmax in the PV generator, the PV voltage vdc and its reference
Vmpp provided by the MPPT controller for irradiance level S =1000 W/m2 (Pmax ≈ 1.4 kW).
It can be noticed that the reference signal Vmpp dictated by the MPPT algorithm oscillates
among three levels according to the values of the MPPT sampling period Tmppt = 0.2 s
and the perturbation amplitude ∆Vmpp = 5 V. Notice also that the average of the PV
voltage is regulated to the MPP voltage Vmpp with the specified settling time and that the
extracted power is equal to the maximum available one. The inductor currents i1 and
i2 and the capacitor voltages vo1 and vo2 for the same irradiance value are depicted in
Figure 3. Notice how the voltages vo1 and vo2 are out of phase and their difference vo1− vo2
is the grid voltage vg. Notice also how with irradiance level S =1000 W/m2, the sampled
state variables evolve as expected and the system is free from any kind of instability and
undesired nonlinear behavior.

1 1.2 1.4 1.6 1.8 2 2.2
1200

1400

1600

1 1.2 1.4 1.6 1.8 2 2.2

Time (s)

120

140
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Figure 2. Time-domain waveforms of the sampled extracted power ppv for S = 1000 W/m2 in
steady-state operation. VM = 3.2 V.
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Figure 3. The sampled inductor currents i1(nT) and i2(nT) and capacitor voltages vo1(nT) and
vo2(nT) for S = 1000 W/m2 in steady-state operation. VM = 3.2 V.

Figure 4 shows the grid voltage vg and the injected grid current ig. The plot shows that
these grid variables are in phase and their THD is low. In particular, for S = 1000 W/m2

(Pmax ≈ 1.4 kW), the THD of ig is about 1% as calculated by PSIM© software.

2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

-400

-200

0

200

400

Figure 4. Time-domain waveforms of the sampled grid voltage vg and sampled grid current ig for
S = 1000 W/m2 in steady-state operation. VM = 3.2 V.
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3.2. Test 2: S = 200 W/m2 and Θ = 25 ◦C

The previous simulation was repeated for a lower value of irradiance representing a
cloudy day or during the startup of the system in the early morning.

Figure 5 shows the waveforms of the extracted power ppv, the maximum available
power Pmax and the PV voltage vdc and its reference Vmpp provided by the MPPT controller
for S =200 W/m2 (Pmax ≈ 250 W). As before, the reference signal Vmpp oscillates among
three levels. The average of the PV voltage is regulated to the MPP voltage Vmpp and the
extracted power from the PV source is also close to the maximum available power.

However, by examining the waveforms of the sampled inductor currents (Figure 6),
fast-scale instability can be clearly observed. This instability is barely noticed in the
capacitor voltages vo1 and vo2 for the used values of parameters as can be observed in
the top panel of Figure 6. Notice how the dynamic behavior of the closed-loop system is
similar to the previous case at the slow scale. However, the fast-scale dynamics is unstable.
Indeed, bubbling of the sampled waveforms take place during specific intervals within
the grid cycle. This bubbling phenomenon is manifested as period doubling bifurcation
first and then as a period halving as time increases within a grid cycle. The process repeats
each cycle.
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Figure 5. Time-domain waveforms of the sampled extracted power ppv for S = 200 W/m2 in
steady-state operation. VM = 3.2 V.
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Figure 6. The sampled inductor currents i1(nT) and i2(nT) and capacitor voltages vo1(nT) and
vo2(nT) for S = 200 W/m2 in steady-state operation. VM = 3.2 V.

Figure 7 shows the grid voltage vg and the injected grid current ig for S = 200 W/m2

(Pmax ≈ 250 W). One can observe that vg and ig are still in phase as before. However, for
this value of irradiance, the THD value of the grid current ig is larger (about 2%) and it
could be even higher if other parameters are changed such that the bubbling phenomenon
occupies larger intervals within the grid cycle.
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Figure 7. Time-domain waveforms of the grid voltage vg and grid current ig for S = 200 W/m2 in
steady-state operation. VM = 3.2 V.

