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Abstract: Recent improvements in the performance of the human face recognition model have led to
the development of relevant products and services. However, research in the similar field of animal
face identification has remained relatively limited due to the greater diversity and complexity in
shape and the lack of relevant data for animal faces such as dogs. In the face identification model
using triplet loss, the length of the embedding vector is normalized by adding an L2-normalization
(L2-norm) layer for using cosine-similarity-based learning. As a result, object identification depends
only on the angle, and the distribution of the embedding vector is limited to the surface of a sphere
with a radius of 1. This study proposes training the model from which the L2-norm layer is removed
by using the triplet loss to utilize a wide vector space beyond the surface of a sphere with a radius of
1, for which a novel loss function and its two-stage learning method. The proposed method classifies
the embedding vector within a space rather than on the surface, and the model’s performance is also
increased. The accuracy, one-shot identification performance, and distribution of the embedding
vectors are compared between the existing learning method and the proposed learning method for
verification. The verification was conducted using an open-set. The resulting accuracy of 97.33% for
the proposed learning method is approximately 4% greater than that of the existing learning method.

Keywords: dog face identification; embedding vector; loss function; triplet loss

1. Introduction

Recent years have seen an increase in the number of companion animals and also
of abandoned or lost companion animals, leading to the proposal of several methods
such as microchip implantation, nose recognition, and iris recognition for identification
of companion animals [1,2]. However, the application of these methods is difficult owing
to the perception that they may be harmful and might require specialized photographic
equipment and techniques.

Both machine and deep learning techniques have been able to provide sufficient
reliability for human face recognition [3], and many relevant products/services are being
provided. The human face recognition model is trained based on metric learning. The
metric learning [4,5] calculates the distance representing the similarity/difference of the
object to be compared rather than the classification for a fixed class. For the classification
of new classes that are not trained, models based on metric learning output embedding
vectors, not classes [6–9]. In addition, the face recognition model based on metric learning
adds an L2-norm layer to the end of the model for training. L2-normalization (L2-norm)
constrain this embedding to live on the d-dimensional hypersphere [6]. These limitations
allow the model to train to generate appropriate embedding vectors for classification. In
various attempts, this approach has been applied to dog face identification, but at lower
performance than that achieved for the human face identification due to the low normality
of dog faces and lack of related data. In order to overcome these limitations and improve
the performance of dog face identification, this paper proposes a novel loss function
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and a two-stage learning method to utilize a wide vector space. The face identification
model using the existing triplet loss was trained with cosine similarity by normalizing the
embedding vector with the L2-norm layer, which facilitates training the face identification
model, but limits the distribution of the embedding vector to the surface of a sphere with
radius 1. This limitation makes it possible to learn a metric-learning-based model, but it is
also limited that embedding vectors are used in an infinite vector space. If the model can
be trained to generate an appropriate embedding vector in an infinite vector space, a much
wider vector space can be utilized than the existing methodology. In addition, if the model
is trained so that the embedding vector is aggregated while utilizing a wide vector space,
the performance of the model based on metric learning can be improved.

This study aims to improve the model’s performance by classifying the distribution
of embedding vectors in a wide vector space beyond the surface of the sphere. Therefore,
a novel loss function and a two-stage learning method are proposed to train the model
with the L2-norm layer removed. In the previous work, the L2-norm layer uniformly
transforms the length of the embedding vector into 1. These limitations allow the model to
train based on metric learning. However, our newly proposed loss function trained the
model to generate an embedding vector in a specific area without an L2-norm layer. This
method trained the model to generate an embedding vector in the specific area, unlike the
previous learning methods in which the range of the length of the embedding vector is
infinite. In addition, we proposed the new learning method consisted of two stages. In
stage 1, the proposed loss function adjusts the distribution of the embedding vector. In
addition, the L2-norm layer and the existing loss function for metric learning were used
together in stage 1. In other words, the model was trained with the classification by angle
and the adjustment of the embedding vector distribution at the same time. As a result of
stage 1, it is possible to learn the model using the triplet loss for metric learning without the
L2-norm layer in stage 2. Training of the model with the L2-norm layer removed makes it
possible to generate an appropriate embedding vector with the embedding vectors beyond
the surface of the sphere and distributed in an infinite vector space. To verify the proposed
methodology, the same architecture was trained with the existing learning method and the
proposed learning method, and then the accuracy, one-shot identification performance,
and embedding vector distribution of each model were compared. The evaluation was
performed with images of dogs that have not been trained. The change in the distribution of
the embedding vector according to the learning method was visualized as a 2-dimensional
image in a toy experiment. In addition, to compare the distribution of multidimensional
embedding vectors, the distance and the length of the embedding vector were calculated
for each class.

The purpose of this study is to improve the performance of the dog face identification
model, which is biometrics for dogs. In this paper, we proposed the learning method of
the dog face identification model with improved performance compared to the previous
training method for the return of lost dogs. We proposed the novel loss function and a
two-stage learning method to improve the performance of the dog face identification model.
As a result, we demonstrated that the model trained with the proposed learning method
performs dog face identification with embedding vectors distributed in the vector space.
In addition, it was demonstrated that the dog face identification performance of the model
trained with the proposed learning method was improved compared to the model trained
with the existing learning method. The proposed loss function and learning method can
be used with various metric learning methods, and then the performance is improved.
In addition, the study results proved that metric learning is possible to utilize infinite
vector space beyond the surface of a sphere. The study results are expected to improve the
performance of the dog face identification model and to help in finding lost dogs.

