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Abstract: In machine learning applications, classification schemes have been widely used for predic-
tion tasks. Typically, to develop a prediction model, the given dataset is divided into training and
test sets; the training set is used to build the model and the test set is used to evaluate the model.
Furthermore, random sampling is traditionally used to divide datasets. The problem, however, is
that the performance of the model is evaluated differently depending on how we divide the training
and test sets. Therefore, in this study, we proposed an improved sampling method for the accurate
evaluation of a classification model. We first generated numerous candidate cases of train/test
sets using the R-value-based sampling method. We evaluated the similarity of distributions of the
candidate cases with the whole dataset, and the case with the smallest distribution–difference was
selected as the final train/test set. Histograms and feature importance were used to evaluate the
similarity of distributions. The proposed method produces more proper training and test sets than
previous sampling methods, including random and non-random sampling.

Keywords: classification; training and test sets; sampling; feature importance; evaluation

1. Introduction

Classification problems in machine learning can be easily found in the real world.
Doctors diagnose patients as either diseased or healthy based on the symptoms of a specific
disease in the past, and in online commerce, security experts decide whether transactions
are fraudulent or normal based on the pattern of previous transactions. As in this example,
the purpose of classification in machine learning is to predict unknown features based
on past data. An explicit classification target, such as “diseased” or “healthy”, is called
a class label. The classification belongs to supervised learning because it uses a class
label. Representative classification algorithms include decision trees, artificial neural
networks (ANNs), naive Bayes (NB) classifiers, support vector machine (SVM), and k-
nearest neighbors (KNN) [1].

In general, the development of a classification model comprises two phases, as shown
in Figure 1, starting with data partitioning. The entire dataset is divided into a training
set and a test set, each of which is used during different stages and for different purposes.
The first is the learning or training phase using the training set. At this time, part of the
training set is used as a validation set. The second phase is the model evaluation phase
using the test set. The evaluation result using a test set is considered the final performance
of the trained model. The inherent problem in the development of a classification model
is that the model’s performance (accuracy) inevitably depends on the divided training
and test set. This is because the model reflects the characteristics of the training set, but
the accuracy of the model is influenced by the characteristics of the test set. If a model
with poor actual performance is evaluated with an easy-to-classify test set, the model
performance will look good. Conversely, if a model with good performance is evaluated
by a difficult-to-classify test set, the model performance will be underestimated. In our
previous work [2], we showed that 1000 cases of train/test sets by random sampling
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produced different classification accuracies from 0.848 to 0.975. This phenomenon is due
to the difference in data distribution between the training and test sets, emphasizing that
dividing the entire dataset into training and test sets has a significant impact on model
performance evaluation.
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The ideal goal of splitting train/test sets is that the distributions of both the training
and test sets become the same as the whole dataset. However, this is a difficult task for
multi-dimensional datasets. Various methods have been proposed to solve this problem.
Random sampling is an easy and widely used method. In random sampling, each data
instance has the same probability of being chosen, and this can reduce the bias of model
performance. However, it produces a high variance in model performance, if a dataset has
an abnormal distribution or the size of the sample is small [3,4]. Systematic sampling is a
method of extracting data by randomly arranging data and skipping at regular intervals [5].
Stratified sampling is a method of first dividing a population into layers, so that they do
not overlap, and then sampling from each layer. It uses the internal structure (layers) and
the distribution of a dataset [4]. D-optimal [6] and the most descriptive compound method
(MDC) [7] are advanced stratified sampling methods. The potential error of the descriptor
and rank sum of the distance between compounds are the internal structures of D-optimal
and MDC, respectively.

R-value-based sampling (RBS) [2] is a type of stratified sampling. It divides the
entire dataset into n groups (layers) according to the ratio of “class overlap”, and applies
systematic sampling to each group. In general, the classification accuracy for a dataset is
strongly influenced by the degree of overlap of the classes in the dataset [4,8]. The degree
of class overlap was measured using the R-value [8]. Let us suppose a data instance p
and q1, q2, . . . , qk are the k-nearest neighbor instances of p. If r is the number of instances
that belong to the k-nearest neighbors and their class labels are different from that of p,
the degree of overlap of p is r (0 ≤ r ≤ k). In other words, p belongs to group r. The
experimental results confirm that RBS produces better training and test sets than random
and several non-random sampling methods.

In the machine learning area, k-fold cross-validation has been used to overcome the
overfitting problem in classification. It makes k training models, and the mean of test
accuracies is considered as an evaluation measure for parameter tuning of a model or
comparison of different models. The repeated holdout method, also known as Monte
Carlo cross-validation, is also available for model evaluation [3,9]. During the iteration of
the holdout process, the dataset is randomly divided into training and test sets, and the
mean of the model accuracy gradually converges to one value [2]. The purpose of k-fold
cross-validation and the holdout method is different from that of the sampling methods.
Both k-fold cross-validation and holdout methods produce multiple train/test sets, and
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as a result, they make multiple prediction models. We cannot know which is a desirable
model. Therefore, they were excluded from the discussion of the sampling issue.

In this study, we propose an improved sampling method based on RBS. We generated
candidate train/test sets using the modified RBS algorithm and evaluated the distribution
similarity between the candidates and the whole dataset. In the evaluation process, a data
histogram and feature importance were considered. Finally, the case with the smallest
deviation of the distribution was selected. We compared the proposed method with
RBS, and we confirmed that the proposed method shows better performance than the
previous RBS.