4. Approximate Prediction of Fast-Scale Instability and Adaptive Slope Compensation

The model of a DC-AC boost inverter including its control loop is high-dimensional
which makes its accurate stability analysis a real challenge at both the fast and the slow
scales. Although the exact full-order switched model or the associated discrete-time
model [31,32] can be used to numerically predict and explain any king of instability that
could take place in the system, it is more useful to have a simple and design-oriented
expression clearly putting in evidence the impact of all the relevant system parameters
affecting the stability of the system [33]. If fast-scale instability is of concern, the conven-
tional averaged model will fail to predict this behavior because its validity is limited to
frequency ranges much below the switching frequency since the switching effects are
naturally eliminated by the averaging process. Fast-scale instability is a high frequency
behavior requiring a model that takes into account the switching action and its related
sampling effects [34]. The accuracy of the averaged model can be improved by taking
into account these sampling effect. In this way, the fast-scale instability can be predicted
using the frequency response of the system loop gain. However, as stated before, it is more
useful to have explicit mathematical expressions that predict this behavior to appropriately
select the system parameter values guaranteeing a stable behavior. A simple reduced-order
discrete-time model will be enough to approximately but accurately predict the onset of
this phenomenon [27]. Specifically, fast-scale instability is dominated by the fast inner
current loop and its parameters although the slow outer loop parameters could appear,
under some realistic conditions, in a negligible correcting term. Therefore, a reduced-order
model taking into account only the main variables used in the fast current loop can be
used to predict fast-scale instability and to obtain a simple design-oriented expression for
selecting the right slope ensuring stability for all operating range of the duty cycle. This
model will be presented below and then used to perform stability analysis at the fast scale.

4.1. Reduced-Order Discrete-Time Model for Predicting the Fast-Scale Instability in the
DC-AC Inverter

For the DC-AC boost inverter considered in this study, the current loop is established
by the signal σ(t) = Rs(i1(t) − i2(t)). A reduced-order discrete-time model that takes
into account only this signal can be therefore used to mathematically predict the stability
boundary. Therefore, let the discrete-time variable σn = σ(nT) = Rs(i1(nT)− i2(nT)). The
approach followed here for analyzing the dynamics at the fast scale of the AC module is
based on decoupling the different system loops into three subsystems. Indeed, since the
switching frequency is much higher than the grid frequency (m := fs/ fg = 1000), the quasi-
static approximation can be used to model the fast current loop dynamics and stability
criteria can be obtained. Since the focus in this paper is on the fast-scale instability, the
slower loops are considered stable and well described by their averaged models. Moreover,
steady-state average quantities of the variables involved in these slow loops are used in the
description of the fast dynamics of the variable σ. The fast current loop dynamics is solved
in discrete time to catch the high frequency dynamics in this loop which is dominant in
inducing the previously observed phenomena.

Under the quasi-static conditions, the behavior of the system is considered to repeat
for all grid periods. Notice that this was the case with the simulations presented in the
previous section. Therefore, the study of the fast-scale dynamics is performed within one
single grid period. Let us write θ = ωgt, θ ∈ (0, 2π). Therefore, the grid voltage can be
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written in terms of the phase angle as vg(θ) =
√

2Vg sin(θ). Thanks to the quasi-static
approximation, the time dependence of the inverter model at the slow scale is eliminated
and the dynamics at the fast scale is parametrized by the phase angle θ which is treated as
a slowly varying parameter.

Under the quasi-static approximation, and neglecting the switching dynamics of
the slow loop, the switched model of the inverter considering the signal σ the only state
variable of the system can be expressed as follows

dσ

dt
=

Rs

L
((vo1(θ)− vo2(θ))u− vo1(θ)) (6)

where u ∈ {0, 1} is the binary switched signal representing the states of the switches Q1–Q4.
The illustrative waveforms of the signals σ and Rsiref(θ)− vr are depicted in Figure 8. From
this figure and by integrating (6) within a switching cycle, the discrete-time dynamics
corresponding to the variable σ can be described by the following recurrence equation

σn+1 = σn + m1(θ)dnT + m0(θ)(1− dn)T with 0 ≤ dn ≤ 1. (7)

where dn is the duty cycle within the switching cycle (nT, (n + 1)T) for a phase angle
θ ∈ (0, 2π). According to (6), the phase-dependent raising slope m1(θ) (u = 1) and the
falling slope m0(θ) (u = 0) of the signal σ are given by

m1(θ) = Rs
vo2(θ)

L
(8)

m0(θ) = −Rs
vo1(θ)

L
(9)

where vo1(θ) and vo2(θ) can be expressed as follows [10,35]

vo1(θ) =
Vmpp

1− D(θ)
(10)

vo2(θ) =
Vmpp

D(θ)
(11)