Studies on human and animal face identification are reviewed in Section 2. The
novel loss function and learning method for utilizing a vector space are described in
Section 3. The models are implemented based on the existing methodology and the
proposed methodology in Section 4. The accuracy, one-shot identification performance,
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and embedding vector distribution are evaluated to compare the performance of the
proposed methodology with that of the existing methodology in Section 5.

2. Related Studies

In the fields of deep learning and machine learning, studies for face identification
were mainly performed on the human face. Therefore, the newly proposed model and
loss function were evaluated with the human face dataset. Recently, as the number of
companion animals increases, the number of abandoned or lost animals also has increased.
To solve this problem, studies were conducted in which the deep learning models for human
biometrics were applied to animals. In this paper, the previous studies on human face
identification are described in Section 2.1. The previous studies on animal biometrics are
described in Section 2.2. In particular, the previous studies related to dog face identification
are described in detail to improve the performance of a dog face identification model.

2.1. Human Face Identification

Deep learning and machine learning models can be trained for human face recogni-
tion using large-scale datasets of human faces, leading to high-performance computing
resources that have improved [10,11]. Metric learning has been widely used to train deep
learning models for face identification [4,5,12,13]. The loss functions used in deep metric
learning for the human face identification were contrastive loss [14] and triplet loss [6],
which impose a Euclidean margin on the feature. One such model, deep face [15], used
explicit 3D face modeling to revisit the alignment and expression stages in the pipeline of
face recognition that consisted of four stages. Deep Face achieved accuracy levels of 96.75%
and 92.4% for the labeled faces in the wild (LFW) and the YouTube faces (YTF) datasets,
respectively. In addition, FaceNet [6], which directly learns a mapping from face images
to a compact Euclidean space where distances directly correspond to a measure of face
similarity, was presented. In FaceNet, end-to-end training has shown that simplifying the
setup and directly optimizing the loss associated with the task at hand improves perfor-
mance. FaceNet achieved 99.63%, and 95.12% accuracy levels for the LFW and YouTube
Faces DB datasets, respectively. Deep learning models for human face recognition such as
SphereFace [7], CosFace [8], Ring loss [16] and ArcFace [9] with improved performances
have also been proposed with new loss functions. In SphereFace, angular softmax, which
can be viewed as imposing discriminative constraints on a hypersphere manifold, was
proposed [7]. CosFace reformulated the softmax loss as a cosine loss by L2 normalizing
both features and weight vectors to remove radial variations [8]. ArcFace proposed addi-
tive angular margin loss to simultaneously improve intraclass compactness and interclass
discrepancy and obviously enforce a more evident gap between the nearest classes [9].
ArcFace achieved accuracy levels of 99.83% and 98.02% for the LFW and YTF datasets,
respectively. In addition, global–local GCN [17], which removes noise from the human face
dataset, and GroupFace [18], which learns latent groups, were proposed to improve the
performance of human face recognition. Many studies related to deep learning have been
conducted in various fields to improve the performance of human face identification.

2.2. Deep Learning on Animal Biometrics

Deep learning model research on animal biometrics has been mainly performed on
cattle [19–22], horses [23], pigs [24] and endangered animals [25,26]. In cattle, studies on
biometrics using muzzle points have been conducted [20–22]. In the case of horses, pigs
and endangered animals, studies on biometrics-based face recognition have been con-
ducted [23–26]. However, dogs have mainly been studied for breed classification [27–30].
In [31], animal biometric identification was classified into four categories: muzzle point,
iris pattern, retinal vascular, and face images. Although muzzle point identification is
a reliable method, appropriate scanners are required for a shape extraction like human
fingerprint identification. The same problem is further highlighted in iris pattern and
retinal vascular identification. By contrast, dog faces can be taken with any camera. In
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addition, high-resolution dog faces can be easily found on the Internet. In the field of face
identification, many existing studies have been conducted on the human face. However,
rapid overfitting is found in the human face identification models for datasets with a
low-level of normality, such as dog faces [31]. To solve this problem, studies on dog face
identification have recently been conducted in this regard [1,31–33]. In [32], the authors
used a support vector machine to classify the features of the Flickr dog dataset of 42 dog
faces consisting of husky and pug images extracted using a convolutional neural network
(CNN). In addition, the authors proposed shallow CNN and deep CNN models. The deep
CNN model was built using the Overfeat [33] model. As a result, the authors achieved an
accuracy of 67.6% on the Flickr-dog dataset. In [34], a dog face detection model was built
by cropping dog faces from the Columbia dogs dataset and learning Faster RCNN [35].
Moreover, then, the dog face detection model cropped the dog faces in the Columbia dogs
dataset and Stanford dogs dataset. Using the collected dog face images, breed classification
was trained on a pre-trained GoogleNet [36]. In addition, the Flickr-dog dataset was trained
only at the end of the model using a 10 k-fold cross-validation. In [34], as a result, the model
achieved an accuracy of 83.94% on the Flickr-dog dataset. In [31], a dog face dataset was
built by collecting and preprocessing a dog face dataset from the Internet, and a ResNet-like
model suitable for the size of the collected dataset was built. From the collected dataset,
485 dogs were extracted by selecting dogs with more than 5 photos that are easy to learn.
The ResNet-like model is mainly inspired by ResNet [37] because residual layers prevent
the vanishing gradient problem. The ResNet-like model was trained and evaluated using
the extracted dataset. As a result, an accuracy of 92% was achieved for the testing set.

