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Abstract: Using natural language processing tools, we investigate the semantic differences in medical
guidelines for three decision problems: breast cancer screening, lower back pain and hypertension
management. The recommendation differences may cause undue variability in patient treatments
and outcomes. Therefore, having a better understanding of their causes can contribute to a discussion
on possible remedies. We show that these differences in recommendations are highly correlated with
the knowledge brought to the problem by different medical societies, as reflected in the conceptual
vocabularies used by the different groups of authors. While this article is a case study using three sets
of guidelines, the proposed methodology is broadly applicable. Technically, our method combines
word embeddings and a novel graph-based similarity model for comparing collections of documents.
For our main case study, we use the CDC summaries of the recommendations (very short documents)
and full (long) texts of guidelines represented as bags of concepts. For the other case studies, we
compare the full text of guidelines with their abstracts and tables, summarizing the differences
between recommendations. The proposed approach is evaluated using different language models
and different distance measures. In all the experiments, the results are highly statistically significant.
We discuss the significance of the results, their possible extensions, and connections to other domains
of knowledge. We conclude that automated methods, although not perfect, can be applicable to
conceptual comparisons of different medical guidelines and can enable their analysis at scale.

Keywords: conceptual similarity; medical guidelines; disagreement; natural language processing;
word embeddings; graphs; clinical practice guidelines; breast cancer screening; hypertension man-
agement; lower back pain

1. The Problem and the Method

This article investigates a natural question. We are asking whether differences in
medical recommendations arise from differences in knowledge brought to the problem by
different medical societies. To answer this question at scale we need an automated method
to measure such differences. The purpose of this article is to present such a computational
method and use a collection of case studies to evaluate its performance.

Our method uses the standard natural language processing approach to represent
words and documents as embeddings, and combines it with a graph comparison algorithm.
We evaluate our approach on three sets of medical guidelines: for breast cancer screening,
lower back pain management guidelines and hypertension management guidelines.

The answer to this question matters because physicians with different specialties
follow different guidelines. This results in the undue variability of treatment. Therefore,
understanding what drives the differences in recommendation should contribute to its
reduction, and to better patient outcomes [1–3].
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1.1. Motivation

There are over twenty thousand clinical practice guidelines indexed by PubMed
(https://pubmed.ncbi.nlm.nih.gov/ (accessed on 24 February 2020)), with over 1500 ap-
pearing every year [4]. Since clinical practice guidelines are developed by different medical
associations, which count on experts with different specialties and sub-specialties, there
is a high possibility that there may be disagreement in the guidelines. Indeed, as noted
by [3], and discussed in [5,6], breast cancer screening guidelines contradict each other. Be-
sides breast cancer screening disagreements, which we model in this article, controversies
over PSA screening, hypertension and other treatment and prevention guidelines are also
well-known.

Figure 1 illustrates our point. We see disagreements in seven breast cancer screening
recommendations produced by seven different medical organizations. The hypothesis we
investigate is that the contradictory recommendations reflect the specialized knowledge
brought to bear on the problem by different societies.

Notice that the dominant view is to see expertise as a shared a body of information,
and experts as epistemic peers [7] with identical levels of competence. Under this paradigm
of shared knowledge and inferential abilities, the medical bodies should not differ in their
recommendations. That they do is interesting and worth investigating. Thus, this article
is also motivated by the idea that epistemology of disagreement [7–9] can be modeled
computationally. On the abstract level, we view medical disagreement as “near-peer”
disagreement [10–12], where we see expert groups as having partly overlapping knowledge.
This article shows that such more realistic and fine-grained models can also be studied
computationally, quantitatively, and at scale.

Figure 1. Note the contradictory recommendations in green and blue boxes. The colors in the table come from [6], but the
original table comes from the CDC [3]. Only a part of the table is reproduced here.

1.2. Brief Description of the Proposed Method

In this article we investigate the question of whether differences in medical recommen-
dations come from differences in specialized medical knowledge applied to specific classes
of patients, and whether such differences in specialties can be modeled computationally.

https://pubmed.ncbi.nlm.nih.gov/
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Our idea is to model “specialized medical knowledge”, which we cannot easily
observe, by the differences in vocabulary used in medical guidelines. We then show that
these vocabularies, assembled in vector representations of these documents, produce the
differences in recommendations. We evaluate our method using three case studies: breast
cancer screening guidelines, lower back pain management guidelines and hypertension
management guidelines. In the main track of this article, we use the breast cancer screening
guidelines to present our approach and the evaluation, and the additional evaluations on
the other two sets of guidelines are presented in the Appendix A.

More specifically, we computationally compare the full texts of guidelines with the
their recommendation summaries. For breast cancer screening, the summaries come from
the CDC [3]; for lower back pain management, they come from a summary article [13];
and, for hypertension management, where we lack a tabular comparison, we used the
abstracts of the documents. That is, we see if the semantic similarities between the full
documents follow the same pattern as semantic similarities between the summaries. Note
that each computational comparison was made between two sets of documents and not
individual documents.

This process involves several steps and is shown in Figure 2, for the breast cancer
screening guidelines. Thus, the vector representations of full texts of the guidelines model
the vocabularies as bags of concepts, and therefore cannot model specific recommendations:
the concepts in the recommendations, such as “mammography” and “recommend”, appear
in all full texts, but specific societies may be either for mammography or against it. The
vector representations of recommendations model the differences in prescribed procedures,
but not the vocabularies (see Tables 1 and 2 below).

Figure 2. The method of comparing concepts in full documents and recommendations contained
in summaries. Note the difference in representations: the document are represented by a large
number of high-dimensional (200) vectors with real valued features, whereas the disagreement
representations can be low-dimensional vectors with discrete features (e.g., five-dimensional for the
breast cancer screening guidelines). Our exposition will roughly follow the left-to-right order of this
figure, using the breast cancer screening guidelines as the motivating example.

Table 1. The table shows recommendations as follows: N—no recommendation; b—both patient and
doctor, shared decision; r—recommending mammography.

Guideline 40–49 50–74 75+ Dense Breast Higher than Average Risk

AAFP b r b b N

ACOG r r b b r

ACP b r r N N

ACR r r r b r

ACS b r r b b

IARC b r N b r

USPSTF b r b b r
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Table 2. This table shows the number of differing feature values for pair of guidelines, based on
Table 1. The Jaccard distances between the documents are obtained by dividing the value in the table
by five (the number of features).

AAFP ACOG ACP ACR ACS IARC USPSTF

AAFP 0 2 3 3 2 2 1

ACOG 2 0 4 1 2 2 1

ACP 3 4 0 3 2 3 3

ACR 3 1 3 0 1 2 2

ACS 2 2 2 1 0 1 1

IARC 2 2 3 2 1 0 1

USPSTF 1 1 3 2 1 1 0

How do we know if vocabularies determine recommendations? We compute pairwise
distances (cosine or word mover’s distance) between the full text vectors. In parallel, we
compute pairwise distances between the recommendation vectors. We thus get two graphs,
and their shapes can be compared. We show that the resulting geometries are very similar
and could not have been produced by chance.

This process is slightly modified for lower back pain management, where we start
with the tables of disagreement from the summary article [13]. For the hypertension
management guidelines, we use the graph of summaries that is generated from the abstracts
of full documents, because we do not have any tabular sets of comparisons similar to [3,13].
However, even with this change the proposed method performs very well. Notice that
to model full documents we use a large number of high dimensional (200), real valued,
vectors. By contrast, the vectors representing the recommendations only have a smaller
number of discrete-valued features (five for the breast cancer screening, and 12, 59 and 71
for lower back pain management).

1.3. Summary of Contributions

The main contribution of this article is in proposing an automated, and relatively
straightforward, method of text analysis that (1) computes conceptual differences between
documents addressing the same topic (for example, breast cancer screening), and (2) these
automated judgments have a high correlation with recommendations extracted from these
documents by a panel of experts. We test the approach on the already mentioned breast
cancer screening recommendations, as well as in other sets of experiments on lower back
pain management and hypertension management guidelines. As such, these results open
the possibility of large-scale analysis of medical guidelines using automated tools.

Another contribution is the articulation of a very natural graph clique-based algo-
rithm/method for comparing the similarity of two collections of documents. Given two sets
of documents, each of the same cardinality, and a mapping between nodes, we compute
the percent of similarity (or, equivalently, distortion between the shapes of the two cliques),
and the chances that the mapping arose from a random process.

We also document all steps of the process and provide the data and the code to
facilitate both extensions of this work and its replication (the GitHub link is provided in
Section 8).

1.4. Organization of the Article

In Section 2, we provide a brief overview of applications of natural language pro-
cessing to texts of medical guidelines, word embedding, and some relevant work on
disagreement. Afterwards, we follow the left-to-right order of Figure 2 using the breast
cancer screening guidelines as the motivating example (other experiments are described in
the Appendix A). Thus, Sections 3 and 4 explain our example data sources: a CDC sum-
mary table of breast cancer screening guidelines and the corresponding full text documents.
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In these two sections, we also discuss the steps in the conceptual analysis of the table. First,
the creation of a graph of conceptual distances between the columns of the table, and then
the encoding of full documents as vectors, using two standard vectorization procedures.
Our method of comparing summarized recommendations and full guideline documents is
presented in three algorithms and discussed in Section 5.

After observing a roughly 70% similarity between the distances in the summaries
and the distances in the full documents, we prove in Section 6 that this similarity is not
accidental. We conclude in Sections 6 and 8 that this case study shows that NLP methods
are capable of approximate conceptual analysis in this space (using the Appendix A for
additional support). This opens the possibility of deepening this exploration using more
sophisticated tools such as relationship extraction, other graph models, and automated
formal analysis (as discussed in Sections 7 and 8).