D(θ) is the time varying quasi-steady-state duty cycle that can be expressed as follows [10,35]:

D(θ) =
1
2
− Vmpp

vg(θ)
+ sign(vg(θ))

1
2

√√√√1 +
4V2

mpp

v2
g(θ)

(12)

It is worth noting that D(0−) = D(0+) = 1/2 and therefore D(θ) is a continuous
function of the phase angle θ. The quasi-steady-state duty cycle D(θ) is plotted in Figure 9
together with the duty cycle obtained from numerical simulations corresponding to the
results presented in Figures 2–4 for S = 1000 W/m2 and in Figures 5–7 for S = 200 W/m2

respectively. Notice that the plots corresponding to the numerical simulations and the
one obtained from the theoretical expression (12) cannot be distinguished from each other
when the system operates in the expected behavior without fast-scale instability. Notice
also that when the system exhibits instability, bubbling phenomenon mentioned previously
also occurs in the waveforms of the quasi-steady-state duty cycle.
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nT (n+ 1)T (n+ 2)T (n+ 3)T (n+ 4)T

σn σn+1
σn+2 σn+3 σn+4

Rsiref(θ)

m1
m0

−ma

σ(t)

dn 1− dn

σ((n+ dn)T )
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Figure 8. The feedback signal σ and the control signal Rsref(θ)− vr.
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Figure 9. The time varying duty cycle calculated from (12) (D(t)) and obtained from numerical
simulation (d(nT), n ∈ N) for S = 1000 W/m2 and S = 200 W/m2.

According to the switching decision corresponding to the control block diagram
represented in Figure 1, the expression of the duty cycle dn can be obtained by solving the
following equation

Rs(i1(dnT)− i2(dnT)) + vr(dnT)− Rsiref(θ) = 0 (13)

By taking into account that σ = Rs(i1 − i2), (13) becomes as follows

σ((n + dn)T) = Rsiref(θ)− vr(dnT) (14)

Within the switching cycle (nT, (n + 1)T), n ∈ N, and taking into account that
σ((n + dn)T) = σn + m1dnT = and vr(dnT) = mrdnT (See Figure 8), (14) can be expressed
as follows

σn + m1dnT = Rsiref(θ)−mrdnT (15)

where, as stated previously, mr = VM/T is the slope of the ramp signal vr. The duty cycle
dn can be obtained by solving (15) while considering Rsiref(θ) constant within a switching
cycle. Solving for dn one gets

dn =
Rsiref(θ)− σn

(m1(θ) + mr)T
. (16)

The expressions (7) and (16) define the reduced-order model that can be used for
performing the stability analysis of the DC-AC inverter at the fast-switching scale. Below
this analysis will be performed and the stability criteria will be determined.
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4.2. Fast-Scale Stability Analysis

The stability analysis at the fast scale can be performed by linearizing (7) together
with (16) resulting in the following small-signal model

σ̂n+1 ≈ λ(θ)σ̂n (17)

where λ is the total derivative of σn+1 with respect to σn that can be expressed as follows

λ(θ) :=
dσn+1

dσn
=

∂σn+1

∂σn
+

∂σn+1

∂dn

∂dn

∂σn
=

Rsm0(θ) + mr

Rsm1(θ) + mr
(18)

The solution of (17) starting from an initial condition σ0 can be expressed as follows

σ̂n ≈ λn(θ)σ̂0 (19)

Based on the previous equation, the current loop stability at the fast scale can be
ensured if |λ(θ)| < 1 since in this case a small initial disturbance will vanish as n increases.
In quasi-steady-state operation one has that σn+1 ≈ σn, dn = D(θ) and according to (7)
one has m1D(θ) ≈ −m0(1− D(θ)). Consequently, the expression of λ(θ) in (18) becomes
as follows

λ(θ) =
Rsm0(θ) + mr

− Rsm0(θ)(1−D(θ))
D(θ)

+ mr
(20)

