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Abstract: The recent popularity of trail running and the use of portable sensors capable of measuring
many performance results have led to the growth of new fields in sports science experimentation.
Trail running is a challenging sport; it usually involves running uphill, which is physically demanding
and therefore requires adaptation to the running style. The main objectives of this study were initially
to use three “low-cost” sensors. These low-cost sensors can be acquired by most sports practitioners
or trainers. In the second step, measurements were taken in ecological conditions orderly to expose
the runners to a real trail course. Furthermore, to combine the collected data to analyze the most
efficient running techniques according to the typology of the terrain were taken, as well on the
whole trail circuit of less than 10 km. The three sensors used were (i) a Stryd sensor (Stryd Inc.,
Boulder, CO, USA) based on an inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis
accelerometer) fixed on the top of the runner’s shoe, (ii) a Global Positioning System (GPS) watch
and (iii) a heart belt. Twenty-eight trail runners (25 men, 3 women: average age 36 ± 8 years; height:
175.4 ± 7.2 cm; weight: 68.7 ± 8.7 kg) of different levels completed in a single race over a 8.5 km
course with 490 m of positive elevation gain. This was performed with different types of terrain uphill
(UH), downhill (DH), and road sections (R) at their competitive race pace. On these sections of the
course, cadence (SF), step length (SL), ground contact time (GCT), flight time (FT), vertical oscillation
(VO), leg stiffness (Kleg), and power (P) were measured with the Stryd. Heart rate, speed, ascent,
and descent speed were measured by the heart rate belt and the GPS watch. This study showed
that on a ≤10 km trail course the criteria for obtaining a better time on the loop, determined in the
test, was consistency in the effort. In a high percentage of climbs (>30%), two running techniques
stand out: (i) maintaining a high SF and a short SL and (ii) decreasing the SF but increasing the
SL. In addition, it has been shown that in steep (>28%) and technical descents, the average SF of
the runners was higher. This happened when their SL was shorter in lower steep and technically
challenging descents.

Keywords: spatio-temporal parameters; sensors; trail running; biomechanics

1. Introduction

Trail running is a popular sport that was recently recognized by the International
Association of Athletics Federations (IAAF) as a new running discipline. The sport hosts its
own trail world championships (https://itra.run, accessed on 15 October 2020) and its pop-

Appl. Sci. 2021, 11, 2093. https://doi.org/10.3390/app11052093 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8004-596X
https://orcid.org/0000-0001-6972-9527
https://orcid.org/0000-0002-9969-9573
https://orcid.org/0000-0002-0227-3884
https://doi.org/10.3390/app11052093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://itra.run
https://doi.org/10.3390/app11052093
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2093?type=check_update&version=3


Appl. Sci. 2021, 11, 2093 2 of 13

ularity has led to the growth of the new field of sport science experimentation. Trail running
is difficult because it is generally practiced uphill, which increases the body’s energy and
muscle needs [1]. Athletes’ performance has often been monitored using different results
such as maximum oxygen consumption (VO2max) with its fractional component: age
percentage of VO2max, ventilation thresholds, lactate thresholds or running economy [1–9].
Nevertheless, measurements of spatio-temporal parameters (STP) under ecological condi-
tions according to the terrain typology in trail athletes are rare and limited to laboratory
exercise tests. This does not allow exposure of participants to multiple internal and external
stressors both in terms of exercise and environment [10,11]. By its nature, trail running
is often associated with more difficult and rougher course topography, long climbs and
descents, irregular running surfaces with the presence of stones, roots, etc., and variable
environmental conditions (i.e., cold, heat, altitude, snow, and humidity) compared to track
or road events. The type of terrain therefore has an influence on the biomechanical and
psychological state of the runner and therefore on the overall performance of the athlete
during a race [1].

