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Abstract: Telecom operators’ infrastructure is undergoing high pressure to keep the pace with
the traffic demand generated by the societal need of remote communications, bandwidth-hungry
applications, and the fulfilment of 5G requirements. Software-defined networking (SDN) entered in
scene decoupling the data-plane forwarding actions from the control-plane decisions, hence boosting
network programmability and innovation. Optical networks are also capitalizing on SDN benefits
jointly with a disaggregation trend that holds the promise of overcoming traditional vendor-locked
island limitations. In this work, we present our framework for disaggregated optical networks
that leverages on SDN and container-based management for a realistic emulation of deployment
scenarios. Our proposal relies on Kubernetes for the containers’ control and management, while
employing the NETCONF protocol for the interaction with the light-weight software entities, i.e.,
agents, which govern the emulated optical devices. Remarkably, our agents’ structure relies on
components that offer high versatility for accommodating the wide variety of components and
systems in the optical domain. We showcase our proposal with the emulation of an 18-node European
topology employing Cassini-compliant optical models, i.e., a state-of-the-art optical transponder
proposed in the Telecom Infrastructure Project. The combination of our versatile framework based on
containerized entities, the automatic creation of agents and the optical-layer characteristics represents
a novel approach suitable for operationally complex carrier-grade transport infrastructure with
SDN-based disaggregated optical systems.

Keywords: disaggregated optical networks; software defined networking; optical network emulation

1. Introduction

The rapid growth of Internet traffic that we are currently experiencing [1,2] is based
on the expansion of cloud services and the huge amount of traffic supported by the content
delivery networks (CDNs) [1]. This clearly increases congestion issues in communication
networks, with particular emphasis in the core and backbone segments [3]. Furthermore,
the global crisis of COVID-19 has revealed the need for remote communications in both the
social and business spheres [2,4]. This crisis has become an incipient increase in video-call-
related traffic through the use of applications such as Zoom [5], Microsoft Teams/Skype [6]
or Cisco Webex [7]. Finally, these challenges are compounded by the need to meet the
performance specifications for the fifth generation Internet (5G), where it is planned to
obtain (a) a scalable management environment that enables the dynamic deployment of
cloud-based applications, (b) a reduction of approximately 20% in operational costs and
(c) total latency to the user of less than 1 ms [8].

The combination of all these challenges requires drastic changes in the way transport
network resources are controlled and managed, moving away from traditional network
management techniques. Under this umbrella, software defined networking (SDN) and
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network function virtualization (NFV) emerge as key technologies to address the above
challenges in an efficient way. In this work we will put the light on SDN.

SDN is becoming a consolidated technology for network management that encom-
passes a set of techniques aimed at the management of networks that focus mainly on
one basic principle: decoupling the decisions made at the control plane with respect to
the actions taken at the data plane [9]. This principle allows unprecedented degrees of
flexibility in the system, because the network switches and routers become simple for-
warding devices that send and receive traffic, while the logical control of the network can
easily be centralized on an external controller [10]. Conversely to traditional vendor-locked
communication networks, SDN technology brings to network operators, among other
benefits, the capability to: respond to challenges (such as big traffic fluctuations due to
major sport or public events), operate their network in a cost-effective manner, evolve the
network infrastructure, foster innovative solutions [10].

Relevant for optical networks, SDN is a powerful enabler to control and manage the
wide variety of network elements with particular photonic transmission and switching
characteristics inherent of the optical domain [11]. In this context, software-defined optical
networks (SDONs) aim to exploit the flexibility of SDN control to support network appli-
cations with an underlying optical network infrastructure [12]. Within SDON, software
models dedicated to the characterisation of optical elements, devices and systems are of
utmost significance to enable the creation of software agents. In this regard, an agent is
assumed to be a light-weight software that translates the necessary commands to permit
communication between the SDN controller and the optical device placed in the optical
data plane. Consequently, agents play a relevant role in disaggregated optical networks.