3. Methodology

In previous studies, (1) an L2-norm layer was added to the end of the model, (2) the
embedding vector was normalized, and (3) cosine similarity-based learning was conducted
to train the face recognition model with a triplet loss, as shown in Figure 1. In this study,
the model with the L2-norm layer removed was trained with a triplet loss to locate the
embedding vector within a wide space. However, when the L2-norm layer is removed, the
triplet loss is not conducted for training. This paper proposes a two-stage learning method
with a vector length loss, which is a novel loss function for the length of the embedding
vector, to train a model with triplet loss without an L2-norm layer. The proposed loss
function adjusts the length of the embedding vector and places it within a certain area in
stage 1. As a result, the model can be trained with a triplet loss without an L2-norm layer
in stage 2.
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Figure 1. Existing triplet loss training model.

In this paper, a common architecture used to compare learning methodologies is
described in Section 3.1. The existing loss functions for metric learning are described in
Section 3.2. The vector length loss, a novel loss function for utilizing the infinite vector
space, is described in Section 3.3. A new learning method for a model that generates an
appropriate embedding vector in a vector space beyond the plane of the sphere using the
triplet loss and the newly proposed vector length loss consists of two-stage and is described
in Section 3.4.

3.1. Architecture

Rapid overfitting is found in deep learning models such as FaceNet [6], CosFace [8],
and ArcFace [9] for datasets with a low-level of normality, such as dog faces [31]. For this
reason, in this paper, the ResNet-like model proposed in [31] was used as architecture for
the implementation. The ResNet-like model is designed to prevent overfitting for training
the dog face dataset. The ResNet-like model prevents the vanishing gradient problem using
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residual layers. In addition, the ResNet-like model contains a dropout layer to prevent
overfitting. As a result, the ResNet-like model achieved the best performance in the field
of dog face identification. Therefore, in this paper, the ResNet-like model is used as the
architecture. In [31], the size of an image for learning is (104 × 104 × 3), and the ResNet-like
model takes the size as an input shape. The size of the original image is (224 × 224 × 3). In
this paper, an image of size (224 × 224 × 3) is used to prevent loss of information in the
process of reducing the image. Therefore, the input shape of the architecture is changed to
(224 × 224 × 3) and used. The ResNet-like model takes outputs an embedding vector of
size 32 and used the same. Figure 2 shows the architecture used in this paper.
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3.2. The Existing Loss Functions

The loss function used in the field of facial identification based on deep neural net-
works has improved significantly over the past few years. In particular, metric learning [4,5],
has been proposed, and a representative loss function includes a triplet loss proposed in
FaceNet [6]:

||f (xa) − f (xp)||2 + α < ||f (xa) − f (xn)||2 (1)

Training a deep neural network with triplet loss requires a triple dataset consisting of
an anchor image (xa), positive image (xp), and negative image (xn). The anchor image is an
image of a randomly chosen class inside the dataset. The positive image is another image of
the same class as the anchor. The negative image is an image of class other than the anchor.
The purpose of triplet loss is to ensure that the Euclidean distance between the anchor
embedding vector f (xa) and the positive embedding vector f (xp) is lower than the Euclidean
distance between the anchor embedding vector f (xa) and the negative embedding vector
f (xn). In Equations (1) and (2), f denotes a deep learning model. In addition, f generates an
embedding vector for an image x and denotes it as f (x). An appropriate constant (α) as a
margin is added to increase the distance from other objects. The training of the model aims
to minimize the following Equation (2), defined as the triplet loss in [6].

Max (||f (xa) − f (xp)||2 − ||f (xa) − f (xn)||2 + α, 0) (2)
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Equation (2) shows that loss occurs when the sum of the margin and the Euclidean
distance between the anchor embedding vector and the positive embedding vector is
greater than the Euclidean distance between the anchor embedding vector and the negative
embedding vector. Moreover, it is necessary to configure a dataset that is against the
triplet condition for efficient learning. To this end, a hard triplet loss has been proposed.
However, it may not be trained properly owing to the existence of several outliers if the
entire training set is composed of a hard triplet dataset. To avoid this problem, an offline
dataset reconfiguration method for each specific epoch and an online dataset configuration
method for reconfiguring the dataset within a mini-batch have been proposed. Triplet loss
is a Euclidean loss and is mapped to locate each class in an infinite vector space. However,
the triplet loss is not conducted for training in an infinite vector space. FaceNet [6] adds
an L2-norm layer to the end of the model to train the face recognition model with the
triplet loss. Triplet loss was also used to train a model for dog face identification [31]. The
L2-norm layer normalizes the length of the embedding vector to 1. The triplet loss here is
the cosine similarity.