In parallel to this craze for running in the mountains, trail and running enthusiasts
have become increasingly interested in portable sensors. They allow them to record the
distances they run, their paces, their elevation changes and even to visualize them in real
time. This is thanks to the use of a watch with a global positioning signal (GPS). The use of
GPS also allows runners to quantify their training loads [12]. An important interest was
also focused on the measurement of heart rate via the use of a belt or even via watches with
sensors based on photoplethysmography. However, this last technology has not been totally
reliable using a set of five sports watches during a trail practice [13]. It is recommended in
this article to continue the use of a heart belt connected to a watch or an identical device in
order to obtain reliable measurements. The use of these technologies is not limited to the
world of sports, they are progressively popular in human health care systems or they can
facilitate the diagnosis of diseases. The applications of portable sensors are divided into
different categories: biophysical monitoring, biochemical monitoring, and real-time data
measurement [14]. When it comes to real-time measurement, this technology can even be
used to monitor heart rate and its variability while driving, in order to prevent the risk of
cardiac arrest [15].

More recently power sensors have made their appearance during recent years in
running races [16]. Present for many years in cycling and widely used for performance
evaluation and training they come to be very useful for programming training [17,18].

In this study, the Stryd sensor (Stryd Inc., Boulder, CO, USA) was used. The Stryd
running power sensor has existed for several years, and two versions have been marketed.
The latest version (Stryd Wind) of this sensor was used here. The sensor is fully functional
as soon it comes out of the box and does not require a calibration phase before each
output. It is a carbon fiber reinforced pedometer that is attached to the laces of the
runner’s shoe and weighs 8 g. The possibility exists to use the sensor alone because the
activation of the accelerometers present allows the recording of the activity to start when
the user starts running. However, it is preferable to connect it to a sports watch or a
telephone in order to “control” the start and stop of this activity. The sensor attaches to
the lowest point of the shoe’s lace zone, as indicated by the manufacturer. Based on an
inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis accelerometer), the data is
provided to quantify power (P), stride frequency (SF), vertical oscillation (VO), leg stiffness
(Kleg), pace, distance, and elevation during the race. Several studies were able to show
the reliability and validation of the parameters presented above. Speed was shown to be
valid and reliable during trail or walking [19]. Concerning P, it was reliably measured on
different surfaces at sub-maximal speed [20]. The relationship between P and speed was
shown to be linear for speeds ranging from 8 to 20 km/h on a treadmill [21]. The GCT
and Kleg were validated by a recent study for speeds between 8 km/h and 20 km/h on an
indoor track [22].
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As explained at the beginning of the introduction, measures of STP variation with re-
spect to terrain variability under ecological conditions have not yet been studied. However,
several things have already been demonstrated regarding running STP. The level of the
participants influences STP with lower SF and vertical stiffness (Kvert) and longer FT and
SL for high performance athletes [16]. VO, SF and SL influence the economy of running on
the flat [23]. Kleg, GCT, and SF are more important for high level runners in uphill racing.
Conversely FT and SL decrease. These parameters affect the uphill running technique [24]
and in downhill running, GCT decreases [25].

The studies cited above show that STP have an influence on performance, but these
influences have often been demonstrated under stable conditions, on flat circuits or in the
laboratory on a treadmill. Our study is based on the following observations, which are
the lack of measurements in the field and the great interest in portable sensors by most
practitioners. The main objectives were to (i) measure the variation of STP according
to the typology of the terrain (ii) in an ecological condition to expose the participants
in a variety of trail paths that they could find in competition and (iii) to use so-called
“low-cost” portable sensors already used by a large majority of runners. The combination
of the data collected will allow the analysis of which STP are related to the best results
according to the typology of the terrain. The objective is to orientate the runners to work
on certain parameters of their running technique more than others, in order to obtain better
performance on a trail circuit of less than 10 km.