Horizontal disaggregation in optical network is aimed at decomposing the optical
data in its single components [13]. Disaggregated optical networks (DONs) leverage this
idea to be presented as a new technology in optical networks and brings synergies with
the SDN paradigm. Under this umbrella, several cooperative projects, such as Open
Config [14], Open ROADM [15] or Telecom Infra Project [16], have been arising for the
last years, with the target of providing unified models of optical devices. Thus, allowing
the deployment of complex optical network architectures through the use of vendor-
independent devices. This fact is remarkable because it avoids one of the most challenging
traditional issues in optical network implementations, the vendor islands. The inherent
independency of vendor equipment obtained in the aforementioned projects is mainly
based on using a specific modelling language, namely, the Yet Another Next Generation
(YANG) one [17]. YANG offers the possibility to consolidate in a common language and
a catalogue of rules the definition of the main characteristics of device models that can
be used in software agents. In SDN-based DONs the communication between the agents
generated based on YANG models and the SDN controller (via South Bound Interface,
SBI, in the canonical SDN architecture) usually relies on the NETCONF protocol [18].
The YANG/NETCONF symbiosis provides the ideal breeding ground not only for the
development of optical devices that facilitate vendor interoperability but also for the
development of software tools that emulate the real behaviour of such devices, which is
basic in the early stages of the development of new devices and network planning. Further
details on the YANG/NETCONF usage for optical networks and additional alternatives
for SBIs can be found in [19].

1.1. State of The Art

The literature has a growing number of works focused on SDN DON and optical
network emulation. However, studies that consider both topics from the application layer
to the data plane are scarce. One interesting starting point to link SDN and DON is to
put the light on the SDN controller. Some works like [13,20,21], embrace this approach,
first by proposing a model-driven design of a SDN controller and, second, upgrading the
functionalities of the SDN controller ONOS to support disaggregated optical networks.
Such new capabilities include YANG models compatible with NETCONF-based SBIs that
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communicate with the optical devices. In [22], this idea is expanded to not only be applied
to the controller but also to a high level of abstraction that comprises the control plane
in multi-domain disaggregated optical networks. Furthermore, a monitoring and data
analytics architecture is proposed in [23] to monitor optical disaggregation.

On the other hand, several studies focus on the data plane, precisely on modelling
devices in the context of DON. For instance, YANG models and their implementation,
via agents, of (SDN-enabled) sliceable bandwidth/bitrate variable transceivers (S-BVTs)
have been presented for partially [24] and fully disaggregated optical networks [25]. One
of the most important actors in optical networks is the reconfigurable optical add/drop
multiplexer (ROADM) that implements the add and drop capabilities in optical nodes.
They are addressed within the DON scope in [26,27]. Additionally, focusing on the data
plane, [28] reports a gap analysis on physical-layer parameters of YANG models available
in the OpenConfig, OpenROADM and OpenDevice projects for estimating the quality
of transmission (QoT). In addition, this work is complemented by a proof of concept
focusing on the reception of the relevant parameters from an OpenConfig muxponder in
the application layer for planning purposes.

Relevant in the context of data-plane initiatives, it is worthwhile mentioning GNPY [29]:
the open-source planning tool for the data plane in optical networks. GNPY is based on
the Gaussian Noise (GN) model [30], and reported validation results in large-scale optical
transmission testbeds [31]. In particular, [31] reports the GNPY validation in a mixed-fibre
test-bed at Microsoft labs in which transponders of eight different manufacturers operated
in the C-band reaching a propagation distance of 1945 km. Relevantly, GNPY has also
been considered as an assistance tool for the computation of impairments in optical-layer
paths on top of SDN controllers [32]. Nonetheless, these efforts are scarce in the literature
because optical-layer awareness is commonly considered as stand-alone planning tools
separated from operational aspects addressed by SDN controllers.

The next stage towards emulating a DON environment is device virtualisation that
exploits the benefits provided by YANG models of devices, which is also explored in
the community. A network virtualisation architecture for open (partially) disaggregated
network uses the concept of device hypervisor in virtual networks by using OpenROADM
data models [33]. Furthermore, another common approach for adding virtualization to
DON-based devices is to implement their related agent in a virtual machine (VM)/container
that can emulate a realistic behaviour of the optical device. This eases the instantiation and
the management of the virtual entities with a computer or a server. Those VMs/containers
must be configured to enable the SBI communication implementing the interaction with
the SDN controller [13].