In the Appendix A, we provide information about additional experiments we per-
formed to validate the proposed method. (We decided to put this information in an
appendix in order to simplify the main thread of the presentation). There, we first discuss
a few variants of the main experiment, where we filtered out some sentences from the full
guidelines’ texts. Then, we apply our method to two other collections of guidelines: namely,
to hypertension and low back pain management guidelines. All of these experiments con-
firm the robustness of the proposed method and the system’s ability to computationally
relate background knowledge to actual recommendations.

2. Discussion of Prior Art

We are not aware of any work directly addressing the issue we are tackling in this
article; namely, the automated conceptual analysis of medical screening recommendations.
However, there is a body of knowledge addressing similar issues individually, which we
summarize in this section.

2.1. Text Analysis of Medical Guidelines

An overview article [14], from a few years ago, states that different types of analysis
of medical guidelines are both a central theme in applications of artificial intelligence to
medicine and a domain of research with many challenges. The latter include building
formal, computational representations of guidelines and a wider application of natural
language processing. From this perspective, our work is relevant to these central and
general themes.

A more recent and more technical work [15] focuses on finding and resolving con-
flicting recommendations using a formal model and automated proof systems—it relies
on a manual translation into a formal language, Labelled Event Structure. This is a very
interesting work, somewhat in the spirit of our own attempts, using a combination of
NLP and information retrieval tools [6]. Another article [16], dealing with contradictory
recommendations, focuses on the semi-automatic detection of inconsistencies in guidelines;
these tools are applied to antibiotherapy in primary care. Another recent application of
natural language processing [17,18] shows that one can accurately measure adherence to
best practice guidelines in a context of palliative care, as well as try to assess the quality of
care from discharge summaries.

More broadly, modern NLP methods have been applied to clinical decision support,
e.g., [19], with ontologies and semantic webs for concept representation; to clinical tri-
als [20]; and to automatic extraction of adverse drug events and drug related entities,
e.g., using a neural networks model [21]. For document processing, we have, e.g., a
knowledge-based technique for inter-document similarity computation [22], and a success-
ful application of conceptual representations to document retrieval [23].

All of these show that the state-of-the-art systems are capable of both performing
statistical analysis of sets of documents and a semantic analysis fitting the need of a
particular application. Our work extends both of these in a new direction, and connects
statistics with semantics, for the purpose of analysis of medical guidelines.
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2.2. Vector Representations of Documents Using Word Embeddings

Over the last 10 years, we have witnessed a new era in automated semantic analysis
of textual documents [24]. While no system can claim to “really” understand natural lan-
guage, in several domains, such as data extraction, classification and question answering,
automated systems dramatically improved their performance, and in some cases per-
formed better than humans, due to the unmatched pattern recognition and memorization
capabilities of deep neural networks (see, e.g., [25] for an overview).

Some of the simplest, easiest to use and effective of these new methods are different
types of word and concept embeddings [26–29]. Embeddings represent words and concepts
as dense vectors (i.e., a few hundred dimensional real-valued vectors), and are a preferred
tool to make similarity judgments on the level of words, phrases, sentences and whole
documents. They have been applied to medical texts—see [30] for a survey.

Word embeddings have been widely used to compare documents, and in particular to
compute their degree of similarity [31,32]. Other methods proposed to compute document
similarity are based on using background knowledge [22].

This work uses both methods, namely human knowledge encoded in the CDC table
(Figure 1), and embeddings. For the former, we use five-dimensional feature vectors
representing differences in recommendations (Section 3). For the latter, we use (several
versions of) 200-dimensional embeddings of full documents (Section 4).

2.3. Other Work on Disagreements and Contradictions

Disagreements among medical experts are clearly very relevant to work. A comprehen-
sive review of medical disagreement with a focus on intervention risks and the standards of
care can be found in [33]. Once medical experts express their disagreements, what happens
next? Observations from disagreement adjudication are analyzed in [34,35], where the
authors observe (among other things) that the differences in experts’ backgrounds increase
the degree of disagreement.

If we broaden the context beyond medical disagreements, to artificial intelligence,
there is a substantial amount of work on contradictory knowledge bases, as exemplified
by [36–38]. Of particular interest may be proposals for real valued measures of contradic-
tions in knowledge bases [38,39]. However, in that particular research avenue the starting
points are collections of facts, and not recommendations; moreover, natural language
texts are not mentioned. We believe this type of work will become more relevant as our
capabilities to extract knowledge from text improve.

3. From Recommendations to Vectors of Differences and a Graph

We start with the simpler task of transforming the screening recommendations (refer-
enced above in Figure 1) to vectors of differences, representing the disagreements in the
recommendations, and then to a graph of their conceptual distances, where, intuitively, the
larger the number of recommendation differences, the bigger the distance.

We will proceed in three steps: First, using a diagram (Figure 3) and a table (Table 1)
we make explicit the difference in recommendations in Figure 1. Second, we transform
the table into a count of differences (Table 2) and from that we derive distances between
pairs of recommendations (Table 3). The graph representing the recommendations will
have nodes named after each organization (e.g., AAFP, ACOG, etc.) and edges labeled and
drawn with distances (Figure 4).
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Figure 3. Similarities and disagreements in summarized recommendations. The yellow coloring
shows patient making decisions, the blue coloring shows explicit screening recommendations. The
concentric circles show different age groups. Red marks—physician recommends, green marks—
patient decides.

(a) Number of differing features. (b) Jaccard distances between summary
recommendations, as per Table 1.

Figure 4. In panel (a) we see a pictorial representation of the numbers of differing features, per
Tables 2 and 3. These differences between recommendations are converted into distances (using the
Jaccard measure), resulting in panel (b). Can we replicate the geometric structure of panel (b) using
automated tools? See Section 6 for an answer.
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Table 3. Normalized distances between the summarized guidelines computed using Jaccard distances
from Tables 1 and 2.

AAFP ACOG ACP ACR ACS IARC USPSTF

AAFP 0 0.0238 0.0357 0.0357 0.0238 0.0238 0.0119

ACOG 0.0238 0 0.0476 0.0119 0.0238 0.0238 0.0119

ACP 0.0357 0.0476 0 0.0357 0.0238 0.0357 0.0357

ACR 0.0357 0.0119 0.0357 0 0.0119 0.0238 0.0238

ACS 0.0238 0.0238 0.0238 0.0119 0 0.0119 0.0119

IARC 0.0238 0.0238 0.0357 0.0238 0.0119 0 0.0119

USPSTF 0.0119 0.0119 0.0357 0.0238 0.0119 0.0119 0

3.1. Computing the Differences in Recommendations

Figure 3 is another representation of the information in the CDC comparison of the
recommendations [3], earlier presented in Figure 1. It clearly shows the differences between
the guidelines (and it comes from [40]). As we can see, there are two sides to the circle.
The yellow side indicates the scenario where patients will likely decide when breast cancer
screening should be done, and the purple color side specifies the situation where breast
cancer guideline providers most likely will demand screening interventions. White radial
lines indicate boundaries between the different societies. The red color marks indicate that
the physician decides. Green color marks indicate patients’ decisions.

3.2. From Differences to Distances and a Graph

Table 1 represent the content of this analysis as a collection of features. Table 2 encodes
these differences in recommendations as numbers of differing features between pairs of
recommendations. Then, Table 3 shows the distances between the guidelines derived from
Tables 1 and 2 using the Jaccard distance (the percentage of different elements in two sets):

dj(A, B) = 1− | A ∩ B |
| A ∪ B |

Given two recommendation summaries A and B we compute the number of the
differing feature values from Table 2 and divide it by five. For example, for the pair (AFP,
ACR) we get 3/5. All these distances were normalized to sum to 1 and shown in Table 3
(we are not assuming that distances are always symmetric. In most cases they are, but
later we will also report experiments with the search distances, which are not symmetric).
The normalization does not change the relative distances, and in the comparisons with the
geometry of full documents we only care about the relative distances.

Tables 1–3 represent the process of converting the information in Figure 3 into a set
of distances. These distances are depicted graphically in Figure 4, where we display both
Jaccard distances between the recommendations and the number of differing features as
per Table 2.

In the following section we will create a graph representation for the full documents
(Figure 5b). We will present our graph comparison method in Section 5. In Section 6, we
will assign numerical values to the distance between the two graphs, and show that this
similarity cannot be the result of chance.
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(a) Distances between the seven summary
recommendation guidelines.

(b) Distances between full document guidelines
using WM distance and BioASQ embeddings with
concepts (see text for explanations) .

Figure 5. Visual comparison of a the similarity/distance graphs based on human analysis is shown
in panel (a), and computer generated comparison from Table 5 is shown in panel (b), which suggest a
similar geometry. As we rigorously show in Section 6, this 69% similarity is not accidental; the distortion
is about 31%. Notice that we are not pointing to the actual locations of similarities and difference
in the guideline documents. Instead, we are pointing to global (latent) differences stemming from
concepts appearing in them.

4. Transforming Full Guidelines Documents into Vectors and Graphs

In this article, we use both the CDC summaries ([3], reproduced and labeled in
Figures 1 and 3), and the full text of the guidelines used by the CDC to create the summaries.
The focus of this section is on the full guideline documents. The detailed information about
these guidelines is shown in Table 4.

Note that in this section we are using the same acronyms (of medical societies) to refer
to full guideline documents. This will not lead to confusion, as in this section we are only
discussing full documents.

Table 4. Guidelines with references. All the sources were last retrieved in summer 2020.