Expression (20) gives how the eigenvalue λ evolves when the phase angle varies in the
full range (0, 2π). However, for determining the boundary of the fast-scale instability, only
the behavior of λ(θ) within the half range (0, π) can be considered. Indeed, from Figure 9
it can be observed that the fast-scale instability emerges first within some switching cycles
during the first half cycle of the sinewave signal eventually in the neighborhood to the
quarter of the cycle where the signal D(θ) is maximum for θ ∈ (0, π) during which the
quasi-static duty cycle D ∈ (0.5, 1). Therefore, the analytical study that will be presented
below will be restricted to this range of phase angle θ. The eigenvalue λ(θ) is plotted
in Figure 10 in terms of the phase angle θ for different values of compensating signal
amplitude VM or equivalently its slope mr. It can be observed that the eigenvalue λ(θ)
has its minimum value at the phase angle π/2. If the minimum value of the eigenvalue is
larger than −1 the system will not exhibit fast-scale instability. This is the case for instance
for VM = 4 V and for VM = 5 V. On the other hand, for VM = 3 V fast-scale instability will
be exhibited for the phase angle θ ∈ (1.17, 1.96) rad because within this interval of θ one
has λ(θ) < −1. The limits of this interval are indicated by two dashed lines in Figure 10.

0 0.5 1 1.5 2 2.5 3

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 10. The eigenvalue λ(θ) as the phase angle is varied within (0, π) for different values of VM.
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At the boundary of fast-scale instability, one has λmin = −1. By imposing this
condition in (20), the following equation must hold

mr =
Rsm0(θ)

2
1− 2D(θ)

D(θ)
(21)

An upper bound of the left-hand side of (21) is −Rsm0(θ)/2 = Rsvo1(θ)/(2L) which
is obtained for D = 1 or equivalently for θ = π/2. Therefore, the slope mr = Rsvo1(θ)/(2L)
i.e., equal to one half the absolute value of the falling slope of the control signal σ will
guarantee stability within the full range of θ ∈ (0, 2π). Therefore, to avoid the fast-scale
instability for the full range of θ, an adaptive compensation scheme can be used where the
amplitude of the compensating signal vr is computed for each switching cycle according
to the sampled voltage vo1(nT), n ∈ N, the inductance value L and sensing resistance Rs.
Therefore, the cycle-by-cycle adapted slope mr(nT) and amplitude VM(nT), n ∈ N, of the
compensating ramp signal vr to guarantee a system free from fast-scale instability are

mr(nT) = Rs
vo1(nT)

2L
and VM(nT) = RsT

vo1(nT)
2L

(22)

The expression of the eigenvalue λ(θ) given in (20) is plotted in Figure 11 in terms of
the phase angle θ with an adaptive slope compensation as given in (22). It can be observed
that the eigenvalue λ(θ) fulfills the condition −1 < λ(θ) < 0 for all values of phase angle
θ ∈ (0, 2π) implying stability for all this range θ.

0 0.5 1 1.5 2 2.5 3

-1.2
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-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 11. The eigenvalue λ(θ) as the phase angle is varied within (0, π) with an adaptive compen-
sation scheme using mr = −Rsm0/2.

4.3. Adaptive Slope Compensation Circuit

To generate an adaptive slope and amplitude according to (22), a circuit with an
output signal vr with the following expression must be used

vr(t) =
κr

τr

∫ t mod T

0
vo1(nT)dζ (23)

The integral is reset to zero at the beginning of each switching cycle of time period T.
τr is the time constant of the resettable integrator and κr is a suitable gain to be selected in
such a way that κr/τr = Rs/(2L). Since the switching ripple of the voltage vo1 is negligible,
the instantaneous value vo1(t) of this voltage can be used in (23) instead of its sampled
value vo1(nT) without significantly altering the results. With this slight modification, the
new expression of the adaptive compensation signal becomes as follows

vr(t) =
κr

τr

∫ t mod T

0
vo1(ζ)dζ (24)



Appl. Sci. 2021, 11, 2106 13 of 16

The generation of the adaptive slope compensating signal can be performed by the
circuit depicted in Figure 12. Without loss of generality, the resistance Rr and the capaci-
tance Cr can be selected in such a way that RrCr = 2L/Rs and the resistances R1 and R2
can be selected in such a way that R1/R2 = κr.

Reset

Integrator

vo1

clk

T

vr
1
τrκr

clk

−
+

−
+

Cr

Rr

R2

R1

T

vo1

vr

Figure 12. The block diagram (top) and the equivalent schematic circuit representation (bottom) of
the adaptive compensating slope signal generator.