Finally, it is also worthwhile mentioning comparable initiatives to our proposal such as
the software-defined packet-optical network emulator [34], which is based on an optical ex-
tension of the popular packed-oriented network emulator Mininet [35]. Relevantly, ref. [34]
proposes a software suite capable of emulating optical-layer QoT performances such as
OSNR, gOSNR and BER, and report its impact to the SDN controller. This emulation is
based on augmenting packet in traditional Mininet instances with wavelength/channel
information, which is used in modified instances of Open vSwitch. In fact, the entire
Mininet-Optical emulation relies on a software structure that invokes the Open vSwitch
instances as Python processes. Consequently, this approach diverges from realistic deploy-
ment/production scenarios in which optical systems are managed/controlled by its own
light-weight software agent in dedicated physical or virtual resources.

1.2. Motivation and Previous Work

The state of the art in SDN DON and optical devices’ emulation reveals that the
community is pushing considerably in this direction. YANG-based models in accordance
with the NETCONF protocol are efficient approaches towards minimizing or even removing
the drawbacks of the so-called vendor islands. Thus, there are ongoing projects to provide
unified models for optical devices. However, to the best of our knowledge, optical device
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emulation is in its early stages. Only some of the analysed works assume a scenario where
SDN DON emulation tackles from the highest application layer down to the data plane.
Handing over control and management of emulation to the application layer will permit
a more precise optical network design and an automatic deployment of software agents
related from device catalogue at the request of the user. Moreover, as pointed out in
the data-plane initiatives in the previous subsection, interactions between realistic agent-
based SDN implementations and data-plane models are scarce. In fact, the challenge of
these initiatives relies on the combination of physical-layer modelling commonly devoted
to off-line planning tools with operation-based systems such as SDN controllers. The
complementary nature of those systems makes the development of a DON emulator a
difficult and challenging task. Such context is the starting point that motivates this paper
with the aim at contributing to achieve a such challenging goal.

This work is a significant follow-up of an open line started in [36], in which we
reported our preliminary progress towards an optical emulation framework built on
automatic agent creation. In particular, ref. [36] focused on a specific use case of an 18-
node European topology with nodes based on open packet transponder (Cassini [37]) in
which we were able to modify parameters such as optical launch power, wavelength, and
modulation format. Here, we extend that work and present a substantial evolution of
our Containerized Framework for emulating SDN-DONs with special attention to the
coexistence of the Kubernetes-based [38] master nodes server–client architecture and a
new automatic agent creation framework using NETCONF in the SDN controller–optical
agent interaction irrespective of the YANG model used. Additionally, to test the practical
feasibility of our proposal, a proof-of-concept is also presented.

1.3. Structure of the Paper

The rest of the paper is structure as follows. In Section 2, all the software tools needed,
and the methodology followed are exposed. Section 3 is aimed at showing the proof-of-
concept proposed to evaluate the proposal. Section 4 reports the results obtained with our
framework accompanied with their discussion. Concluding remarks and future directions
of our work are highlighted in Section 5.

2. Proposed Architecture for SDN-DON Emulation

In this section, we present all the details required to define and configure our proposal
for the SDN DON emulated framework. First, we expose a summary of the previous
work that feeds this proposal. Then, we present the general architecture that permits
the automatic deployment of emulated SDN DON, the core of this work. This section
concludes with configuration considerations that are required to set up the framework.

2.1. Legacy Work

In the previous work presented in [36], we reported our preliminary advancements
towards an optical emulation framework for automatic creation of agents in SDONs.

As seen in Figure 1a, this architecture comprises three main elements: the ONOS SDN
controller [39]; a pool of software agents that emulate the interaction with optical devices,
in this case, Cassini transponders; and the API gateway.

ONOS is chosen to play the role of the SDN controller, and is configured with the
required modules and YANG drivers to interact with the optical devices or agents in the
data plane via NETCONF protocol. A pool of agents emulates a realistic environment
of a DON data plane; those agents are implemented in docker containers and they are
created automatically by the API gateway REST-based interface according to the topology
specification given by ONOS.
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agents in a software-defined optical networks (SDONs) environment; (b) Detailed view of the components in an optical
network agent.