Guideline
Abbreviation

Full Name of the
Organization URL Reference Document

Citation

ACOG
The American College
of Obstetrics and
Gynecology

http:
//msrads.web.unc.edu/files/2019/0
5/ACOGBreastCAScreening2014.pdf

[41]

AAFP American Academy of
Family Physicians

https://www.aafp.org/dam/AAFP/
documents/patient_care/clinical_
recommendations/cps-
recommendations.pdf

[42]

ACP American College of
Physicians

https://annals.org/aim/fullarticle/
2294149/screening-cancer-advice-
high-value-care-from-american-
college-physicians

[43]

ACR American college of
Radiology

https:
//www.sciencedirect.com/science/
article/pii/S1546144009004803

[44]

http://msrads.web.unc.edu/files/2019/05/ACOGBreastCAScreening2014.pdf
http://msrads.web.unc.edu/files/2019/05/ACOGBreastCAScreening2014.pdf
http://msrads.web.unc.edu/files/2019/05/ACOGBreastCAScreening2014.pdf
https://www.aafp.org/dam/AAFP/documents/patient_care/clinical_recommendations/cps-recommendations.pdf
https://www.aafp.org/dam/AAFP/documents/patient_care/clinical_recommendations/cps-recommendations.pdf
https://www.aafp.org/dam/AAFP/documents/patient_care/clinical_recommendations/cps-recommendations.pdf
https://www.aafp.org/dam/AAFP/documents/patient_care/clinical_recommendations/cps-recommendations.pdf
https://annals.org/aim/fullarticle/2294149/screening-cancer-advice-high-value-care-from-american-college-physicians
https://annals.org/aim/fullarticle/2294149/screening-cancer-advice-high-value-care-from-american-college-physicians
https://annals.org/aim/fullarticle/2294149/screening-cancer-advice-high-value-care-from-american-college-physicians
https://annals.org/aim/fullarticle/2294149/screening-cancer-advice-high-value-care-from-american-college-physicians
https://www.sciencedirect.com/science/article/pii/S1546144009004803
https://www.sciencedirect.com/science/article/pii/S1546144009004803
https://www.sciencedirect.com/science/article/pii/S1546144009004803
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Table 4. Cont.

Guideline
Abbreviation

Full Name of the
Organization URL Reference Document

Citation

ACS American Cancer
Soceity

https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4831582/ [45]

IARC International Agency
for Research on Cancer

https://www.nejm.org/doi/full/10.1
056/NEJMc1508733 [46]

USPSTF
United States
Preventive services
Task Force

https://annals.org/aim/fullarticle/
2480757/screening-breast-cancer-u-s-
preventive-services-task-force-
recommendation

[47]

4.1. Data Preparation for All Experiments

From the breast cancer screening guidelines listed in the CDC summary document [3],
the texts of the USPSTF, ACS, ACP and ACR guidelines were extracted from their HTML
format. We used Adobe Acrobat Reader to obtain the texts from the pdf format of the AAFP,
ACOG, and IARC guidelines. Since the AAFP documents also included preventive service
recommendations for other diseases (such as other types of cancers), we added a preprocess
step to remove those recommendations, leaving the parts matching “breast cancer”.

4.2. Measuring Distances between Full Documents

When creating embedding representation of text, we replace each word or term with
its embedding representation. Thus, the text full guideline documents are represented
as a set of vectors. Our objective is to create a graph of conceptual distances between
the documents.

The two most commonly used measures of distance, cosine distance and word mover’s
distance, operate on different representations. The former operates on pairs of vectors, and
the latter on sets of vectors. Thus, we need to create two types of representations.

Given a document, the first representation takes the average of all its word (term) em-
beddings. This creates a vector representing the guideline text. The second representation
simply keeps the set of all its embedding vectors.

The cosine distance between two vectors v and w is defined as:

cosd(v, w) = 1− cos(v, w)

We will also use the following variant of cosine distance to argue that the geometries
we obtain in our experiments are similar irrespective of distances measures (see Section 6):

cosd′(v, w) = 1/cos(v, w)− 1

The word mover’s distance (WMD, WM distance), introduced in [48], is a variant of the
classic concept of “earth mover distance” from the transportation theory [49]. Sometimes,
the term “Wasserstein distance” is also used. The intuition encoded in this metric is as
follows. Given two documents represented by their set of vectors, each vector is viewed as
a divisible object. We are allowed to “move” fractions of each vector in the first set to the
other set. The WM distance is the minimal total distance accomplishing the transfer of all
vector masses to the other set. More formally [48], WM distance minimizes:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831582/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831582/
https://www.nejm.org/doi/full/10.1056/NEJMc1508733
https://www.nejm.org/doi/full/10.1056/NEJMc1508733
https://annals.org/aim/fullarticle/2480757/screening-breast-cancer-u-s-preventive-services-task-force-recommendation
https://annals.org/aim/fullarticle/2480757/screening-breast-cancer-u-s-preventive-services-task-force-recommendation
https://annals.org/aim/fullarticle/2480757/screening-breast-cancer-u-s-preventive-services-task-force-recommendation
https://annals.org/aim/fullarticle/2480757/screening-breast-cancer-u-s-preventive-services-task-force-recommendation
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where Tij is the fraction of word i in document d traveling to word j in document d′; c(i, j)
denotes the cost “traveling” from word i in document d to word j in document d′; here the
cost is the Euclidean distance between two words in the embedding space. Finally, di is the
normalized frequency of word i in document d (and same for d′):

di =
ci

∑n
j=1 cj

We used the n_similarity and wmdistance functions from Gensim [50] as a tool for
generating vectors and calculating similarities/distances in our experiments.

4.3. Building Vector Representations of Full Documents

However, as there are multiple distance measures, there is more than one way to
create word embeddings; we experimented with several methods. We used three lan-
guage models of medical guidelines’ disagreement: “no concept”, conceptualized and
BioASQ. (The details of these experiments appear later in Table 6). The first two were
Word2Vec embedding models trained using the PubMed articles as the training data. The
third one used pre-trained BioASQ word embeddings created for the BioASQ competi-
tions [51] (http://BioASQ.org/news/BioASQ-releases-continuous-space-word-vectors-
obtained-applying-word2vec-pubmed-abstracts (accessed on 24 February 2021)).

Our first model, trained on PubMed, included only words, and no additional concep-
tual analysis with MeSH (https://www.nlm.nih.gov/mesh/meshhome.html (accessed on
24 February 2021)) was done. In the second, which was a more complex model, MeSH
terms were replaced with n-grams. For example, if breast and cancer appeared next to
each other in the text, they were replaced with breast-neoplasms and treated as a concept.

4.4. Our Best Model: Using BioASQ Embeddings and Word Mover’s Distance

Table 5 shows (unnormalized) WM distances between the seven guidelines using
BioASQ embeddings. Figure 5 shows side by side the geometries of the two graphs: one
generated from the summary of full documents, using features derived from the CDC
summaries, and the second one based on the machine-generated representations of the
full guideline documents. To create Figure 5, for each metric, a diagram representing the
distance between the nodes (guidelines) and a diagram with the labeled edges were drawn
using Python the networkx library (https://networkx.github.io/ (accessed on 24 February
2021)). All values were normalized to the same scale to allow visual comparison.

http://BioASQ.org/news/BioASQ-releases-continuous-space-word-vectors-obtained-applying-word2vec-pubmed-abstracts
http://BioASQ.org/news/BioASQ-releases-continuous-space-word-vectors-obtained-applying-word2vec-pubmed-abstracts
https://www.nlm.nih.gov/mesh/meshhome.html
https://networkx.github.io/
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Table 5. This table shows the word mover’s distances between the guidelines using BioASQ embed-
dings. This model also performed very well on the datasets in the Appendix A.

AAFP ACOG ACP ACR ACS IARC USPSTF

AAFP 0.000 1.833953 1.903064 1.994837 1.866007 2.153458 1.681802

ACOG 1.833953 0.000 1.649276 1.290215 1.333061 1.773604 1.286168

ACP 1.903064 1.649276 0.000 1.856171 1.667579 1.956002 1.674375

ACR 1.994837 1.290215 1.856171 0.000 1.41020 1.873691 1.385404

ACS 1.866007 1.333061 1.667579 1.41020 0.000 1.676928 1.163601

IARC 2.153458 1.773604 1.956002 1.873691 1.676928 0.000 1.753758

USPSTF 1.681802 1.286168 1.674375 1.385404 1.163601 1.753758 0.000

The similarity is visible in a visual inspection, and will be quantified in Section 6 to
be about 70%. However, before we provide the details of the experiments, we will also
answer two questions:

— How do we measure the distortion/similarity between the two graphs?
— Could this similarity of shapes be accidental? How do we measure such probability?

5. Graph-Based Method for Comparing Collections of Documents

At this point we have created two graphs, one showing the distances between sum-
mary recommendations, and the other representing conceptual distances between docu-
ments. The procedure we used so far can be concisely expressed as Algorithm 1, where
given a set of documents, after specifying the Model (type of embeddings) and a distance
metric, we get an adjacency matrix containing the distances between the nodes representing
the documents. An example output of Algorithm 1 is shown in Figure 4 above.

What remains to be done is to quantify the difference in shapes of these two graphs,
and then to show that the similarity we observe is not accidental. The methods used in
these two steps are described in Algorithms 2 and 3. The experiments and the details of
the performed computations will be presented in Section 6.

Algorithm 1 Computing Graph of Distances Between Documents.

Input: Guidelines: a set of guideline documents in textual format.
Model: a model to compute distances between two documents.

Output: AG—Adjacency matrix of distances between document guidelines.
1: for each pair of documents in Guidelines do
2: Compute the distance between the documents according to Model
3: Put the distance in AG
4: end for
5: return AG

We use a very natural, graph clique-based method for comparing similarity of two
collections of documents. Given two sets of documents, represented by graphs, and a
one-to-one mapping between nodes, in Algorithm 2, we compute the percent distortion
between the shapes of the two cliques—this is perhaps the most natural similarity measure
(similarity = 1 − distortion) for comparing the shapes of two cliques of identical
cardinality.
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Algorithm 2 Distance or Percentage Distortion between Two Complete Graphs (cliques
of the same size).
Input: Adjacency Matrices A1, A2 of equal dimensions
Output: Graph distance/distortion D(A1,A2), as a value between 0 and 1.