2. Methodology
2.1. Subjects

A group of 30 runners (27 men, 3 women: average age 36± 8 years; height: 175.5± 7 cm;
mass: 68.9 ± 9.6 kg) of different levels, from amateurs with at least one experience on a
timed trail race to national level racers (French mountain running championship) participated
in this study (Table 1). All subjects met the inclusion criteria: (a) they were over 18 years
of age, (b) they had participated in a trail competition previously, and (c) they have not
suffered from any injuries in the last 6 months prior to data collection. The participation was
voluntarily therefore, participants could leave the study upon receiving detailed information
on the study’s objectives and procedures. Athletes signed an informed consent form prior
to start the study. The study was conducted in accordance with the Helsinki Declaration on
human experimentation stated in compliance with the 1964 Helsinki Declaration and its later
amendments. Every participant provided written consent after information was given on the
aim, protocol, and methodology of the study. The original study was approved by the Ethical
Board of the Micado iNumLab (protocol code MIC_2020_0407_ABM and date of approval of
7 April 2020).

Table 1. Avg ± SD of the physical characteristics of women, men, and all participants.

Variables Females (n = 3) Males (n = 27) Global (n = 30)

Age (years) 35.3 ± 8 36.5 ± 8 36.4 ± 8
Height (cm) 160.0 ± 2 177.2 ± 5 175.5 ± 7

Body mass (kg) 48.8 ± 2 71.0 ± 7 68.9 ± 9
Leg length (cm) 84.8 ± 1 93.9 ± 2 93.0 ± 3

2.2. Procedures

To collect data for the analysis of the study, a course with 8.5 km and 490 m of positive
height differences was carried out only once by each participant around the city of Sisteron
(mountainous region of France). This was composed of a loop with two ascents (UH).
The first (UH1) had an average gradient of 13.3% (219 m D+) over 1.66 km on a forest road,
without technical difficulty. The second (UH2) had an average gradient of 46.1% (161 m
D+) on a single track of 384 m, also without technical difficulty. Each loop included two
descents (DH). The first descent (DH1) of 400 m had an average gradient percentage of
28.6% on a technical track with the presence of stones and roots. The last descent of 1.66 km
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(DH2) was relatively non-technical with an average gradient of 13.3%. A section on road
(R) was also present, with 1 km and a slightly ascending profile (2.3%). (Figures 1 and 2).
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Figure 2. Satellite view of loop.

Visual markers were placed at the beginning and end of each section (i.e., UH1, UH2,
DH1, DH2, and R). This was used as indications for the riders thus that they could perform
manual laps on the GPS, used for later analysis. The only instruction given to riders before
the test was to complete the loop as fast as possible, as if they were in real race conditions.
Prior to the start of the test, all subjects had to complete their usual “pre-competitive”
warm-up. Depending on the habits of each participant, the warm-up consisted of a slow
run on the flat or uphill. Exercise routine, knee lifts and butt heels etc. were also part of the
warm-up. Then 2 to 5 accelerations for 20 to 30 s were performed. On average the warm-up
“time” was between 5 and 15 min depending on the subjects’ preferences.

All subjects wore their own footwear and personal clothing, for the field test, so the
test was as close as possible to their frequent running conditions. Previously, subjects were
all required to have completed a trail competition to reduce the potential effect of learning
on performance [21]. In this study, none of the participants were completed the trail before
the testing day. In addition, subjects were required to refrain from physical exercise and
alcohol consumption for 24 h prior to the test to participate in this study.
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2.3. Mesures

The spatio-temporal parameters (STP) were recorded at an acquisition frequency of
60 Hz. The Stryd sensor was connected to the Suunto 9 (Suunto, Vaanta, Finland) watch
via Bluetooth®. Before each test, the mass and height of the runner was entered into the
“Stryd” application (version 6.0.1).

The mass of the subject is essential for power calculation. The Stryd uses four pa-
rameters which are (1) mass of the subject entered in the application, (2) acceleration,
(3) percentage of slope inclination, and (4) speed of the subject obtained with the accelerom-
eters and the gyroscope to estimate the power developed.

The STP that were measured throughout the test included:

- Ground Contact Time (GCT, in seconds): the time between the first moment the foot
touches the ground and the last contact of the shoe before the toes lift off the ground.