The other key point of this work is the structure of the optical network agent, depicted
in Figure 1b. The software agents in the pool are virtualised entities within their respective
Docker container. In addition, each agent includes four components: (i) the OpenConfig
YANG model of Cassini transponders, (ii) the connection manager (i.e., the Netopeer2
NETCONF server) that enables connectivity with the controller, (iii) a database to store
the configuration files and (iv) a software engine to detect and interact with changes in
the configuration files. It is relevant to mention that the last three elements belong to the
same subsysem, a Sysrepo framework aimed at automatic creation of YANG-based agent
configuration. The Netopeer2 server is built in the Sysrepo framework and it provides
the adequate NETCONF-based server for interacting with the SDN client. The Netopeer2-
Sysrepo symbiosis provides benefits in the automatic creation of YANG agents but they
have a closed and short catalogue of YANG-based optical device models that limits the
scalabilty of a SDN DON emulation framework.

2.2. Advanced Automatic Deployment of Emulated SDN DON

The main target of this work is to enhance the dynamicity and the scalability of the
automatic deployment of an emulated SDN DON environment. To achieve this challenging
objective, we leverage the previous work focusing on two major and significative changes:
(i) automatic container management by Kubernetes and (ii) a novel scalable agent definition.

2.2.1. General Architecture

Figure 2a showcases the general architecture of our proposal for an advanced auto-
matic deployment of an emulated SDN DON framework. As it can be seen in the figure, the
main difference with the legacy work is to leverage Kubernetes functionalities to manage
and automatize the creation of agents, thus, minimizing the dependency of the API gateway.
The other key contribution is the novel structure of the optical agent, shown in Figure 2b,
facilitating the scalability and the emulation of a wide catalogue of YANG-based optical
models. Further details of the structure of the agent are elaborated in next subsections.

This architecture is targeted to maximize the automation and the scalability of the
emulation framework trying to exploit the benefits of a dynamic management and or-
chestration of the containerized optical agents. Moreover, two architectural decisions in
our implementation deserve further description. First, it is worthwhile mentioning that
we choose to employ docker containers because of they are more lightweight in terms of
resources than VMs. We leverage on the fact that containers share the operating systems
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whereas VMs aim at emulating virtual hardware. Given that docker containers share the
operating systems, docker applications consume a portion of the resources compared to
a VM. Second, our architecture considers one docker container per agent for a realistic
emulation of a carrier-grade deployed scenario. In particular, telecom operators commonly
deploy control architectures that handle distinct geo-located optical nodes with dedicated
computing resources for service deployment (e.g., in the edge computing paradigm) while
also devoting part of those resources for the control of the network infrastructure. In this
context, optical resources are managed and operated with a per-node computing element
that receives and sends commands from/to the SDN controller while interfacing the hard-
ware at the data plane. Hence, our proposal aims at emulating such conditions with an
independent and isolated entity, i.e., docker container, per software agent as in the case of
distinct geo-located optical nodes.
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2.2.2. Kubernetes-Based Agent Management

In this work we propose to manage the agents’ docker containers through Kuber-
netes. The choice of Kubernetes is based on the necessity of providing scalability and
intelligent computational management in order to support large scale SDN DON emulated
scenarios. Kubernetes has a wide range of benefits for virtualised systems that could
help to accomplish the expected targets, e.g., service discovery and load balancing, stor-
age orchestration, automated rollouts and rollbacks or self-healing just to mention a few.
Moreover, Kubernetes is currently one of the most popular DevOps tools for container
management, hence with a large support in the community [38]. Additionally, Kubernetes
and Docker are complementary technologies, Kubernetes orchestrates one or more hosts
that run containers, and Docker is the technology that starts, stops, and also manages those
containers. In our model, Docker is a low-level technology orchestrated and managed
by Kubernetes.