1: Normalize the distances in A1 (by dividing each distance by the sum of distances in
the graph) to produce a new adjacency matrix AN 1

2: Normalize the distances in A2 to produce a new adjacency matrix AN 2
3: Set the value of graph_distance to 0.
4: for each edge in AN 1 do
5: Add the absolute value of the difference between the edge length and its counterpart

in AN 2 to the graph_distance
6: end for
7: return D(A1,A2) = graph_distance

Note. For example, the distance between the two graphs in Figure 5 is 0.31, equivalent
to 31% distortion

Next, we need to compute the chance that the mapping arose from a random process.
This is because if the chances of the similarity arising from a random process are small, we
can conclude that the conceptual vocabulary of a full document determines the type of
recommendation given by a particular organization. In our case the nodes of both graphs
have the same names (the names of the medical societies), but the shapes of the graphs
are different, one coming from human summaries and comparison (Figure 1, Table 1) and
the other from machine produced conceptual distances. Thus, the randomization can be
viewed as a permutation on the nodes. When such permutations do not produce similar
structures, we can conclude the similarity of the two graphs in Figure 5 is not accidental.

Next, in Algorithm 3, we compute the average distortion, and the standard deviation
of distortions, under permutation of nodes. The input consists of two cliques of the same
cardinality. The distance measure comes from Algorithm 2.

Algorithm 3 Computing Graph Distortion Statistics.

Input: Normalized Adjacency Matrices N1, N2 of equal dimensions
Output: Baseline for the graph distance, standard deviation of graph distances under

permutations of computed distances.
1: Set the value of graph_distances to an empty list.

We are permuting the labels of graph, leaving the lengths of the edges intact.
2: for each permutation N2 p of the nodes of N2 do
3: Compute d = D(N1,N2 p) using Algorithm 2
4: Append d to graph_distances
5: end for
6: Set

graph_distance_baseline = Mean(graph_distances)

std = StandardDeviation(graph_distances)

7: return graph_distance_baseline, std
The input is two cliques of the same cardinality.

6. Details of Experiments and Their Results

In Section 4 we described the procedure of creating the graph of full documents and
in Section 4.4 we referenced the best model, although the details of the methods were
presented in Section 5. This was not the only model we tried, and we will now discuss
other experiments; they all support the conclusion of the non-accidental similarity of the
graph of recommendations and the graphs of concepts. (As shown later in Appendix A,
this model also performs very well on other sets of guidelines).
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6.1. Steps Used in All Our Experiments and Evaluation

In all our experiments we used the procedure in Algorithm 2 to compute the dis-
tance/distortion between the two labeled graphs, using the matrix of conceptual distanced
between full documents, and the matrix in Table 3. As mentioned earlier, for our best
model the distortion was 0.31 and therefore the similarity was 0.69 (or 69%). We then asked
the question: Could this distortion be accidental? In other words, could it be the case that
we were lucky? If so, how lucky would we have to be? Since the distance between nodes
of both graphs are fixed (in a given experiment), the only variable we can manipulate
is the mapping from the nodes of one graph to another. In other words, if we did not
have the labels, what are the chances of finding the right match from all possible labelings.
We thus asked: Can other mappings produce similar results? To answer this question,
we computed the average distortion and the standard deviation, based on all possible
permutation of nodes (5040 = 7! permutations). The pseudo-code for this computation is
shown in Algorithm 3.

In all experiments, the difference between our results and average distortion was
seven (or more) standard deviations. Therefore, we can conclude the that the matching of
the two geometries is not accidental and is highly significant.

6.2. Results of the Experiments

In this section we first discuss the statistical properties of the experiments to show
that our models capture statistically significant geometric correspondences between the
graph of recommendation summaries and the graph of conceptual distances between the
full document guidelines. Table 6 shows results of the main series of experiments we
performed. Additional experiments are reported in Appendix A.

Table 6. This table shows the values obtained in multiple experiments. Column 2, Distortion,
shows the distortions of graphs produced using corresponding models from Column 1. Average
distortions per permutation are shown in Column 3. STD is the standard deviation of the distortion
per permutation of vertices. Note that the distortion is somewhat depended on how we measure
distances; however, the shapes of the distributions are very similar. (The cosine measures are
capitalized for readability).

Model Distortion Distortion of
Permutations STD

BioASQ_WMD 0.31393366 0.38137817 0.00901798

Conceptualized_WMD 0.33504400 0.39118512 0.00929325

NoConcept_WMD 0.34457155 0.38822718 0.00909964

BioASQ_CosD 0.41787106 0.59569767 0.01572929

Conceptualized_CosD 0.53452523 0.61350075 0.01626678

NoConcept_CosD 0.51399564 0.59093162 0.01538653

BioASQ_CosD’ 0.39343054 0.57170607 0.01494240

Conceptualized_CosD’ 0.47697532 0.55849892 0.01458596

NoConcept_CosD’ 0.47889093 0.55465835 0.01434584

Distance measured as 1 −
“normalized search score”

Search 0.54364717 0.61957994 0.01753947

Table 6 shows the results of the experiments with full text of the guidelines. For
our best model, BioASQ_WMD, we found a 69% similarity (top line), or 0.31 distance
(distortion). As can be seen, the average distortion of permutations (using the distances
produced by BioASQ_WMD) is 38%; however the standard deviation of the distortions is
less than 1%. Thus, the distance between our model and the mean is about seven standard
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deviations. Therefore, we conclude that the similarity between the shapes of the two graphs
is extremely unlikely to be coincidental. Hence the model represents a non-trivial similarity.
Moreover, we performed the same kind of analysis using different models, i.e., different
embeddings and different distance measures. The table also shows experiments using
the normalized search distance implemented in Solr (https://lucene.apache.org/solr/
(accessed on 24 February 2021)) and the distortion using a transformed cosd distance. (Note
that there is no natural transformation of WM distance applicable here). Additionally,
while the distances and distortions change, the chances of similarities arising by accident
are always smaller than 1/1000 (four standard deviations from the mean of distortions). By
this standard statistical criterion, no matter what measures of distance we use, the similarity
between two graphs, one from human analysis [3] and the other from automated concept
modeling, is non-trivial and not accidental. This observation is amplified by the additional
experiments reported in Appendix A. We conclude that vector-based representation are
capable of detecting conceptual differences, i.e., the types and densities of concepts brought
to the writing of medical recommendations.

7. Discussion and Possible Extensions of this Work

Our broad research objective is to create a computational model accurately repre-
senting medical guidelines’ disagreements. Since the creation of such accurate models is
beyond the current state of the art, in this article, we focused on an approximation, i.e., a
model that is simple and general enough to be potentially applicable in other situations,
and which was useful for the question at hand, namely, whether conceptual vocabulary
determines recommendations.

As mentioned earlier, this article was partly motivated by epistemology of disagree-
ment, and more specifically medical disagreement, viewed as “near-peer” disagreement.
Our results show that it is possible to build computational models of “near-peer” disagree-
ment. Additionally, they provide support for the empirical observations of disagreement
adjudication among medical experts [34,35], where the authors observe that the differences
in experts’ backgrounds increase the degree of disagreement.

A limitation of the article lies in testing the proposed method on a small number of
case studies. In the main track, we focused on the CDC summaries of the breast cancer
screening guidelines, and, in Appendix A, we discuss our experiments on the lower back
pain management and hypertension guidelines. We showed that the method is robust
in the case of these sample guidelines, because even with the change of metrics, the
similarities remain statistically significant. However, this article only describes a few case
studies, and leaves it as an open question whether it will work equally well in other cases.
Thus, an obvious extension of this work would be to compare other groups of guidelines,
e.g., European medical societies vs. US medical societies. We know that for years their
recommendations, e.g., on managing blood cholesterol, differed.

Another potential extension would be to experiment with other representations,
such as more complex word and document embeddings, or with more subtle semantic
representations based on entity and relationship extraction or formal models, cf. [52], and
on formal modeling of contradictions, like the ones discussed in [5,6]. This, however,
would introduce several complications. Attention-based models, such as BERT, GPT
or Universal Encoder [53–55], would have to be used very carefully, since they encode
the order of terms in documents, and indirectly relations between words. Therefore,
they would not be appropriate for the experiments described in this article. More subtle
formal models, on the other hand, are very brittle, and incapable of operating on real
documents, with all the complications arising from interaction between sentences and
the use of discourse constructions such as lists and tables. Perhaps one solution to this
problem could be to represent the full text of each guideline document as a graph, and
not a bag of word embeddings. There is a vast amount of applicable empirical work
on graph representations, including representations of recommendations (e.g., [56,57])
and various types of knowledge (e.g., [58,59]). The algorithms proposed in Section 5

https://lucene.apache.org/solr/
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would still be directly applicable, and only the distances between pairs of documents
would have to be modified and computed on graph representations. These representations
could vary, but in all cases we could use applicable algorithms for computing distances
in graphs (e.g., [60]), similar to the word mover’s distance (WMD) used in this article. In
addition, by experimenting with matching corresponding subgraphs, we could develop
new distance measures.

Unlike our earlier work [6], in this article we have not performed any logical analysis
of the guidelines. We also did not use text mining to extract relations from the content of
the guidelines, and although our focus was on concepts appearing in guidelines, we did
not point to specific vocabulary differences. Instead, we measured semantic differences
between guidelines using the distances between their vectorial representations. This has to
do with the fact that, even though NLP methods have progressed enormously over the last
decade [24], they are far from perfect. In our experiments, we used some of the simplest
semantic types of words and simple collocations represented as vectors in high-dimensional
spaces. This simplicity is helpful, as we can run several experiments, and compare the
effects of using different representations and metrics. This gives us the confidence that the
similarities we are discovering tell us something interesting about guideline documents.