- Cadence (SF, in steps/min): number of times the foot is in contact with the ground
per minute.

- Vertical oscillation (VO, in cm): variation in the vertical position of mass’ center during
the run.

- Leg stiffness (Kleg, in kN/m): indicator of a runner’s ability to restore the force
applied to the ground.

- Flight Time (FT, in seconds): the period between toe-off and the next foot contact.
During this phase, the athlete makes no contact with the ground, therefore in essence
is in flight. (e.g., right-left).

- Step length (SL, in meters): The distance between the landing of one foot and the next
landing of the opposite foot.

- Step time (ST, in seconds): corresponds to the time between the start of the step cycle
(placing the foot) and the end of the cycle (placing the same foot again).

Based on previous studies [24] with GCT, SF, ST and running speed, the authors
calculated the FT and SL using the following formula:

ST (s) =
60

SF (step.min−1)

FT(s) = ST (s)−GCT (s)

SL (m) =
velocity (m.min−1)

SF (step.min−1)

- Force (N): is the mechanical action exerted by one object on another.
- Distance (m): correspond to the length that separates two points.
- Work (J): corresponds to the application of a force (N) over a distance (m).
- Acceleration (m.s−2): corresponds to a vectorial physical quantity, representing the

modification of the speed of a movement as a function of time.
- Velocity (m.s−1): a variable that measures the ratio of an evolution to time.

Power (P, in W): the mechanical measurement of the effort and intensity of the run.
It corresponds to the work done per unit of time [26].

Power (W) =
Work (J)
Time (s)

The work is equal to the force (N) applied multiplied by a distance (m).

Work (J) = Force (N).Distance (m)

Therefore, power can be written as:

Power (W) =
Force (N).Distance (m)

Time (s)
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The distance divided by a time corresponds to velocity, which is more commonly
referred to as “speed”.

Power (W) = Force (N).Velocity (m.s−1)

The force being equal to the mass of an object multiplied by its acceleration, the previ-
ous equation can be written as:

Power (W) = Body masse (kg).Acceleration (m.s−2).Velocity (m.s−1)

Normalized Power (NP, in W/Kg): it is the ratio between a power and a mass
The heart rate was recorded at an acquisition frequency of 1 Hz.
Average heart rate (bpm): corresponds to the average heart rate recorded during

the test.
The parameters relating to the runner’s speed of movement were:
Time (min): corresponds to the total time taken by the subject to complete the course.
Speed (km/h): corresponds to the ratio of a distance traveled over a period.
Pace (min/km): corresponds to the ratio of a time over a distance.
Climbing speed (m/h): corresponds to the number of meters of positive elevation

gain over one hour. Calculated with the following formula [27]:

Climbing speed (m/h) =
3600× Positive gradient of the ascent (m)

Time taken by the subject to complete the climb (s)

Descending speed (m/h): corresponds to the number of meters of negative difference
in level descended over one hour.

Descending speed (m/h) =
3600×Negative gradient of the downhill (m)

Time taken by the subject to complete the downhill (s)

2.4. Materials

For descriptive purposes, height (cm) and body mass (kg) were determined using a
PLR 15 laser pointer with an accuracy of ± 3.0 mm (Bosch Siemens Hausgeräte, Gerlingen,
Germany) and a Dara scale (FitTrack, Toronto, Canada) respectively. All measurements
were taken with subjects wearing running shorts and underwear. The leg length of the par-
ticipants was estimated with the following anthropometric equations of Winter (1979) [28],
where h is the participant’s height (in m).

Leg lenght (m) = 0.53.h(m)

The STP which are SF, GCT, VO as well as Kleg were measured simultaneously by
Stryd (Stryd Inc. Boulder CO, USA). The Stryd (Figure 3) is a carbon fiber reinforced
pedometer that is attached to the laces of the shoe and weighs 8 g. A single sensor was
attached to the right foot of each participant at the lowest point of the shoe area. Based on an
inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis accelerometer), it provides
data to quantify P, SF, VO, Kleg, pace, distance, and elevation during running. Some studies
have already examined its validity and reliability for measurement of STP [16,19,24,29].
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Figure 3. The Stryd sensor fixed on the right shoe of one of the participants.