The loss function related to the recently proposed face recognition model is ArcFace
loss [9]. ArcFace loss compares the angles between embedding vectors, unlike triplet loss
compares Euclidean distances. Therefore, in ArcFace [9], the triplet loss is transformed as
shown in Equation (3):

arccos (f (xa), f (xp)) + α < arccos (f (xa) − f (xn)) (3)

In Equation (3), arccos is the angle of the two input embedding vectors. In addition,
the triplet loss-based ArcFace defined from Equation (3) is calculated as Equation (4):

Max (arccos (f (xa), f (xp)) - arccos (f (xa), f (xn)) + α, 0) (4)

Equation (4) shows that loss occurs when the sum of the margin and the angles
between the anchor embedding vector and the positive embedding vector is greater than
the angles between the anchor embedding vector and the negative embedding vector.

3.3. Vector Length Loss

This paper proposes a vector length loss, a novel loss function that adjusts the length
of the embedding vector to remove the L2-norm layer and use the triplet loss. This
loss function is used with the triplet loss, including the L2-norm layer during stage 1,
and the loss is calculated during the previous L2-norm layer. The loss for the length of
the unnormalized embedding vector is calculated with the proposed loss function and
minimized. The purpose of the vector length loss function is to adjust the length of the
embedding vector by minimizing the length difference between the anchor and positive
image in the triplet dataset. The vector length loss function only uses the anchor and
positive image in the triplet dataset, not the negative image. In other words, the vector
length loss aims to reduce the difference in the length of embedding vectors between
the same class. This allows the model to be trained in stage 2 using triplet loss without
the L2-norm layer. Since the vector length loss adjusts the length of the embedding
vector, it can be used simultaneously with the triplet loss that adjusts the direction of the
embedding vectors.

g (x, z) = xz +
1

x(x + z)
(5)

Equation (5) calculates the loss for the length of the embedding vector of the anchor
and positive images in the dataset, which is composed of a triplet. In Equation (5), x is
the smaller value of the two embedding vector lengths, and z is the absolute value of the
difference in length of the two normalized embedding vectors (Appendix B). The x is the
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length of the embedding vector. Therefore, x is greater than 0. Consequently, Equation (5)
avoids division by zero:

δ2 g (x, z)
δ x2 =

2z2 + 6xz + 6x2

x3z3 + 3x4z2 + 3x5z + x6 (6)

δ2 g (x, z)
δ z2 =

2
xz3 + 3x2z2 + 3x3z + x4 (7)

Equations (6) and (7) are the second derivatives of x and z in Equation (5), respectively,
which are always positive if x and z are greater than zero. In other words, vector length loss
has one local point because the smaller embedding vector length of the anchor and positive
images is always greater than zero, and the absolute value of the difference in length of
two embedding vectors is greater than or equal to zero. The minimization of the loss
calculated by this loss function converges z into 0 and diverges x. However, Equation (5) is
too sensitive to the value of z, and the minimum loss cannot reach zero:

h (x, z) = xz +
1

x(x + z)
− β (8)

The specific constant β is subtracted from Equation (5) in Equation (8), and the
minimum value of the loss calculated by the equation can be adjusted to below zero, as
shown in Figure 3a. In addition, the distribution of x and z can be appropriately adjusted
by changing the β. As the β increases, the z, which can achieve the loss of zero, also
increases. In addition, as the β increases, the range of x—which can achieve the loss of
zero—increases. The purpose of this loss function is to minimize loss. In other words, the
distribution of x and z means the distribution that makes the value of this loss function
zero at a specific β. As a result, it is possible to adjust the degree of distribution of x and
z without calculating the loss. However, Equation (8) is still sensitive to the z value, and
the allowable range for x is extremely small, which interferes with the triplet loss training
because it is extremely convex.

H (x, z) = z ln (x + 1) +
1

x(x + z)
− β (9)

A natural logarithm was added to smoothen the equation and solve the problem
of Equation (6) being too convex in Equation (9). The modified Equation (9) was less
sensitive to the value of z, and the allowable range of x was wider. Adding 1 to the natural
logarithmic value of x prevented rapid shortening of the length of the embedding vector.

H (x, z) - H (x, z) = z (x - ln (x + 1)) (10)

Equation (10) is Equation (8) minus Equation (9), which always has a positive value if
x and z are greater than zero. Therefore, Equation (9) consistently has a lower value than
Equation (8).

δ h (x, z)
δx

− δ H (x, z)
δx

=
xz

x + 1
(11)

δ h (x, z)
δz

− δ H (x, z)
δz

= x – ln (x + 1) (12)

Equations (11) and (12) are the first derivative of Equation (6) minus the first deriva-
tive of Equation (9) and are always positive if x and z are greater than zero. Therefore,
Equation (8) is less convex than Equation (8), as shown in of Figure 3b. In this paper, an
experiment was conducted using β = 0.3 in Equation (9).
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3.4. Learning Method

The goal of this study is to learn a metric-learning-based model without an L2-norm
layer so that the embedding vector is spread over an infinite vector space. We propose a
two-stage learning method. In stage 1, the distribution of the embedding vector is located
within a certain range by using the vector length loss. By adjusting the distribution of the
embedding vector in stage 1, the model can be trained without the L2-norm layer. Stage 1
is described in Section 3.4.1. Moreover, then, in stage 2, training is performed by removing
the L2-norm layer of the model trained in stage 1. Stage 2 is described in Section 3.4.2.