8. Conclusions

This article investigates the question whether the disagreements in medical recom-
mendations, for example in breast cancer screening or back pain management guide-
lines, can be attributed to the differences in concepts brought to the problem by specific
medical societies (and not, e.g., the style or formalization of recommendations). Our ex-
periments answered this question in the affirmative, and showed that a simple model
using word embeddings to represent concepts can account for about 70% to 85% of dis-
agreements in the recommendations. Another contribution is the articulation of a very
natural graph clique-based algorithm/method for comparing the similarity of two col-
lections of documents. Given two sets of documents, each of the same cardinality, and
a mapping between nodes, we computed the percent of distortion between the shapes
of the two cliques, and the chances that the mapping arose from a random process. We
also documented all of the steps of the process and provided the data and the code
(https://github.com/hematialam/Conceptual_Distances_Medical_Recommendations (ac-
cessed on 24 February 2021)) to facilitate both extensions of this work and its replication.

Our work extends the state-of-the-art computational analysis of medical guidelines.
Namely, instead of semi-automated conceptual analysis, we demonstrated the feasibility
of automated conceptual analysis. That is, in our study, we used a representation derived
from a (relatively shallow) neural network (BioASQ embeddings [51]), and knowledge-
based annotations derived from MetaMap (https://metamap.nlm.nih.gov/ (accessed on
24 February 2021)). Our results, detailed in Section 6 and in Appendix A, show that
both can be useful as representations of our set of guidelines. Overall, they show similar
performance in modeling conceptual similarities. However, the BioAsq_WMD model,
using the BioASQ embeddings and the Word Mover’s Distance, seems to be most stable, as
it performed very well in all our experiments.

Although this article is a collection of three case studies, bound by a common method,
it could be a good starting point for an analysis of other medical guidelines and perhaps
other areas of expert disagreement. The methods described in this article are easy to use
and rely on well-known tools such as word embeddings and MetaMap. They can also
be extended and improved to produce more accurate and deeper analyses, due to the
fast progress in text mining and deep learning techniques. From the point of view of
methodology of analyzing medical guidelines, this article contains the first computational
implementation of the “near-peer” model mentioned earlier. To our knowledge, ours is
the first proposal to use automated methods of text analysis to investigate differences in
recommendations.

https://github.com/hematialam/Conceptual_Distances_Medical_Recommendations
https://metamap.nlm.nih.gov/
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Appendix A. Additional Experiments

We performed several additional experiments, and we report on three of them in this
appendix. The first experiment is a variant of the one reported above using the CDC table
in Figure 1. The second experiment is on lower back pain management guidelines, for
which we could find an online summary table similar to the one in Figure 1. The third one is
a different one, applying the graph comparison not to a table, but to the guideline abstracts.
We could not find a tabular comparison of the hypertension management guidelines, so
instead we compared the concepts in full and abstracted texts. This shows the potential
applicability of the proposed approach to other situations, where we might be interested in
conceptual comparisons of related collections of documents.

Appendix A.1. Experimenting with the Full Texts of the Guidelines

We performed additional experiments with modified views of the full guideline doc-
uments, as enumerated below. This was driven by the fact that the levels of distances
between full documents may change if we compute the similarities/distances between
selected sentences, which are explicitly related to the statements from the CDC table in
Figure 1. For these additional experiments we split each full text guideline document into
two different subsets:

1. Related: containing sentences that are related to the CDC table, by having common
concepts, as represented by UMLS concepts. This was done in multiple ways, giving
us six possible experiments:

(a) The CDC recommendations table was considered as a single bag of concepts.
If a sentence in the full text had a minimum number of mutual concepts with
this bag, that sentence was considered a related sentence.

(b) If a sentence in the full text had a minimum number of mutual concepts with at
least one statement from the CDC table (again, viewed as a bag of concepts),
that sentence was considered a related sentence.

Different minimum numbers of mutual concept(s) were examined in our experiment,
that is the minimum was set to 1, 2 and 3.

2. Unrelated: the other sentences.
Unrelated sentences were not used for these additional experiments.

Concept extraction: For all experiments, we used MetaMap (https://metamap.nlm.
nih.gov/ (accessed on 24 February 2021)) to extract UMLS concepts (https://www.nlm.nih.
gov/research/umls/index.html (accessed on 24 February 2021)) and semantic types (https:

https://github.com/hematialam/Conceptual_Distances_Medical_Recommendations
https://github.com/hematialam/Conceptual_Distances_Medical_Recommendations
https://metamap.nlm.nih.gov/
https://metamap.nlm.nih.gov/
 https://www.nlm.nih.gov/research/umls/index.html
 https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
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//www.nlm.nih.gov/research/umls/META3_current_semantic_types.html (accessed on
24 February 2021)) in sentences. We only considered concepts with informative (in our
opinion) semantic types. This meant using concepts related to diagnosis and prevention,
for example “findings”, and not using ones related, e.g., to genomics. Our final list had
the following: [[diap], [hlca], [dsyn], [neop], [qnco], [qlco], [tmco], [fndg], [geoa], [topp],
[lbpr]].

For full text guidelines (as per Table 4), the results of the experiments are shown in
Table 6, and discussed in Sections 6 and 8. Tables A1 and A2 are based on the same type of
comparisons as discussed in Section 6, except that we subtract the Unrelated sentences
from the full guidelines. Again, we observed that the similarity is not accidental, and that
BioASQ embeddings with WM distance seem on average to give the best performance.

Table A1. Using sentences in recommendations and minimum mutual concepts. This table shows
the values obtained in additional experiments, where full document guidelines were modified by
attending to concepts in sentences (see above). Column 1 refers to the number of concepts overlapping
with summaries. Distortion shows the distortions of graphs produced using corresponding models
from Column 1. As before, in Table 6, the distortion depends on how we measure the distances;
however, the shapes of the distributions are very similar.

Min.
Mutual
Concepts

Model Distortion Distortion of
Permutations STD

1

BioASQ CosD 0.526380991 0.602890558 0.011735664

Conceptualized_CosD 0.635564038 0.646721788 0.011417208

NoConcept_CosD 0.626087519 0.646906954 0.011131221

NoConcept_WMD 0.352402031 0.383852647 0.006550777

Conceptualized_WMD 0.359296888 0.390059373 0.006626223

BioASQ_WMD 0.336903254 0.384735148 0.006498348

2

BioASQ_CosD 0.449264689 0.572620976 0.010916054

Conceptualized_CosD 0.384945443 0.488740293 0.008608367

NoConcept_CosD 0.433167046 0.501788823 0.008699466

NoConcept_WMD 0.34284288 0.376371094 0.006467164

Conceptualized_WMD 0.330059701 0.373155641 0.006466969

BioASQ_WMD 0.32446554 0.38365857 0.006428759

3

BioASQ_CosD 0.468163076 0.537093759 0.010040669

Conceptualized_CosD 0.564019791 0.57488789 0.010091071

NoConcept_CosD 0.594326474 0.596293202 0.010300973

NoConcept_WMD 0.360513492 0.375067469 0.006461442

Conceptualized_WMD 0.37193217 0.383126986 0.006477258

BioASQ_WMD 0.34276229 0.375886963 0.006455091

Note the potentially important observation about Tables 6, A1 and A2: They jointly
show that the property we investigate, i.e., the conceptual distances between guidelines,
is indeed geometric, and therefore the word “distances” is not merely a metaphor. The
correspondence between the two graphs is preserved no matter how we set up the ex-
periments. That is, as with geometric properties such as being collinear or parallel, the
structure remains the same when a transformation (such as a projection) is applied to the
points, even though some of the measurements might change (e.g., measured distances,
or the area of a parallelogram). The same happens when we transform the documents by

https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
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removing Unrelated sentences: the values of distortions change, but the non-accidental
correspondence with the summary graph (Figure 5) remains invariant.

Table A2. Using the whole summary recommendations and minimum mutual concepts. This
table shows the values obtained in additional experiments, where the whole CDC summary was used
to obtain sets of mutual concepts (see above). Column 1 refers to the number of concepts overlapping
with the summary. Distortion shows the distortions of graphs produced using corresponding
models from Column 1. As before, in Tables 6 and A1 the distortion is somewhat depended on how
we measure distances; however, the shapes of the distributions are very similar.

Min.
Mutual
Concepts

Model Distortion Distortion of
Permutations STD

1

BioASQ_CosD 0.52638099 0.60289056 0.01173566

Conceptualized_CosD 0.63556404 0.64672179 0.01141721

NoConcept_CosD 0.62608752 0.64690695 0.01113122

NoConcept_WMD 0.35240203 0.38385265 0.00655078

Conceptualized_WMD 0.35929689 0.39005937 0.00662622

BioASQ_WMD 0.33690325 0.38473515 0.00649835

2

BioASQ_CosD 0.44926469 0.57262098 0.01091605

Conceptualized_CosD 0.38494544 0.48874029 0.00860837

NoConcept_CosD 0.43316705 0.50178882 0.00869947

NoConcept_WMD 0.34284288 0.37637109 0.00646716

Conceptualized_WMD 0.3300597 0.37315564 0.00646697

BioASQ_WMD 0.32446554 0.38365857 0.00642876

3

BioASQ_CosD 0.46816308 0.53709376 0.01004067

Conceptualized_CosD 0.56401979 0.57488789 0.01009107

NoConcept_CosD 0.59432647 0.5962932 0.01030097

NoConcept_WMD 0.36051349 0.37506747 0.00646144

Conceptualized_WMD 0.37193217 0.38312699 0.00647726

BioASQ_WMD 0.34276229 0.37588696 0.00645509

Appendix A.2. Lower Back Pain Management Guidelines

In this experiment we used the summary tables on “clinical practice guidelines for
the management of non-specific low back pain in primary care” from [13]. In the cited
paper, several comparisons are made between 15 clinical practice guidelines from multi-
ple continents and countries (Africa (multinational), Australia, Brazil, Belgium, Canada,
Denmark, Finland, Germany, Malaysia, Mexico, the Netherlands, Philippine, Spain, the
USA and the UK). In our experiments we used all of those for which an English text was
available: (GER) [61], (MAL) [62], (SPA) [63], (UK) [64], (AUS) [65], (USA) [66], (CAN) [67],
(DEN) [68], and (BEL) [69]. For this total of nine guideline texts, we experimented with
Table 1 (describing methodologies for diagnosis) and Table 2 (treatment recommendations)
from the article [13] containing, respectively, 12 and 60 features; in addition, we created a
super-table combining the two tables, and applied our method to it as well.