A Suunto 9 Baro multi-sport GPS watch (Suunto, Vaanta, Finland), using a GPS
chip (Sony, Minato-ku, Tokyo, Japan), was used to record information on speed, distance,
elevation, and altitude. By GPS watch ascent and descent times were recorded and speeds
were calculated. Heart rate in real time using a Suunto “smart sensor” belt was recorded
throughout the test.

2.5. Data Transfert

Following the field test, the results which were recorded on the watch were down-
loaded directly to the “Suunto” application (version 1.30.0, Amer sports Digital, Helsinki,
Finland). The data was only retrieved relating to time, speed, rate of climb, heart rate,
power, and cadence of the test. Subsequently, the Stryd had to be synchronized with
the “Stryd” application (version 6.0.1, Athlete Architect LLC, Boulder, CO, USA) via an
iPhone 7 (Apple, Cupertino, CA, USA). This allowed the recovery of missing data which
were recorded in the Stryd, such as GCT, VO and Kleg. The power center interface of the
Stryd.com website was used to synchronize the data from the Suunto application and the
data from the Stryd.

2.6. Statistic Analysis

Succeeding normalizing the data set, the relationships between the different parame-
ters over the entire route and the different sections were evaluated with Pearson’s correla-
tion coefficients. The value of this measure varies from −1 (strong negative correlation)
to 1 (strong positive correlation). A value of 0 does not represent a linear correlation.
All statistical tests for the parametric analysis were performed on the Knime Analytics
platform software (version 4.2.2, Zurich, Switzerland).

3. Results

Subjects
The size of the subjects as well as their leg length were negatively correlated with their

running stride frequency (r = −0.72 p < 0.001) notwithstanding, no relationship was found
between subject size and stride length (r = 0.20).

Global
The average time over the whole route was 54′4 min (Table 2). The time of the subjects

on the course was correlated with their time on the first ascent UH1 (r = 0.88; p < 0.001)
and their time on the last descent DH2 (r = 0.86; p < 0.001). Significant associations were
also found in between the average time and the NP (r = −0.84; p < 0.001) and SL (r = −0.90;
p < 0.001).
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Table 2. Avg ± SD values of time, normalized power, stride frequency, ground contact time, flight time, step length, vertical
oscillation, and leg stiffness over the entire course and over each defined area of the course.

Time NP SF GCT FT SL VO Kleg

Min W/kg Spm Ms Ms Cm Cm kN/m

Global 54′42 ± 8′42 3.3 ± 0.5 154 ± 11 484 ± 74 −93 ± 49 102 ± 13 5.5 ± 0.7 8.2 ± 1.4
UH1 12′18 ± 2′29 4.1 ± 0.7 164 ± 15 334 ± 125 33 ± 91 86 ± 12 5.7 ± 1.0 9.4 ± 2.2
UH2 10′57 ± 2′09 1.9 ± 0.6 88 ± 14 1327 ± 184 −631 ± 115 41 ± 5 0.3 ± 0.7 0.6 ± 1.4

R 5′30 ± 54′′ 3.9 ± 0.6 172 ± 10 252 ± 32 96 ± 26 112 ± 15 7.1 ± 1.0 9.7 ± 1.2
DH1 2′09 ± 36′′ 2.8 ± 0.8 193 ± 14 221 ± 32 90 ± 23 100 ± 20 6.1 ± 1.0 13.9 ± 2.7
DH2 6′29 ± 57′′ 3.6 ± 0.7 174 ± 12 208 ± 26 135 ± 25 145±19 8.1 ± 1.3 10.7 ± 1.4

(NP) Normalized Power, (SF) Stride frequency, (GCT) Ground contact time, (FT) Fly time, (SL) Stride length, (VO) Vertical oscillation, (Kleg)
Leg stiffness, (UH1) first uphill, (UH2) second uphill, (R) road section, (DH1) first downhill, (DH2) second downhill.