3.4.1. Stage 1 of Learning Method

This study has proposed a two-stage learning method for training in a wide vector
space. In stage 1, the model, including the L2-norm layer, was trained equally as the existing
triplet loss learning model. In this model, the triplet loss was applied to the result value of
the L2-norm layer, and vector length loss was applied to the result value of the layer prior
to L2-norm, as shown in Figure 4. Two loss functions were used to simultaneously train
the angle and length of the embedding vector. The training was conducted to minimize the
vector length loss and the triplet loss at the same time. By applying stage 1, the distribution
of the embedding vector was located within a certain area. In stage 1, the accuracy was
measured based on the Euclidean distance of the resulting value that passed the L2-norm
layer.
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3.4.2. Stage 2 of Learning Method

In stage 2, the L2-norm layer was removed from the model, and the model was trained
using only the triplet loss, as shown in Figure 5. The triplet loss for this model was trained
based on the Euclidean distance rather than the cosine similarity because the L2-norm
layer was removed. As a result, the embedding vector is trained in vector space, not on the
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surface of the sphere. The accuracy of the model was calculated based on the Euclidean
distance in stage 1.
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4. Implementation

In this paper, we trained the models to compare the novel loss function and the
learning method proposed in Section 3 with the existing learning method. In Section 4.1,
a toy experiment is performed with the modified national institute of standards and
technology (MNIST) dataset to confirm that the proposed loss function and the learning
method are generalized to other datasets using a simple CNN model. In addition, we
compared the learning methodologies using a common architecture described in Section 3.1
except for the toy experiment in Section 4.1. In Section 4.2, we describe the dataset and
model parameters for training the model. In Section 4.3, we compare the accuracy and loss,
which are the results of the training models based on the proposed learning methodology
and existing learning methodologies.

4.1. Toy Experiment

We performed a toy experiment to verify the methodology proposed in this paper.
The MNIST dataset was used for the toy experiment. A simple CNN model that generates
2-D embedding vectors were trained using the proposed learning method and the existing
triplet loss method. Figure 6 shows the visual image of the results of the trained model
for the testing set of MNIST. In addition, Figure 6 shows the unnormalized embedding
vector. The initial state in Figure 6a shows the result of extracting the embedding vector
from the untrained model. The triplet loss in Figure 6b shows the result of extracting the
embedding vector from the model trained by the existing triplet loss learning method,
including the L2-norm layer. Stage 1 in Figure 6c is the result of extracting the embedding
vector from the model trained in the first stage of the proposed learning method, and it
shows a similar form to the existing triplet loss learning method. The maximum length
of the embedding vector in stage 1 of the proposed learning method was less than ten.
However, the maximum length of the embedding vector in the existing triplet loss method
was over thousands. This means that the length of the embedding vector was adjusted by
using the vector length loss in stage 1. Due to this, it became possible to perform stage 2
of the proposed learning method. As a result of stage 2 of the proposed learning method,
the model classified classes based on the Euclidean distance, not the angle, as shown in
Figure 6d.
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4.2. Dataset and Model Definition

The dog face dataset collected in [31] was used for the training set. The dog face
dataset has 1393 classes of dogs, 8363 images. In [31], the author selected 485 dogs with
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more than 5 photos that are easy to learn from the dataset for training and testing. In
addition, to prevent overfitting, the training set is augmented by zooming into the images
(zoom range = 0.1), by rotating them (rotation range = 8◦), and by shifting their channels
(channel shift range = 0.1). In this paper, 1001 dogs, including all dogs with 5 or more
images, were trained and tested as a class to verify the robustness even with low normality.
A total of 7040 images of 1001 dogs were used. A total of 6460 images of 901 dogs, which
was 90% of the selected dataset, were used as the training set, and the remaining 580 images
of 100 dogs were used for the testing set. In addition, both the training set and the testing
set are augmented by zooming, rotating, and shifting channels for data augmentation.
Figure 7 shows an example of the dog face dataset.
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For the model, the ResNet-like model proposed in [31] was used by changing its input
image size to (224 × 224 × 3), as shown in Figure 2. Online adaptive hard triplet was
used as a triplet dataset configuration method to sufficiently train the increased number of
dogs. Unlike the existing hard triplet configuration, the adaptive hard triplet configuration
method adjusted the ratio of the hard dataset according to the loss value of the model:

G (Loss) = exp (−Loss × C
BS

) (13)

Equation (13) calculates the hard triplet ratio to the loss and has a value between 0
and 1. BS indicates the batch size, and C indicates a constant. The sensitivity of the hard
triplet ratio to loss is adjusted by the constant C. A batch size of 30 and C of 10 was used.
Equation (13) was multiplied by 10 so that the maximum number of hard triplets was 10,
which is 1/3 of the batch size. The number of hard triplets increased as the loss decreased
and reached 10 when the loss was zero. The value in Equation (13) is rounded to an integer
and used as the number of hard triplets. The same model was trained on both the base
method and the proposed method for a performance evaluation and comparison. The
online adaptive hard triplet was used as the dataset configuration method. The alpha of
the triplet loss was 0.3. The model’s compiler used Adam optimizer, and the learning rate
was 1 × 10−4 in the entire epoch.