With the previous adaptive compensation scheme, a stable response for the system
will be obtained regardless of the weather conditions. Figure 13 shows the duty cycle signal
obtained from numerical simulations corresponding to the results presented in Figures 5–7
but with the compensating signal amplitude selected according to (24) using the circuit
diagram of Figure 12 with RrCr = 2L/Rs = 2 ms (Cr = 10 nF and Rr = 200 kΩ) and
R1 = R2 = 10 kΩ. For the sake of clarity only some switching cycles are represented in
Figure 13. Notice that the fast-scale instability is completely suppressed and that the slope
of the compensating signal is equal to one half the absolute value of the down slope of the
signal σ for all the switching periods within the grid cycle hence guaranteeing stability for
all values of the duty cycle D and phase angle θ.

2.1 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.2

0

0.5

1

2.1995 2.19955 2.1996 2.19965 2.1997 2.19975 2.1998 2.19985 2.1999 2.19995 2.2

Time (s)

-2

0

2

4

Figure 13. The time varying duty cycle calculated from (12) (D(t)) obtained from numerical simula-
tion (d(nT), n ∈ N) for guaranteeing stability within the complete duty cycle range.

It is worth noting that for the parameter values considered in this study, the maximum
value reached by the duty cycle is Dmax ≈ 0.72 for S = 200 W/m2. Therefore, the previous
expression of the ramp signal can be multiplied by Dmax and fast-scale instability will still
be avoided.

Another choice of the slope of the compensating signal is by making it equal to the
absolute value of the down slope of the signal σ, i.e., mr = Rsvo1(θ)/L. This choice of the
slope mr of the compensating signal vr not only guaranties fast-scale stability for all values
of the duty cycle but also gives rise to a fastest or deadbeat response at the switching time
scale [27]. The slope and amplitude guaranteeing this response are given by the following
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expressions Another choice of the slope of the compensating signal is by making it equal
to the absolute value of the down slope of the sensed signal σ, i.e., mr = Rsvo1(θ)/L. This
choice of the slope mr of the compensating signal vr not only guaranties stability for all
values of the duty cycle but gives rise to a fastest or deadbeat response at the switching time
scale [27]. The slope mr(nT) and amplitude VM(nT) guaranteeing this response are given
by the following expressions

mr(nT) = Rs
vo1(nT)

L
and VM(nT) = RsT

vo1(nT)
L

, (25)

Figure 14 shows the waveforms of the quasi-steady-state duty cycle with the same
parameter values used in Figure 13 but with the compensating signal slope and amplitude
selected according to (25). From this figure, it can be observed that only the fast-scale
instability is suppressed but the slope of the compensating signal is equal to the absolute
value of the down slope of the sensed current σ hence guaranteeing a deadbeat response at
the fast-scale within the full grid cycle. It is worth noting that the same circuit diagram
of Figure 12 was used for obtaining the results depicted in Figure 14 but by selecting
RrCr = L/Rs = 1 ms (Cr = 10 nF and Rr = 100 kΩ). With the previous adaptive
compensation scheme, a deadbeat response for the system at the switching scale is obtained
regardless of the weather conditions.

2.1 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.2

0

0.5

1

2.1995 2.19955 2.1996 2.19965 2.1997 2.19975 2.1998 2.19985 2.1999 2.19995 2.2

Time (s)

-2

0

2

4

Figure 14. The time varying duty cycle calculated from (12) (D(t)) obtained from numerical sim-
ulation (d(nT), n ∈ N) for guaranteeing a deadbeat response within the complete duty cycle range.

5. Conclusions

The differential boost inverter is an interesting inverter topology providing a transformer-
less voltage step-up capability suitable for DC-AC modules in PV systems. This paper
dealt with the nonlinear behavior and slope compensation of a grid-tied boost inverter
under a differential peak current mode control for its operation as an AC module in a PV
system. The module performs maximum power point tracking, DC PV voltage regulation
and grid synchronization. A three-loop differential peak current mode-controlled PV-fed
grid-tied boost inverter has been studied and its slope compensation has been addressed.
The paper began with presenting detailed simulations that has shown that the system can
exhibit fast-scale instability. This fact has been verified using numerical simulations from
the switched model of the inverter for different irradiance levels. Accurate closed-form
design-oriented expressions to predict fast-scale instability have been derived in terms of
the system parameters and adaptive slope compensation schemes have been proposed
to suppress the observed instability. The effectiveness of the proposed schemes has been
confirmed by detailed numerical simulation performed on the circuit-level switched model.
The results demonstrate the viability of differential peak current mode control with the
proposed adaptive slope compensation for differential boost inverters that can be used as
AC modules in PV systems.
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