The GCT was negatively correlated with the FT (r = −0.96; p < 0.001) as well with the
SF (r = −0.91; p < 0.001) over the entire route.

Uphill
In the first ascent, the total ascent time was correlated with the GCT (r = 0.81; p < 0.001).

The average speed on this climb was correlated with the SL of the subjects. The FT was
positively correlated with the runner’s SF (r = 0.69; p < 0.001).

Considering second climb, the total ascent time was negatively correlated with the
ascent speed (r =−0.97; p < 0.001), the NP (r =−0.87; p < 0.001), the SL (r =−0.72; p < 0.001)
and the SF (r = −0.71; p < 0.001) of each runner.

In addition, ascent speed was correlated with NP (r = 0.94; p < 0.001) and SF (r = 0.78;
p < 0.001). The same SF was correlated with Kleg (r= 0.87; p < 0.001) as was the VO which
was also correlated with Kleg (r = 0.92; p < 0.001).

The GCT showed a negative correlation with SF (r = −0.88; p < 0.001), Kleg (r = −0.85;
p < 0.001) and VO (r = −0.81; p < 0.001).

Road section
On the road section, the GCT time showed a strong correlation with the total time

of the subjects on this section (r = 0.92; p < 0.001). Conversely, FT showed a negative
correlation (r = −0.86; p < 0.001), as did SL (r = −0.90; p < 0.001). NP (r = −0.87; p < 0.001)
to the total time spent by the participants on the R.

Downhills
In both descents, it was the GCT that showed a positive correlation with the total

descent time with (r = 0.77; p < 0.001) for DH1 and (r = 0.90; p < 0.001) for DH2. Conversely,
SL showed a negative correlation in both DH1 (r = −0.85; p < 0.001) and DH2 (r = −0.84;
p < 0.001) descents. The same applies to the SF which showed a negative correlation with
the VO, DH1 (r = 0.84; p < 0.001) and DH2 (r = −0.86; p < 0.001).

In the first descent, the FT was correlated with SL (r = 0.80; p < 0.001).
In the second descent, the FT was correlated with the VO of the runners (r = 0.82;

p < 0.001).

4. Discussion

The objective of this study was to quantify STP on a trail course by using low-cost sen-
sors in ecological conditions. The main results suggest that the use of inexpensive sensors
(Stryd sensors, GPS watch and heart belt) allow the measurement of STP. These parameters
are related to the running technique and the speed of a runner on the whole course or in
different sections of the course (UH, DH, R). Following an analysis, these measurements
allow the identification of different running strategies for the same type of terrain within
a group of runners. However, they also allow a more detailed analysis to identify the
different Spt in relation to the performance according to the variation of the terrain.

Firstly, analysis of the physical characteristics of the runners showed that mass of the
subjects was positively correlated with their height (r = 0.80; p < 0.001) and to the length of
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their lower limb (r = 0.80; p < 0.001). Moreover, larger subjects were shown to have a lower
SF than smaller subjects.

Secondly, analysis of the data while looking at the performance of the riders over the
entire course displayed that consistency of effort was one of the criteria for obtaining a
better time on the loop determined in the test. In fact, the subjects who made a fast UH1
and a DH2 at high speed were those who achieved the best performance. In a study of
pace strategies at the World Cross Country Championships, it was shown that the top 10
athletes had a steady race pace, while those who finished lower in the rankings had a fast
pace tactic at the beginning of the race which decreased steadily throughout the course [30].
It is possible to suggest that when riders start in a bunch, their effort management changes.
This study was a form of time trial which the subjects were alone, therefore it would be
interesting to see in a future study if the race management would be different in a group.