With the same process as described in Section 3 we converted the Tables 1 and 2 of [13]
into Jaccard distances. Then, as before, we computed the distortion between the graphs of
the full text and the graphs of distances between the extracted features; and, as before, we
established that the probability of obtaining high similarity by chance is extremely small.
For Table 1 of [13] our best model BioAsq_WMD produced about 28% distortion (or 72%
similarity). Similar results hold for Table 2 of and for the combined table, although the
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actual distortion numbers differ. In all cases, for the model BioAsq_WMD we found about
10-fold standard deviation, with distortion of about 16% for Table 2 and about 14% for the
aggregated tables combining Tables 1 and 2 of [13].

All other models used in Table 6 performed in line with the previous results, with
the only exception being the conceptualized models for Table 1 of [13], where for Con-
ceptualized_CosD and Conceptualized_CosD’ the distortion was slightly worse than
random. We do not have an explanation for this sub-par performance, but we have seen a
relatively weak performance of this model in Table A1. Table A3 shows the Jaccard dis-
tances and Table A4 shows the performance of all models on the combined table. Thus the
performance of the model does not seem to degrade with a large number of comparisons.

Table A3. Jaccard distances based on the combined Tables 1 and 2 from [13]. The guidelines are
about the management of non-specific lower back pain.

US DEN MAL CAN BEL GER UK SPA AUS

US 0 46 43 35 39 32 43 41 46

DEN 46 0 50 45 47 44 47 49 39

MAL 43 50 0 33 36 39 40 36 42

CAN 35 45 33 0 33 23 33 34 32

BEL 39 47 36 33 0 26 15 36 38

GER 32 44 39 23 26 0 30 33 35

UK 43 47 40 33 15 30 0 41 36

SPA 41 49 36 34 36 33 41 0 44

AUS 46 39 42 32 38 35 36 44 0

Table A4. The performance of the algorithms on the combined Tables 1 and 2 from [13] is in line with
the results in Section 6.2, except for the weaker showing of the Conceptualized_WMD model.

Model Distortion Distortion of Permutations STD

BioASQ_WMD 0.14157219 0.16717125 0.00186797

Conceptualized_WMD 0.15689518 0.16098291 0.00179856

NoConcept_WMD 0.13946498 0.16067458 0.00180108

BioASQ_CosD’ 0.44899108 0.49891074 0.00595033

Conceptualized_CosD’ 0.31577959 0.35477261 0.00389520

NoConcept_CosD’ 0.27595783 0.33897971 0.00418504

BioASQ_CosD 0.40412785 0.45347124 0.00511851

Conceptualized_CosD 0.28283583 0.32039879 0.00342097

NoConcept_CosD 0.25530361 0.31717921 0.00378427

Appendix A.3. Comparing Hypertension Management Guidelines

In an additional experiment, we used a collection of hypertension management
guidelines from different countries, including the USA, Canada, Brasil, the UK and Ire-
land [70–77]. The corpus was created by searching PubMed for “practice guideline” as
“publication type” and “hypertension” and as the “major MeSh” index. We selected eight
of them from different medical bodies, where the full text of the guidelines was available.
This corpus consists of the following eight documents: CHEP2007 [70], the 2007 Canadian
Hypertension Education Program; AHA & ASH & PCNA [71], joint statement of the Amer-
ican Heart Association, American Society Of Hypertension, and Preventive Cardiovascular
Nurses Association; BGAH [72], the Brazilian Guideline of Arterial Hypertension; CFP [73],
the 2013 Canadian screening recommendations; AAGBI & BHS [74], the 2016 joint British
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and Irish guidelines; CHEP2009 [77], the 2009 Canadian Hypertension Education Program;
AAP [75], 2017 guidelines focusing on children and adolescents; and JNC [76], the 2014
evidence-based guidelines focusing on adults.

Because we are not aware of any tabular summary of differences between hypertension
guidelines, similar to the one shown earlier in Figure 1, we made the comparisons between
full texts of the guidelines and their abstracts. That is, we created two graphs of embeddings,
as shown in Figure A1, and measured their similarity, as well as the probability of the
similarity arising by chance, as shown in Table A5. The experiment shows that the concepts
appearing in the abstracts of the guidelines strongly correlate with the concepts used the
full texts of the guidelines. Moreover, the method, described earlier in Section 5, which
we used to find this correspondence, was very good at picking up this similarity; and, as
before, a very good model was obtained by using BioASQ embeddings with the Word
Mover Distance (WMD).

(a) The graph of the conceptual distances
between the full texts of hypertension
guidelines.

(b) The conceptual distances between the
abstracts of the hypertension guidelines.

Figure A1. For the graphs of the eight hypertension guidelines and their abstracts a visual comparison
is more difficult than it was earlier in Figure 5. Therefore, we need a quantitative comparison, which
is given in Table A5.

Table A5. We see the robustness of the proposed method when comparing the conceptual distances
of the abstracts and the full documents of the hypertension guidelines. The results are in line with
those of Section 6.2.

Model Distortion Distortion of Permutations STD

BioASQ_WMD 0.10722113 0.15779628 0.00339429

Conceptualized_WMD 0.22486228 0.30471905 0.00416548

NoConcept_WMD 0.10659179 0.15903103 0.00339359

BioASQ_CosD’ 0.63552553 0.67228101 0.00891151

Conceptualized_CosD’ 0.34923088 0.48818741 0.006308838

NoConcept_CosD’ 0.51297572 0.54567338 0.00727428

BioASQ_CosD 0.53894790 0.58653238 0.00754606

Conceptualized_CosD 0.43294195 0.48253914 0.00626540

Conceptualized_CosD 0.34443154 0.47391939 0.00608174

NoConcept_CosD 0.42284040 0.45815692 0.00609919



Appl. Sci. 2021, 11, 2045 22 of 24

References
1. McClintock, A.H.; Golob, A.L.; Laya, M.B. Breast Cancer Risk Assessment: A Step-Wise Approach for Primary Care Providers on

the Front Lines of Shared Decision Making. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2020; Volume 95,
pp. 1268–1275.

2. Pace, L.E.; Keating, N.L. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA 2014,
311, 1327–1335. [CrossRef] [PubMed]

3. CDC. Breast Cancer Screening Guidelines for Women; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017.
4. Catillon, M. Medical Knowledge Synthesis: A Brief Overview; 2017. Available online: https://www.hbs.edu/ris/Publication%20

Files/WhitePaper-Catillon10.2017_40a6683d-411b-4621-a121-8f5e93b13605.pdf (accessed on 24 February 2021).
5. Zadrozny, W.; Garbayo, L. A Sheaf Model of Contradictions and Disagreements. Preliminary Report and Discussion. arXiv 2018,

arXiv:1801.09036.
6. Zadrozny, W.; Hematialam, H.; Garbayo, L. Towards Semantic Modeling of Contradictions and Disagreements: A Case Study of

Medical Guidelines. arXiv 2017, arXiv:1708.00850.
7. Christensen, D.; Lackey, J.; Kelly, T. The Epistemology of Disagreement: New Essays; Oxford University Press: Oxford, UK, 2013.
8. Lackey, J. Taking Religious Disagreement Seriously. In Religious Faith and Intellectual Virtue; Callahan, L., O’Connor, T., Eds.;

Oxford University Press: Oxford, UK, 2014; pp. 299–316.
9. Grim, P.; Modell, A.; Breslin, N.; Mcnenny, J.; Mondescu, I.; Finnegan, K.; Olsen, R.; An, C.; Fedder, A. Coherence and

correspondence in the network dynamics of belief suites. Episteme 2017, 14, 233–253. [CrossRef]
10. Garbayo, L. Epistemic Considerations on Expert Disagreement, Normative Justification, and Inconsistency Regarding Multi-

criteria Decision Making. In Constraint Programming and Decision Making; Ceberio, M., Kreinovich, V., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 35–45.

11. Garbayo, L.; Ceberio, M.; Bistarelli, S.; Henderson, J. On Modeling Multi-experts Multi-criteria Decision-Making Argumentation
and Disagreement: Philosophical and Computational Approaches Reconsidered. In Constraint Programming and Decision Making:
Theory and Applications; Ceberio, M., Kreinovich, V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 67–75.

12. Garbayo, L. Dependence logic & medical guidelines disagreement: An informational (in) dependence analysis. In Logic
Colloquium 2019; AMCA: Praha, Czech Republic, 2019; p. 112.

13. Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.W.C.; Chenot, J.F.; van Tulder, M.; Koes, B.W. Clinical practice
guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018,
27, 2791–2803. [CrossRef]

14. Peek, N.; Combi, C.; Marin, R.; Bellazzi, R. Thirty years of artificial intelligence in medicine (AIME) conferences: A review of
research themes. Artif. Intell. Med. 2015, 65, 61–73. [CrossRef]

15. Bowles, J.; Caminati, M.; Cha, S.; Mendoza, J. A framework for automated conflict detection and resolution in medical guidelines.
Sci. Comput. Program. 2019, 182, 42–63. [CrossRef]

16. Tsopra, R.; Lamy, J.B.; Sedki, K. Using preference learning for detecting inconsistencies in clinical practice guidelines: Methods
and application to antibiotherapy. Artif. Intell. Med. 2018, 89, 24–33. [CrossRef] [PubMed]

17. Lee, K.C.; Udelsman, B.V.; Streid, J.; Chang, D.C.; Salim, A.; Livingston, D.H.; Lindvall, C.; Cooper, Z. Natural Language
Processing Accurately Measures Adherence to Best Practice Guidelines for Palliative Care in Trauma. J. Pain Symptom Manag.
2020, 59, 225–232. [CrossRef]

18. Waheeb, S.A.; Ahmed Khan, N.; Chen, B.; Shang, X. Machine Learning Based Sentiment Text Classification for Evaluating
Treatment Quality of Discharge Summary. Information 2020, 11, 281. [CrossRef]

19. Seneviratne, O.; Das, A.K.; Chari, S.; Agu, N.N.; Rashid, S.M.; Chen, C.H.; McCusker, J.P.; Hendler, J.A.; McGuinness, D.L.
Enabling Trust in Clinical Decision Support Recommendations through Semantics; 2019. Available online: http://ceur-ws.org/Vol-2477
/paper_5.pdf (accessed on 24 February 2021).

20. Chen, X.; Xie, H.; Cheng, G.; Poon, L.K.; Leng, M.; Wang, F.L. Trends and Features of the Applications of Natural Language
Processing Techniques for Clinical Trials Text Analysis. Appl. Sci. 2020, 10, 2157. [CrossRef]

21. Ju, M.; Nguyen, N.T.; Miwa, M.; Ananiadou, S. An ensemble of neural models for nested adverse drug events and medication
extraction with subwords. J. Am. Med. Inform. Assoc. 2020, 27, 22–30. [CrossRef]

22. Benedetti, F.; Beneventano, D.; Bergamaschi, S.; Simonini, G. Computing inter-document similarity with context semantic
analysis. Inf. Syst. 2019, 80, 136–147. [CrossRef]

23. Rospocher, M.; Corcoglioniti, F.; Dragoni, M. Boosting Document Retrieval with Knowledge Extraction and Linked Data. Semant.
Web 2019, 10, 753–778. [CrossRef]

24. Zhou, M.; Duan, N.; Liu, S.; Shum, H.Y. Progress in Neural NLP: Modeling, Learning, and Reasoning. Engineering 2020,
6, 275–290. [CrossRef]

25. Smith, N.A. Contextual word representations: Putting words into computers. Commun. ACM 2020, 63, 66–74. [CrossRef]
26. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. In Advances in Neural Information Processing Systems; 2013; pp. 3111–3119. Available online: https://arxiv.org/
abs/1310.4546 (accessed on 24 February 2021).

27. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

http://doi.org/10.1001/jama.2014.1398
http://www.ncbi.nlm.nih.gov/pubmed/24691608
https://www.hbs.edu/ris/Publication%20Files/WhitePaper-Catillon10.2017_40a6683d-411b-4621-a121-8f5e93b13605.pdf
https://www.hbs.edu/ris/Publication%20Files/WhitePaper-Catillon10.2017_40a6683d-411b-4621-a121-8f5e93b13605.pdf
http://dx.doi.org/10.1017/epi.2016.7
http://dx.doi.org/10.1007/s00586-018-5673-2
http://dx.doi.org/10.1016/j.artmed.2015.07.003
http://dx.doi.org/10.1016/j.scico.2019.07.002
http://dx.doi.org/10.1016/j.artmed.2018.04.013
http://www.ncbi.nlm.nih.gov/pubmed/29776758
http://dx.doi.org/10.1016/j.jpainsymman.2019.09.017
http://dx.doi.org/10.3390/info11050281
http://ceur-ws.org/Vol-2477/paper_5.pdf
http://ceur-ws.org/Vol-2477/paper_5.pdf
http://dx.doi.org/10.3390/app10062157
http://dx.doi.org/10.1093/jamia/ocz075
http://dx.doi.org/10.1016/j.is.2018.02.009
http://dx.doi.org/10.3233/SW-180325
http://dx.doi.org/10.1016/j.eng.2019.12.014
http://dx.doi.org/10.1145/3347145
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546


Appl. Sci. 2021, 11, 2045 23 of 24

28. Shalaby, W.; Zadrozny, W.; Jin, H. Beyond word embeddings: Learning entity and concept representations from large scale
knowledge bases. Inf. Retr. J. 2019, 22, 525–542. [CrossRef]

29. Kalyan, K.S.; Sangeetha, S. SECNLP: A survey of embeddings in clinical natural language processing. J. Biomed. Inform. 2020,
101, 103323. [CrossRef] [PubMed]

30. Khattak, F.K.; Jeblee, S.; Pou-Prom, C.; Abdalla, M.; Meaney, C.; Rudzicz, F. A survey of word embeddings for clinical text. J.
Biomed. Inform. X 2019, 4, 100057. [CrossRef]

31. Nguyen, H.T.; Duong, P.H.; Cambria, E. Learning short-text semantic similarity with word embeddings and external knowledge
sources. Knowl. Based Syst. 2019, 182, 104842. [CrossRef]

32. Tien, N.H.; Le, N.M.; Tomohiro, Y.; Tatsuya, I. Sentence modeling via multiple word embeddings and multi-level comparison for
semantic textual similarity. Inf. Process. Manag. 2019, 56, 102090. [CrossRef]

33. Lie, R.K.; Chan, F.K.; Grady, C.; Ng, V.H.; Wendler, D. Comparative effectiveness research: What to do when experts disagree
about risks. BMC Med Ethics 2017, 18, 1–9. [CrossRef]

34. Schaekermann, M.; Beaton, G.; Habib, M.; Lim, A.; Larson, K.; Law, E. Capturing Expert Arguments from Medical Adjudication
Discussions in a Machine-readable Format. In Proceedings of the Companion Proceedings of The 2019 World Wide Web
Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 1131–1137.

35. Schaekermann, M.; Beaton, G.; Habib, M.; Lim, A.; Larson, K.; Law, E. Understanding Expert Disagreement in Medical Data
Analysis through Structured Adjudication. Proc. ACM Hum. Comput. Interact. 2019, 3, 1–23. [CrossRef]

36. Grant, J.; Hunter, A. Analysing inconsistent first-order knowledgebases. Artif. Intell. 2008, 172, 1064–1093. [CrossRef]
37. Subrahmanian, V.S.; Amgoud, L. A General Framework for Reasoning about Inconsistency. In Proceedings of the 20th

International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 599–604.
38. Grant, J.; Hunter, A. Analysing inconsistent information using distance-based measures. Int. J. Approx. Reason. 2016, 89, 3–26.

[CrossRef]
39. Tran, T.H. Inconsistency measures for probabilistic knowledge bases. In Proceedings of the 2017 9th International Conference on

Knowledge and Systems Engineering (KSE), Hue, Vietnam, 19–21 October 2017; pp. 148–153.
40. Garbayo, L.; Zadrozny, W.; Hematialam, H. Converging in Breast Cancer Diagnostic Screening: A Computational Model Proposal.

Diagnosis 2019, 6, eA60.
41. American College of Obstetricians-Gynecologists. Practice Bulletin No. 122: Breast Cancer Screening. Obstet. Gynecol. 2011, 118,

372–382. [CrossRef] [PubMed]
42. AAFP Policy Action. Summary of Recommendations for Clinical Preventive Services; American Academy of Family Physicians:

Leawood, KS, USA, 2017.
43. Wilt, T.J.; Harris, R.P.; Qaseem, A. Screening for cancer: Advice for high-value care from the American College of Physicians.

Ann. Intern. Med. 2015, 162, 718–725. [CrossRef]
44. Lee, C.H.; Dershaw, D.D.; Kopans, D.; Evans, P.; Monsees, B.; Monticciolo, D.; Brenner, R.J.; Bassett, L.; Berg, W.; Feig, S.; et

al. Breast cancer screening with imaging: Recommendations from the Society of Breast Imaging and the ACR on the use of
mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am.
Coll. Radiol. 2010, 7, 18–27. [CrossRef]

45. Oeffinger, K.C.; Fontham, E.T.; Etzioni, R.; Herzig, A.; Michaelson, J.S.; Shih, Y.C.T.; Walter, L.C.; Church, T.R.; Flowers, C.R.;
LaMonte, S.J.; et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society.
JAMA 2015, 314, 1599–1614. [CrossRef]

46. Jørgensen, K.J.; Bewley, S. Breast-Cancer Screening—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2015, 373, 1478.
47. Siu, A.L. Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2016,

164, 279–296. [CrossRef]
48. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From word embeddings to document distances. In Proceedings of the International

Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 957–966.
49. Monge, G. Mémoire sur la théorie des déblais et des remblais. In Histoire de l’Académie Royale des Sciences de Paris; 1781.
50. Rehurek, R.; Sojka, P. Gensim—Statistical Semantics in Python; Retrieved from gensim.org; 2011. Available online:

https://www.semanticscholar.org/paper/Gensim-Statistical-Semantics-in-Python-Rehurek-Sojka/b55fe23d7290f59d14e51e7
813f5950f5ff08b2b (accessed on 24 February 2021).

51. Tsatsaronis, G.; Balikas, G.; Malakasiotis, P.; Partalas, I.; Zschunke, M.; Alvers, M.R.; Weissenborn, D.; Krithara, A.; Petridis, S.;
Polychronopoulos, D.; et al. An overview of the BioASQ large-scale biomedical semantic indexing and question answering
competition. BMC Bioinform. 2015, 16, 138. [CrossRef]

52. Zhu, Q.; Li, X.; Conesa, A.; Pereira, C. GRAM-CNN: A deep learning approach with local context for named entity recognition in
biomedical text. Bioinformatics 2017, 34, 1547–1554. [CrossRef]

53. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

54. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.
arXiv 2018, arXiv:1802.05365.