To complement the justification about why Kubernetes is key in our proposal, we
present a present a representative use case. Consider a need to emulate a full SDN-based
DON scenario assuming realistic functionalities, with multiple optical nodes and at each
node multiple optical devices such as, transponders, wavelength selective switches, EDFA
amplifiers or optical channel monitor. Just considering a 25-node optical network and for
these four types of devices, 25 × 4 = 100 agents are needed, in the most favourable case
assuming only 1 device per type and node (in reality this number is much higher). For
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this case alone, managing 100 agents instantiated in virtual machines or virtual containers
without intelligent management, the scenario is completely unaffordable for one single
personal computer, computationally speaking. This is where Kubernetes comes in; this tool
not only provides intelligent management of containers (agents), but its automatic load
balancing and the minimization of the usage of computational resources, both features
related to scalability, among others, are basic to allow the emulation of realistic and large-
scale SDN DON scenarios. Thus, one of the major benefits that Kubernetes brings to our
work is that it allows the emulation of complex SDN DON scenarios running on a single
laptop, this way exploiting the potential usability and exploitation of our framework (e.g.,
teaching, academia, SDN DON pre-deployment phases, etc.).

From an implementation perspective, we follow a traditional master nodes approach.
A Kubernetes cluster is made up of one master and one or more nodes, as can be seen in
Figure 3. Both master and nodes are Linux hosts that run on anything from VMs, bare
metal servers, to private and public cloud instances.
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The Kubernetes master is composed of a set of small services that conform the control
plane of the cluster and it can be externally accessed by the kubectl service, a RESTful API
or a graphical dashboard, all managed by the kube API-server. The configuration and
status of the cluster gets persistently stored in the etcd, while the controller implements the
functionalities for controlling the Kubernetes cluster, such as, the node controller or the
endpoints controller. Finally, the Kubernetes master offers the possibility to monitor new
workloads and assign them to the nodes.

Still regarding Figure 3, the nodes can be seen as clients in a server–client architecture,
with the master as server. The nodes are where the containers are hosted in correspondence
to the agents in our framework. Within the nodes, there are independent spaces to run
the containers, called pods. One node can have several pods and in each pod several
containers. This approach is totally in line with network slicing, essential for 5G-aware
deployments [40], being this fact another solid reason to choose Kubernetes as agent
manager in a SDN DON emulation framework. Note that the server–client architecture,
in correspondence with the Kubernetes master nodes (also illustrated with blue dashed
arrows in Figure 2a), coexists with the client–server structure used in NETCONF protocol
in correspondence with SDN controller–optical agent container (illustrated in solid red
arrows in Figure 2).

Concerning Kubernetes integration as part of the Advanced Automatic Deployment
of Emulated SDN DON oversees agents’ management. First, the configuration for creating
containers (e.g., agents) can be performed by three different ways: via script by using
the kubectl service, manually from dashboard or remotely through the Kubernetes API.
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Once the containers are up and running in one or multiple pods, the Kubernetes Master
is in charge of managing the computational resources according to the workload and the
specifications stated in the configuration phase.

2.2.3. Versatile Agent Definition

The second major contribution of this work is a novel definition of versatile optical
agents that can be automatically instantiated. We present a generic definition of agents
suitable not only for specific YANG models belonging to specific projects (e.g., Telecom
Infra Project [37]) but also for all optical models that can be defined using the YANG
language. This novel structure is decisive in the sense that a user can evaluate scenarios
with a potentially infinite number of optical devices under the same emulation framework
irrespective of their vendor, technology, or type. Therefore, this new functionality is critical
not only to emulate DON scenarios with realistic current data models, but also to be
compatible with all future data models using the YANG language.

Figure 2b depicts the structure proposed for a generic agent that emulates the role
of a software entity in charge of governing optical devices. It is composed of four major
components, a NETCONF server, a YANG validator, an XML (eXtensible Markup Lan-
guage) /JSON (JavaScript Object Notation) config database and the files of the YANG
model necessary to emulate an optical device, all coming from open-source initiatives and
they are implemented in one single Docker container. Further details follow:

• NETCONF server: it provides NETCONF connectivity with the SDN controller with
the aim at avoiding dependency of existing agent automation framework, similarly to
the Sysrepo in the legacy work. In this work, the NETCONF skeleton is given by the
Choppsv1 library [41] that supports both the creation of NETCONF clients and servers,
however it does not provide the full implementation of the server. The pyangbind
module complements the server, because it permits the generation of automatic code
from YANG files, the validation of XML calls, essential in NETCONF-based communi-
cations and XML/JSON conversion amplifying the potential for connectivity [42].