In this paper, the dataset and the ResNet-like model of [31] were used. In dog face
identification based on deep learning, [31] achieved the state of the art. Therefore, based
on the learning method presented in [31], the state-of-the-art (SOTA) model was trained
and tested for the same dataset. In [31], offline hard triplet was used as a triplet dataset
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configuration method. The offline triplet dataset is regenerated every 3 epochs. The alpha
of the triplet loss was 0.3. The model’s compiler used Adam optimizer. The learning rate is
scheduled as shown in Table 1. In this paper, a total of 3 models were compared.

Table 1. Learning rate schedule for the state-of-the-art model.

Epochs Learning Rates

39 0.001

12 0.0005

12 0.0003

6 0.0001

Total 69 -

For comparison, models were implemented by applying various learning method-
ologies to the architecture illustrated in Figure 2. We trained the model with SOTA, the
existing triplet loss and the ArcFace, including the L2-norm layer as shown in Figure 1.
In addition, we trained the model by combining the proposed loss function and learning
method with triplet loss and the ArcFace.

4.3. Models Implementation

The SOTA model was trained using the existing triplet loss with the L2-norm layer. The
minimum loss of the SOTA model for the testing set was 1.0612. The maximum accuracy
of the SOTA model for the testing set was 65.00%. In this paper, the process of extracting
data with a low learning difficulty was not performed. For this reason, the performance
of the model based on the learning method proposed in [31] decreased. The triplet loss
model was trained using the existing triplet loss with 1000 epochs. The training increased
the number of hard triplets of the triplet loss model increased to 9, and the minimum loss
of the triplet loss model for the testing set was 0.2069. The maximum accuracy of the triplet
loss model for the testing set was 93.33%. In addition, the ArcFace model was trained using
the triplet-loss-based ArcFace with 1000 epochs. The training increased the number of hard
triplets of the ArcFace model increased to 9, and the minimum loss of the ArcFace model
for the testing set was 0.3305. The maximum accuracy of the ArcFace model for the testing
set was 84.00%.

We implemented a model that combines the proposed learning method and triplet
loss. The proposed learning method was conducted in two training stages, with a total
of 1200 epochs: 1000 in stage 1 and 200 in stage 2. In stage 1, both loss functions triplet
loss and vector length loss were used for training the model, and only the triplet loss was
used as the loss for the hard triplet ratio. As a result of stage 1, the number of hard triplets
increased to 8, and the minimum loss for the testing set was the lowest when the sum of
the triplet loss of 0.2119 and the vector length loss of 0.05868 was 0.27058. The maximum
accuracy for the testing set was 89%. Stage 2 was applied using the minimum loss model
of stage 1. In stage 2, as shown in Figure 5, the L2-norm layer of the lowest loss model
trained in stage 1 was removed, and the model was trained using only the triplet loss. As a
result of stage 2, the number of hard triplets increased to 9, and the minimum loss for the
testing set was 0.1833. The maximum accuracy for the testing set was 97.33%.

In addition, we implemented a model that combines the proposed learning method
and ArcFace using the same epoch as the model combining triplet loss. Both loss functions,
triplet-loss-based ArcFace and vector length loss, were used for training the model in stage
1. As a result of stage 1, the number of hard triplets increased to 8, and the minimum loss
for the testing set was the lowest when the sum of the ArcFace loss of 0.2599 and the vector
length loss of 0.0210 was 0.2809. The maximum accuracy for the testing set was 84.33%. In
stage 2, our proposed learning method uses a Euclidean distance. Therefore, in stage 2 of
the proposed learning method, the existing triplet loss was used. As a result of following
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stage 2, the number of hard triplets increased to 8, and the minimum loss for the testing set
was 0.2566. The maximum accuracy for the testing set was 96.33%. Table 2 sums up the
results of model implementation (Appendix A).

Table 2. Loss and accuracy of learning methods for the architecture described in Section 3.1. Vector
length (VL) method indicates vector length loss.

Learning Methods Loss Accuracy

SOTA 1.0612 65.00%

Triplet 0.2069 93.33%

ArcFace 0.3305 84.00%

Triplet + VL stage 1 0.27058 89.00%

Triplet + VL stage 2 0.1833 97.33%

ArcFace + VL stage 1 0.2809 84.33%

ArcFace + VL stage 2 0.2566 96.33%

5. Evaluation

To compare the proposed learning method with the SOTA learning method, the
triplet loss learning method and the ArcFace learning method, a performance evaluation
was conducted by using the lowest loss models of Section 4.3. This evaluation used two
methods of the testing set configuration: closed-set and open-set. A closed-set is the
untrained dataset of the object used for training, which means the test for the object trained
at the training process, whereas an open-set is a dataset of an untrained object, which
means the test for the new untrained object. The test for an open-set is more difficult
than that of a closed-set and is more closely related to real-world problems. The present
evaluation was carried out with the open-set because the model must be able to correctly
identify new objects for the return of newly occurring lost animals. The testing set for
evaluation consists of 580 images of 100 untrained dogs. The model, which trained by
the proposed loss function and learning method, was evaluated in the following three
methods:

• Comparison of embedding vector distribution between the learning methods: The
embedding vectors of the open set were extracted from the model trained by the base
learning method, the SOTA learning method, and the proposed learning method, and
their distributions were compared. The embedding vectors used values before the
L2-norm layer. The distribution was compared by the mean and variance for the
length of the embedding vector and the distance between the center of the object’s
embedding vectors and the embedding vector for each object;

• Face verification: The model discerned whether a pair of images was the same object
and calculated its accuracy. Specifically, the distance (d) between the two embedding
vectors extracted by the model was compared to a specific threshold (t), and when
d < t, the images were discerned as the same object. The accuracy of the discernment
result is calculated. The receiver operating characteristic (ROC) curve and the opti-
mum accuracy were compared between models while changing the threshold. This
procedure was repeated 100 times to calculate the average of the ROC curves;

• Face identification: one image was selected for each object included in the open set
to configure a set of 100 sub-training sets, and the remaining data comprised the
sub-testing set. Rank 1 and rank 5 were extracted by comparing the distance between
the embedding vectors of one sub-testing data and all sub-training data, their accuracy
was calculated, and this procedure was repeated 1000 times for the entire sub-testing
set to compare the mean, maximum, and minimum accuracy of rank 1 and rank 5.
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5.1. Comparison of Embedding Vector Distribution between Learning Methods

The embedding vector distributions of the testing set extracted from the model trained
with the SOTA learning method, the triplet loss learning method, the ArcFace learning
method and the proposed learning method were compared. To compare the distributions,
the mean and variance were calculated for the distance between the center of the object’s
embedding vectors and the embedding vector (D), as well as for the length of the embed-
ding vector (L). In Figure 8, each point represents one object; in addition, the x-axis is D,
and the y-axis is L. The mean and variance of D and L of the model trained by the SOTA
learning method, the triplet loss learning method and the ArcFace learning method were
much greater than the equivalent values for the model trained by the proposed learning
method as shown in Figure 8. These results suggest that embeddings vectors extracted from
models learned with the proposed learning method are well clustered among classes based
on distance compared to embedding vectors extracted from other models. In addition, it
means that learning of triplet loss using distances other than angles is possible.
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In stage 1, the variance of L was extremely small, and the mean remained at an almost
similar level, as shown in Figure 9. Figure 9 shows that the variance of L of the model
trained in stage 1 was extremely small, and the mean remained almost the same. This
means that the length of the embedding vector is similar overall. Stage 1 of the proposed
learning method is similar to the existing triplet loss learning method. Afterward, in stage 2,
the variance of L increased but was extremely insignificant, and the variance of D decreased.
The distribution of the mean of L was expanded, and the distribution of the mean of D was
reduced. Therefore, the embedding vector was located in a wider area, and an aggregation
of the vector for each object was conducted at the same time during the training. This result
means that the model learned by stage 1 was learned based on the distance by performing
stage 2 of the proposed learning method. As a result, we demonstrated that classification
has been performed on vector spaces beyond the plane of a sphere with a radius of 1. In
addition, the distribution of embedding vectors for each stage of the learning methods
combined with the triplet loss and the ArcFace is similar, as shown in Figure 9. This means



Appl. Sci. 2021, 11, 2074 14 of 22

that the proposed learning method can be generalized even when combined with other
loss functions of metric learning.
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5.2. Face Verification

In Section 4.3, the minimum loss of the testing set was 0.2069 for the triplet loss learning
method and 1.0612 for the SOTA learning method, but only 0.1833 for the proposed learning
method combined with triplet loss. The optimum accuracy was improved by 4% from
93.33% for the triplet loss learning method to 97.33% for the proposed learning method
combined with triplet loss. From the testing set, 2500 positive and 2500 negative pairs
were generated and used to compare the performance of the three trained models. This
procedure was repeated 100 times. The average ROC curves of models for face verification
are shown in Figure 10. The five learning methods learned the same architecture introduced
in Section 3.1. However, the triplet loss learning method, the ArcFace learning method and
the proposed learning method used the online adaptive hard triplet dataset configuration
method, but the SOTA learning method used the offline hard triplet dataset configuration
method. For this reason, the results of other learning methods are relatively similar
compared to the SOTA learning method. In addition, through the ROC curves of Figure 10,
it was demonstrated in 100 repeated experiments that the proposed learning method has
better performance than the triplet loss learning method and the ArcFace learning method.

Table 3 sums up the results of face verification. Table 3 shows the performance of
the models using the best threshold of each model and the performance of the models
using the value of α used for learning. The best accuracy and the threshold of each model
were measured while changing the threshold. The mean of the best accuracy of the model
trained with the SOTA learning method was 76.9%, and the mean of the threshold was 0.38.
The mean of the best accuracy of the model trained with the triplet loss learning method
was 87.0%, and the mean of the threshold was 1.29. The mean of the best accuracy of the
model trained with the ArcFace learning method was 86.4%, and the mean of the threshold
was 1.31. The best mean of the accuracy of the model trained with the proposed learning
method combined with triplet loss was 88.4%, and the mean of the threshold was 2.49.
The best mean of the accuracy of the model trained with the proposed learning method
combined with ArcFace was 88.8%, and the mean of the threshold was 1.49. As a result,
the accuracy of the proposed learning method with ArcFace was 1.8% higher than that
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of the triplet loss learning method. This means that the error rate is reduced by about
13.9 percent. Some examples of false-positive and false-negative pairs of the proposed
learning method are presented, as shown in Figure 11. A false-negative error has occurred
when the difference in lighting and angle of the same object is large. In addition, the error
occurred when the degree of the face being covered by an object is large.
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Table 3. Results of the mean of the optimum accuracy and the threshold for the learning methods in
face verification.