The p analysis showed that it is in the UH1 and R part that the most important values
are developed by the subjects. This corresponds to sections of the course where the runners
had to keep a high speed despite the slope or flatness. In the DH sections the p developed
by the subjects is also important even though the runners are on a descending profile.
This fact has shown that in the trail, especially in the steep DH but also in the less technical
ones where the participant must run fast, the energy demand is high. Above −20% of
slope, the EC increased during the descent [1]. Runners would have an interest in training
downhill as it could be done on the flat or uphill in a fractioned way in order to create
potential physical adaptations.

In addition, in the low-percentage climbs (<13%) it was the runners who managed to
keep a low GCT while taking big steps and passed the difficulty more quickly compared
to the other runners. It is with this type of data analysis that the use of handheld sensors
can be interesting for a runner who wants to work on the weak points of his or her uphill
running technique. Preferentially, a coach who wants to improve the efficiency or a runner’s
technique in a training group. With a sport watch the visualization of these parameters is
in real time. This allows quickly visualizing the changes that would be relevant to modify.
In the second climb that had a high percentage of gradient (>35%), it was maintaining a
high SF or taking large steps that allowed the runner to pass the difficulty more quickly.
We therefore hypothesized that two strategies could be put in place by the runners when
the percentage of slope is important. (i) A first strategy would be to decrease SL as well as
GCT and increase or maintain SF. (ii) The second strategy would be to increase SL as well
GCT, and to decrease SF.

In studies examining the influence of slope (+2 to 15%) on the change in STP, the au-
thors showed that SF increased by 3.9%, 4.0%, 2.9% and 1.2% [31–34]. In our study,
the average slope was greater than 30%, which does not allow us to make a comparison
with the studies cited above. However, one study looked at the variation in FS on a 30%
slope and showed that FS was higher than in the “running flat” condition at the same
speed (16.2 km/h) [35]. In the present study, in contrast to the above study, subjects ran
at an average of 2.2 km/h for an average of 11 min. This does not allow us to make a
relevant comparison. Therefore, we would need to carry out further measurements in
percentages of slopes greater than 30% in order to confirm or invalidate our hypothesis on
the implementation of one of the two running techniques by the runners.

It is possible to assume that runners who would favor the first strategy above would
favor the use of their leg muscles (gastrocnemius, soleus, etc.). Subjects using the second
strategy more would favor the use of their hamstring muscles (femoral biceps, semitendi-
nosus and semi-membranous) and gluteal muscles (large, medium, and small gluteus).

We were able to observe that on the whole course the SF on the ascent was much lower
than the SF on the descent with differences of more than 50%. Compared to the section of
road the SF decreased by 26% in ascent but on the contrary it increased by almost 7% in
descent. These results are consistent with those revealed in the study by Björklund et al.
(2019) and Townshend et al. (2010) [25,36]. Indeed, the GCT being negatively correlated
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with the SF throughout the route, this means that the GCT was higher on the uphill side
than on the downhill side.

On the road segment, the parameters of GCT and SL showed a correlation with the
subjects’ performance. Indeed, the runners with the lowest GCT and longest SL ran fastest
on the road section. The study by Kyröläinen et al. (2001) found that GCT decreased with
increasing running speed in elite middle-distance runners [37]. Garcia-Pinillos et al. (2019)
showed a significant increase in SL with increasing speed [38].

We could notice this after the field tests in the first descent which was more technical
(percentage of slope > 28%, presence of roots and stones) than the second. The runners
had on average a higher SF and a shorter SL. As a result, the technicality of the terrain
would lead the runners to take a higher number of steps, but of shorter length. In addition,
as indicated in the study by Giandolini et al. (2017) variation in stride could reduce
neuromuscular fatigue [39]. It has been shown that the higher SF of the runners, the lower
their VO on the descent. In the first descent with a high percentage of slope, participants
increased their SF (193± 14 ppm) while decreasing their SL (100± 20 cm) and consequently
their VO (6.1 ± 1 cm). In the DH2, which did not present any technical difficulties,
the subjects descended faster (+27%) with a lower SF (174 ± 12 ppm), but with longer SL
(145 ± 19 cm) and therefore a greater VO (8.1 ± 1.3 cm).