• YANG validator: pyang is Python-based library playing the role of a validator, trans-
former, and generator of YANG code. It can be used for validating YANG modules,
YANG modules transformation into different formats, and code generation from
modules. This module is key to provide potential scalability and generalization [43].

• XML/JSON config database: it stores the configuration files related to the configura-
tion of the agent for the different functional states, such as boot or running.

• YANG model files: finally, a set of YANG files that define the behaviour required to
emulate an optical device. They are validated by the pyang module.

From a global point of view, it is worthwhile to indicate the interaction among the
components described above. First, YANG models are provided, e.g., such as Cassini
transponder models. Then, agents leverage on the YANG validator based on pyang
for the creation of the NETCONF skeleton within the NETCONF server. Notably, it is
worth recalling that SDN controllers commonly include a series of drivers that implement
NETCONF client functionalities for interacting with the agents via NETCONF protocol.
This interaction, on the agent side, will leverage on the pyangbind module for XML/JSON
validation. Then, also in the NETCONF server side, custom instructions are implemented
for interacting with the data plane. Finally, we report the interaction between control and
data signals flow among the components in the next subsection. For instance, Figure 8 will
showcase the interaction between agents (data plane) when connectivity is requested from
the SDN controller (control plane).

3. Proof-of-Concept Configuration

In order to test and evaluate the emulation framework of this work, in this section we
propose a proof-of-concept that integrates the key elements of the entire architecture. Here
we detail the configuration and settings for performing such proof-of-concept.
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The proof-of-concept follows the design exposed in Figure 2a, with three main actors:
(i) ONOS playing the role of SDN controller that interacts and configure the emulated
optical data plane (set of agents in this case), (ii) Kubernetes, in charge of the management
of the Docker containers where the optical agents are implemented, and finally (iii) the
data plane, represented by the set of agents emulating the software that governs the optical
devices. For the sake of simplicity, we only use an agent of Cassini transponder according
to the OpenConfig project. All the evaluation system has been deployed and executed in a
high-performance laptop (Intel 8th generation i7 with 8 logical cores, 32 GB of 2400 MHz
DDR4 RAM and 1 TB of SSD). Further details follow:

• Agent definition and integration: a specific docker container is built to integrate the
architecture proposed and described in Section 2.2.3 for an automatic agent deploy-
ment. The set of YANG files that replicate the behaviour of a Cassini transponder are
extracted from the GitHub repository of the OpenConfig project [44]. Precisely, the
files openconfig-terminal-device.yang, openconfig-if-ethernet.yang and openconfig-types.yang
are stored in the YANG file catalogue of the agent container.

• Kubernetes configuration: following the structure presented in Figure 3 Kubernetes
Cluster is installed in Linux, an Ubuntu distribution, and it is composed by one master
and one worker node and one pod in this worker node. Agents’ creation and configura-
tion are driven by the deploy.yaml file, see Figure 4, where it commands the deployment
of the Docker containers. The service kubectl is the one to execute the deployment of
the agents where results of such deployment are presented in the next section.
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• ONOS: we chose a virtualized distribution of ONOS (version 2.3.0) in a Docker
container. The installation using Docker also permits to open the necessary ports
for this proof-of-concept in one single command as presented below. Port 8181 is
used for external communication with ONOS via GUI, port 5005 is a Java debugger
port, port 8101 permits command line interface (CLI) communication via CLI and the
port 830 permits NETCONF-based connectivity. Finally, once the container is up and
running, pertinent “apps” must be activated to enable the expected functionalities
within the SDN controller framework: “odtn-service”, “roadm” and “optical-rest”.

docker run -t -d -p 8181:8181 -p 8101:8101 -p 5005:5005 -p 830:830 –name onos onospro-
ject/onos:2.3.0

• Topology definition: the topology is defined in a JSON file so that it can be interpreted
by ONOS. Seven metrics can be set “Devices”, “links”, “hosts”, “Apps”, “ports”,
“regions” and “layouts”. In this work we only use the objects “device” and “link”.
Each device object is linked to each container previously deployed by indicating
some specific fields, such as IP of the container and port to enable NETCONF con-
nectivity, ONOS driver or map location, as can be seen in the exemplary definition
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if Figure 5a. Moreover, the links define the interconnection between two agents by
setting their IP and ports, type of connection or bidirectionality, among others as
depicted in Figure 5b.
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Once the file is ready, it is sent via ONOS NBI API to inform the details of the
topology. Topology definition and JSON file creation are performed manually in this
proof-of-concept emulating the 18-nodes European Optical Network. Future works will
target the automatization of this procedure.