55. Cer, D.; Yang, Y.; Kong, S.Y.; Hua, N.; Limtiaco, N.; John, R.S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al.
Universal sentence encoder. arXiv 2018, arXiv:1803.11175.

http://dx.doi.org/10.1007/s10791-018-9340-3
http://dx.doi.org/10.1016/j.jbi.2019.103323
http://www.ncbi.nlm.nih.gov/pubmed/31711972
http://dx.doi.org/10.1016/j.yjbinx.2019.100057
http://dx.doi.org/10.1016/j.knosys.2019.07.013
http://dx.doi.org/10.1016/j.ipm.2019.102090
http://dx.doi.org/10.1186/s12910-017-0202-0
http://dx.doi.org/10.1145/3359178
http://dx.doi.org/10.1016/j.artint.2007.11.006
http://dx.doi.org/10.1016/j.ijar.2016.04.004
http://dx.doi.org/10.1097/AOG.0b013e31822c98e5
http://www.ncbi.nlm.nih.gov/pubmed/21775869
http://dx.doi.org/10.7326/M14-2326
http://dx.doi.org/10.1016/j.jacr.2009.09.022
http://dx.doi.org/10.1001/jama.2015.12783
http://dx.doi.org/10.7326/M15-2886
https://www.semanticscholar.org/paper/Gensim-Statistical-Semantics-in-Python-Rehurek-Sojka/b55fe23d7290f59d14e51e7813f5950f5ff08b2b
https://www.semanticscholar.org/paper/Gensim-Statistical-Semantics-in-Python-Rehurek-Sojka/b55fe23d7290f59d14e51e7813f5950f5ff08b2b
http://dx.doi.org/10.1186/s12859-015-0564-6
http://dx.doi.org/10.1093/bioinformatics/btx815


Appl. Sci. 2021, 11, 2045 24 of 24

56. Catherine, R.; Cohen, W. Personalized Recommendations Using Knowledge Graphs: A Probabilistic Logic Programming
Approach. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16; Association for Computing Machinery:
New York, NY, USA, 2016; pp. 325–332.

57. Mercorio, F.; Mezzanzanica, M.; Moscato, V.; Picariello, A.; Sperli, G. DICO: A graph-db framework for community detection on
big scholarly data. IEEE Trans. Emerg. Top. Comput. 2019. [CrossRef]

58. Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proc. IEEE 2015,
104, 11–33. [CrossRef]

59. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A survey on knowledge graphs: Representation, acquisition and applications.
arXiv 2020, arXiv:2002.00388.

60. Maretic, H.P.; Gheche, M.E.; Chierchia, G.; Frossard, P. GOT: An optimal transport framework for graph comparison. arXiv 2019,
arXiv:1906.02085.

61. Chenot, J.F.; Greitemann, B.; Kladny, B.; Petzke, F.; Pfingsten, M.; Schorr, S.G. Non-specific low back pain. Dtsch. Ärztebl. Int.
2017, 114, 883. [CrossRef]

62. Mansor, M. The Malaysian LOW BACK PAIN Management Guidelines, 1st ed.; 2009. Available online: https://www.semanticscholar.
org/paper/The-Malaysian-LOW-BACK-PAIN-management-Edition.-Mansor/7c8f2bbf0968f7c175754dee819f302dc8beef83 (ac-
cessed on 24 February 2021).

63. Marques, E.L. The Treatment of Low Back Pain and Scientific Evidence; 2006. Available online: https://www.intechopen.com/books/
low-back-pain/the-treatment-of-low-back-pain-scientific-evidence (accessed on 24 February 2021).

64. de Campos, T.F. Low back pain and sciatica in over 16s: Assessment and management NICE Guideline [NG59]. J. Physiother.
2017, 63, 120. [CrossRef]

65. NSW Agency for Clinical Innovation. Management of People with Acute Low Back Pain: Model of Care; NSW Agency for Clinical
Innovation: Chatswood, Australia, 2016.

66. Qaseem, A.; Wilt, T.J.; McLean, R.M.; Forciea, M.A. Noninvasive treatments for acute, subacute, and chronic low back pain: A
clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2017, 166, 514–530. [CrossRef]

67. Toward Optimized Practice Low Back Pain Working Group. Evidence-Informed Primary Care Management of Low Back Pain; Toward
Optimized Practice: Edmonton, AB, Canada, 2015.

68. Stochkendahl, M.J.; Kjaer, P.; Hartvigsen, J.; Kongsted, A.; Aaboe, J.; Andersen, M.; Andersen, M.Ø.; Fournier, G.; Højgaard, B.;
Jensen, M.B.; et al. National Clinical Guidelines for non-surgical treatment of patients with recent onset low back pain or lumbar
radiculopathy. Eur. Spine J. 2018, 27, 60–75. [CrossRef]

69. Van Wambeke, P.; Desomer, A.; Ailiet, L.; Berquin, A.; Dumoulin, C.; Depreitere, B.; Dewachter, J.; Dolphens, M.; Forget, P.;
Fraselle, V.; et al. Low Back Pain and Radicular Pain: Assessment and Management; KCE Report; Belgian Health Care Knowledge
Centre: Brussels, Belgium, 2017; Volume 287.

70. Padwal, R.S.; Hemmelgarn, B.R.; McAlister, F.A.; McKay, D.W.; Grover, S.; Wilson, T.; Penner, B.; Burgess, E.; Bolli, P.; Hill,
M.; et al. The 2007 Canadian Hypertension Education Program recommendations for the management of hypertension: Part
1—Blood pressure measurement, diagnosis and assessment of risk. Can. J. Cardiol. 2007, 23, 529–538. [CrossRef]

71. Pickering, T.G.; Miller, N.H.; Ogedegbe, G.; Krakoff, L.R.; Artinian, N.T.; Goff, D. Call to action on use and reimbursement
for home blood pressure monitoring: A joint scientific statement from the American Heart Association, American Society of
Hypertension, and Preventive Cardiovascular Nurses Association. Hypertension 2008, 52, 10–29. [CrossRef]

72. Malachias, M.; Gomes, M.; Nobre, F.; Alessi, A.; Feitosa, A.; Coelho, E. 7th Brazilian guideline of arterial hypertension: Chapter
2-diagnosis and classification. Arq. Bras. Cardiol. 2016, 107, 7–13.

73. Lindsay, P.; Gorber, S.C.; Joffres, M.; Birtwhistle, R.; McKay, D.; Cloutier, L. Recommendations on screening for high blood
pressure in Canadian adults. Can. Fam. Physician 2013, 59, 927–933.

74. Hartle, A.; McCormack, T.; Carlisle, J.; Anderson, S.; Pichel, A.; Beckett, N.; Woodcock, T.; Heagerty, A. The measurement of adult
blood pressure and management of hypertension before elective surgery: Joint Guidelines from the Association of Anaesthetists
of Great Britain and Ireland and the British Hypertension Society. Anaesthesia 2016, 71, 326–337. [CrossRef]

75. Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.;
Flinn, S.K.; et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents.
Pediatrics 2017, 140, e20171904. [CrossRef] [PubMed]

76. James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.;
MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management of high blood pressure in adults:
Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [CrossRef]

77. Padwal, R.S.; Hemmelgarn, B.R.; Khan, N.A.; Grover, S.; McKay, D.W.; Wilson, T.; Penner, B.; Burgess, E.; McAlister, F.A.; Bolli,
P.; et al. The 2009 Canadian Hypertension Education Program recommendations for the management of hypertension: Part
1—Blood pressure measurement, diagnosis and assessment of risk. Can. J. Cardiol. 2009, 25, 279–286. [CrossRef]

http://dx.doi.org/10.1109/TETC.2019.2952765
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.3238/arztebl.2017.0883
 https://www.semanticscholar.org/paper/The-Malaysian-LOW-BACK-PAIN-management-Edition.-Mansor/7c8f2bbf0968f7c175754dee819f302dc8beef83
 https://www.semanticscholar.org/paper/The-Malaysian-LOW-BACK-PAIN-management-Edition.-Mansor/7c8f2bbf0968f7c175754dee819f302dc8beef83
https://www.intechopen.com/books/low-back-pain/the-treatment-of-low-back-pain-scientific-evidence
https://www.intechopen.com/books/low-back-pain/the-treatment-of-low-back-pain-scientific-evidence
http://dx.doi.org/10.1016/j.jphys.2017.02.012
http://dx.doi.org/10.7326/M16-2367
http://dx.doi.org/10.1007/s00586-017-5099-2
http://dx.doi.org/10.1016/S0828-282X(07)70797-3
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.189010
http://dx.doi.org/10.1111/anae.13348
http://dx.doi.org/10.1542/peds.2017-1904
http://www.ncbi.nlm.nih.gov/pubmed/28827377
http://dx.doi.org/10.1001/jama.2013.284427
http://dx.doi.org/10.1016/S0828-282X(09)70491-X

	The Problem and the Method
	Motivation
	Brief Description of the Proposed Method
	Summary of Contributions
	Organization of the Article

	Discussion of Prior Art
	Text Analysis of Medical Guidelines
	Vector Representations of Documents Using Word Embeddings
	Other Work on Disagreements and Contradictions

	From Recommendations to Vectors of Differences and a Graph
	Computing the Differences in Recommendations
	From Differences to Distances and a Graph

	Transforming Full Guidelines Documents into Vectors and Graphs
	Data Preparation for All Experiments
	Measuring Distances between Full Documents
	Building Vector Representations of Full Documents
	Our Best Model: Using BioASQ Embeddings and Word Mover's Distance

	Graph-Based Method for Comparing Collections of Documents
	Details of Experiments and Their Results
	Steps Used in All Our Experiments and Evaluation
	Results of the Experiments

	Discussion and Possible Extensions of this Work
	Conclusions
	Additional Experiments
	Experimenting with the Full Texts of the Guidelines
	Lower Back Pain Management Guidelines 
	Comparing Hypertension Management Guidelines

	References