The realization of the tests in ecological conditions is a real added value in setting up a
study on the trail. It allowed us to expose the runners to different variations and typologies
of terrain, which is one of the particularities of mountain running compared to road racing.
For this reason, the realization of laboratory tests on a treadmill seems less relevant to
study of road running. As we could see in the results of this study, the variations of the
terrain force the runners to modify their running technique. In a future study it would
be interesting to use sensors that would allow us to recover a set of raw data to identify
possible variations in running technique on the same downhill or uphill run.

Moreover, this study showed that the use of portable sensors allowed the collection of
a significant amount of information related to the running technique or speed of movement.
We thought we could use the heart rate data recorded with the belt during the tests, but this
data, although reliable, showed no relationship with performance.

5. Limitations and Perspectives

This study has several limitations. The realization of the “laps” on the watch was
done by the subjects themselves, therefore it is possible that in an effort and despite the
visual cues, there are not the same lengths of measurement sections between each subject.
However, during data processing these sections were examined by the operator via Stryd’s
interface in order to check if the subjects had performed the turns in the right places. As far
as the Stryd sensor was concerned, there was no access to the raw data recorded, therefore
filters usage is unknown when recording the data. In addition, all accessible data was
transcribed as an average and not as a set of values. Hence, it was not possible to observe,
for example, the evolution or variation of the cadence during a descent. These data could
have provided a significant amount of additional information, perhaps allowing us to
arrive at alternative interpretations.

At the time of this study as we did not have electromyography (EMG) sensors to record
muscle activity. In a future study, it would be interesting to couple these field measurements
with muscle activity values. This will give a chance to researcher an effort to understand
more precisely the adaptations of the runners to the typology of the terrain. The use of
sensors in the field of sports allows access to a lot of information. Therefore, an even more
advanced use in this field could lead researchers to use sets of portable sensors recording
all the movements of a runner in the field. This executes retrieve of information on angular
velocities, joint loads, etc. To create a digital twin this would be completed with a view
to virtualizing it later. Afore mentioned, could be of real interest in the field of sports.
To conclude, it is important to specify that this study was totally independent.
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6. Conclusions

The results of this study confirmed that it is possible to retrieve relevant data sets for
the analysis of the STP one or more runners. This is possible by using “low-cost” sensors
under ecological conditions. The measurements taken over the whole course in conjunction
with the different sections (UH1, UH2, R, DH1, DH2) were able to show that on a trail
course of a distance less than or equal to 10 km, the best running strategy to adopt in order
to achieve a better time is the one where the runner will smooth his effort throughout
the course. Conversely, starting too fast or too slow at the beginning of the course will
be less effective in achieving a better time over the entire course. On climbs with a high
percentage (>30%), two running techniques stand out, one technique which consists of
keeping a high SF but a short SL and another technique which consists of decreasing the SF
but taking bigger SL. In technical (presence of roots and stones) and steep (>20%) descents,
runners increase their SF but decrease their SL. This shows that it is possible for a trail
runner or sports coach to use portable sensors (the Stryd and a GPS watch) to self-evaluate
or evaluate an athlete in different types of terrain and ecological conditions.
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Abbreviations

DH Downhill
DH1 First Downhill
DH2 Second Downhill
EC Energy Cost
EMG Electromyography
FT Flight time
GCT Ground Reaction Force
GPS Global Positioning System
IAAF International Association of the Athletics Federations
IMU Inertial measurment unit
Kleg Leg Stiffness
Kvert vertical stiffness
NP Normalized Power
P Power
R Road Sections
SF Stride Frequency
SL Stride Length
ST Stride Time
STP Spatio-temporal parameters
UH Uphill
UH1 First Uphill
UH2 Second Uphill
VO Vertical Oscillation
VO2Max Maximum Oxygen Consumption
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