4. Results

This section collects and analyses the results obtained in the deployment of the proof-
of-concept focusing on the main points of our proposal for an Advanced Automatic
Deployment of Emulated SDN DON. The execution of this experiment is performed
following the statements proposed in Section 2 and configured according to Section 3.
Given the lack of complex SDN DON emulators in the literature (see Section 1.1) that can
not only emulate such scenarios but also interact with it in a realistic way, the objective of
this proof of concept is not aimed at evaluating the performance of our framework, but to
highlight the feasibility and functionality of our proposal. All the results exposed in this
section are obtained after the configuration stage is properly completed.

The first stage of the running workflow in this proof-of-concept is to show the per-
formance of Kubernetes in the agent/container management. Figure 6 illustrates the
18 containers of the Cassini agents properly running according to the configuration file
(deploy.yaml) defined under the Kubernetes umbrella.

One of the main benefits of managing Docker containers with Kubernetes is that the
computational resources of the host are efficiently used to balance the workload of the
containers according to their computational needs and performance. Once all the containers
are up and running, the next stage is to bind the containers to the proposed optical topology
by sending the JSON configuration file via ONOS API. At this point, ONOS recognizes
the query and the topology is tied to the containers by assigning the existing agents to
the nodes defined in the topology file and links are created to interconnect the nodes. As
can be seen in Figure 7, ONOS shows the emulated 18-node European optical network
topology in which each node corresponds to a Cassini agent.
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Figure 7. Emulated optical topology deployed on ONOS.

The functionality of the agents deployed in this emulated framework is not only
related to the optical topology discovery from the SDN controller side, but also they can
perform other common network tasks. Figure 8 illustrates how two containers establish
real TCMP-based package traffic flows leveraging the deployment of the Emulated SDN
DON framework.
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In a similar way than a real optical device, our emulation framework permits to
retrieve the status of the emulated devices in real time regarding their current configuration
or other functional metrics. Figure 9 showcases an exemplary query requested by the
SDN controller via NETCONF protocol about the status of the configuration of an optical
agent (namely, emulated Cassini transponder) in a specific instant of time. In particular,
the agent is queried about its current target-output, current-output, and current-input
optical powers.
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The functionality of the deployed agents is not only limited to configuration and status
queries, the SDN controller can also change physical parameters of emulated devices in
the same way as for a real optical device. Figure 10 is a proof of the performance of this
procedure by using the CLI of ONOS to change the output power in an optical port for a
specific Cassini transponder.
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5. Conclusions

In this work, we presented an emulation framework that leverages on a combination
of SDN and container management with Kubernetes for the emulation of both control-
and data-planes of disaggregated optical networks. Our legacy proposal was reviewed
including the architectural details and the classical optical network agent structure that
leveraged on the Netopeer2-Sysrepo framework. Then, we presented the Containerized
Framework for emulating SDN-DONs paying special attention to the coexistence of the
server–client architecture based on Kubernetes master nodes and the client–server struc-
ture that used NETCONF in the SDN controller–optical agent interaction. We further
detailed the software agent structure which includes NETCONF server, YANG validator,
XML/JSON config database and YANG models, whose combination offers versatility for
accommodating the wide variety of optical components and systems. The implementa-
tion of the agents in this emulating system was deployed in Docker containers allowing
advanced and efficient management by Kubernetes. We described all the configuration
and settings for performing the proof-of-concept that consisted in an 18-node European
topology with Cassini transponders. We reported the successful status request and config-
uration settings of optical-layer parameters such as transmitted and received optical power.
Given the successful interaction between the control and data plane positions, our proposal
demonstrates an adequate approach for managing an operationally complex carrier-grade
transport infrastructure with SDN-based disaggregated optical systems.
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