Learning Methods Threshold Accuracy Threshold Accuracy

SOTA α = 0.3 76.0% best = 0.38 76.9%

Triplet α = 0.3 55.9% best = 1.29 87.0%

ArcFace α = 0.3 55.2% best = 1.31 86.4%

Triplet + VL α = 0.3 54.3% best = 2.49 88.4%

ArcFace + VL α = 0.3 60.2% best = 1.49 88.8%

5.3. Face Identification

The accuracy of the one-shot identification at rank 1 and rank 5 was evaluated using
the minimum loss models in Section 4.3. Models trained with the SOTA learning method,
the triplet loss learning method and the ArcFace learning method included the L2-norm
layer at the end, and models trained with the proposed learning method did not. From the
580 testing set for 100 dogs, one image was randomly selected for each object to configure
100 sub-training sets, and the remaining 480 images were configured as sub-testing sets.
Rank 1 and rank 5 were extracted by comparing the distance between the embedding
vectors of one sub-testing data and all sub-training data. The accuracy of the extracted
rank 1 and rank 5 was calculated and compared. The experiment was repeated 1000 times.
Table 4 represents the experiment results. As a result, the mean of the rank 1 and rank 5 of
the model trained with the SOTA learning method was 10.96% and 32.58%, respectively.
The mean of the rank 1 and rank 5 of the model trained with the triplet loss learning
method was 37.52% and 65.84%, respectively, and this accuracy was improved by 2.22%
and 2.96% to 39.74% and 68.80%, respectively, with the model trained using the proposed
learning method combined with triplet loss. The model trained with the proposed learning
method combined with triplet loss obtained the highest mean, maximum, and minimum
accuracy for both rank 1 and rank 5.

Table 4. Results of mean, maximum, and minimum accuracy of rank 1 and rank 5 for the learning
methods in face identification.

Learning
Methods

Rank 1 Rank 5

Mean Maximum Minimum Mean Maximum Minimum

SOTA 10.96% 14.79% 6.67% 32.58% 38.54% 26.25%

Triplet 37.52% 45.21% 31.04% 65.84% 72.50% 59.58%

ArcFace 38.41% 44.38% 32.92% 65.92% 70.83% 60.83%

Triplet + VL 39.74% 47.08% 32.92% 68.80% 73.96% 63.12%

ArcFace + VL 34.92% 41.67% 28.96% 67.57% 73.12% 61.25%

6. Conclusions

Although many studies have been conducted on animal identification, the perfor-
mance improvement has been limited to the application of the existing face identification
methodology owing to the low normality of dog faces and the lack of related data. This
paper proposed to overcome these limitations with a novel loss function and learning
method that utilize a wide vector space and thereby improves the performance of the dog
face identification model. The triplet loss used in the existing face identification model
was trained based on cosine similarity using the L2-norm layer. This paper proposes the
training of a model without an L2-norm layer using vector length loss, which is a novel
loss function for the length of the embedding vector, and its two-stage learning method.
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The embedding vector was distributed over the surface of the sphere into a wider vector
space, which improved the performance of the dog face identification model by 4%.

The distribution of embedding vectors is limited compared to the infinite vector space,
but this paper proposes the novel loss function and learning method to utilize the vector
space wider than the surface of the sphere. The proposed methodology improves the
model’s performance compared to the existing methodology for the same model. As a
result, this paper overcomes the limitation of triplet loss in face identification and improves
the performance of the dog face identification model, which is expected to help return
lost dogs. Furthermore, the model’s performance will be further improved by using the
proposed loss function and its learning method for other models and datasets using the
existing triplet loss and L2-norm layer.
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Appendix A

In this paper, for comparison, we trained the model with SOTA, the existing triplet
loss and the ArcFace, including the L2-norm layer. In addition, we trained the model
by combining the proposed loss function and learning method with triplet loss and the
ArcFace. The SOTA model was trained using the existing triplet loss learning method with
69 epochs, as shown in Figure A1.
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The triplet loss model was trained using the existing triplet loss learning method with
1000 epochs. Figure A2 illustrates the training results.
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Second, the proposed model was trained with the ArcFace in stage 1. Figure A6
illustrates the training results.
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In stage 2, the L2-norm layer of the lowest loss model trained in stage 1 was removed,
and the model was trained using only the triplet loss. Figure A7 illustrates the training
results of stage 2.
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Appendix B

In this paper, we proposed a new loss function named vector length loss. The vector
length loss uses two variables, x and z. In vector length loss, x is the smaller value of
the two embedding vector lengths, and z is the absolute value of the difference in length
of the two normalized embedding vectors. The two variables, x and z, are equal to
Equations (A1) and (A2), respectively:

x = Min (||f (xa)||, ||f (xp)||) (A1)

z = Abs (||f (xa)|| − ||f (xp)||) (A2)

The vector length loss is calculated using only the anchor and positive in a dataset
composed of a triplet.
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