2. Materials and Methods

As mentioned earlier, the ideal training and test sets should have the same distribution
as the original dataset. To achieve this goal, we propose a method called feature-weighted
sampling (FWS). Our main idea is as follows:

(1) Generate numerous candidate cases of train/test sets using modified RBS.
(2) Evaluate the similarity between the original dataset and candidate cases. The similar-

ity is measured by the distance.
(3) Choose the case that has smallest distance to original dataset.

Figure 2 summarizes the proposed method in detail. The first phase generates n
train/test set candidates with stratified random sampling. Stratified sampling uses the
modified RBS method, which reflects the amorphic property of the data, called class overlap.
The second step is to select one of the candidates with the distribution that is most similar
to the original dataset. To evaluate the similarity of distribution, we measured the distance
between the train/test sets and the original dataset in terms of distance. To calculate
the distance between the original dataset and train/test sets, we tested Bhattacharyya
distance [10], histogram intersection [11], and Earth Mover’s Distance [12]. Finally, we
adopted the Earth Mover’s Distance. Feature importance was applied to the weighting
feature during the distance calculation. As a result, the train/test sets that had the smallest
distance from the original dataset were selected. For the evaluation of the sampling method,
we devised a metric named the mean accuracy index (MAI). Using the MAI, we compared
the proposed FWS and RBS. Twenty benchmark datasets and four classifiers, including
k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and C50
were used for the comparison.
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2.1. Phase 1: Generate Candidates

In the candidate generation step, 1000 candidates with a pair of train/test sets were
generated using a modified RBS. Next, 25% and 75% of the total instances were sampled to
the test set and training set, respectively. Class overlap is the key concept of an RBS. We
first summarize the class overlap and explain the modified RBS.



Appl. Sci. 2021, 11, 2039 4 of 17

2.1.1. Concept of Class Overlap

Class overlap refers to the overlap of data instances among classes, and wide class
overlap makes it difficult to classify tasks [8]. The overlap number of an instance p is
calculated by counting the number of instances with different class labels in the k-nearest
neighbors. Figure 3 shows the class overlap value for a data instance (red cross in Figure 3)
when k = 3. If the overlap number is over the threshold, we can determine that p is located in
the overlapped area. The ratio of instances located in the overlapped area is the R-value [8].
The R-value can be used to evaluate the quality of the datasets. In RBS, the overlap number
of an instance is used to group the instance. If k = 3, then an instance can belong to one of
the four groups. The RBS performs sampling train/test instances from the four groups.
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2.1.2. Modified RBS

The original RBS adopts a stratified sampling method. It groups each instance accord-
ing to the class overlap number and then samples each group in a stratified manner. As a
result, the original RBS always produces the same training and test sets. We replaced the
stratified sampling with random sampling in the original RBS. The modified RBS produces
various training/test sets according to the random seed. Figure 4 shows the pseudocode
for the modified RBS [2].

2.2. Phase 2: Evaluate the Candidates and Select Best Train/Test Sets

The main goal of Phase 2 is to find the best training/tests from 1000 candidates. We
evaluated each candidate according to the workflow shown in Figure 5. Each feature
in the dataset was scaled to have a value between 0 and 1, and then histograms were
generated for the whole dataset and candidate train/test sets. Based on the histogram
data, the similarity in the distribution between the whole dataset and the training set,
and between the whole data set and the test set was measured using the Earth Mover’s
Distance. The final similarity distance for each candidate was obtained by summing the
obtained similarity distance for each feature, which reflects the weight relative to the
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importance of the feature. Once the similarity distances for all candidates were obtained,
we selected the candidate with the smallest distance as the output of the FWS method.
We explain the histogram generation, similarity calculation, and feature weighting in the
following sections.
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2.2.1. Generation of Histograms

The histogram represents the approximated distribution by corresponding a set of
real values to an equally wide interval, which is called bin. For example, if a histogram
is configured with n bin, it can be defined as a histogram = {(bini, valuei)|1 ≤ i ≤
n, where bink < binj when k < j}. The above definition allows the histogram to be
represented as a bar for data visualization. However, it is more advantageous to use it as a
pure mathematical object containing an approximate data distribution [13,14]. Histograms
are mathematical tools that extract compressed characteristic information of a dataset and
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play an important role in various fields such as computer vision, image retrieval, and
databases [12–15]. We confirmed that the histogram approach is better than the statistical
quantile.

This work also views the histogram as a mathematical object and attempts to mea-
sure the quantitative similarity between the entire dataset and the candidate dataset. By
transforming the real distribution into a histogram, finding train/test sets with the distri-
bution most similar to the entire dataset can be considered the same as the image retrieval
problem. Our goal was to find the most similar histogram image of the entire dataset from
1000 candidate histogram images.

2.2.2. Measurement of Histogram Similarity

We evaluated the similarity of histograms using distance perspective closeness. Al-
though there are several methods and metrics to obtain similarity distances between
histograms [14,15], we exploited the Earth Mover’s Distance [12], which adopts a cross-bin
scheme. Unlike the bin-by-bin method, cross-bin measurement evaluates not only exactly
corresponding bins but also non-responding bins (Figure 6) [12]. It induces less sensitivity
to the location of bins and better reflects human-aware similarities [12]. The Earth Mover’s
Distance is a cross-bin method based on the optimal transport theory, and several studies
have demonstrated its superiority [12,15]. In addition, this measurement method has
the properties of true distance metrics that satisfy non-negativity, symmetry, and triangle
order inequality [15]. In this study, the similarity between datasets is defined as the sum
of the histogram distances of all features. Furthermore, the Earth Mover’s Distance was
calculated using the emdist package in CRAN (https://cran.r-project.org/web/packages/
emdist/index.html, accessed on 25 February 2021).
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2.2.3. Feature Weighting

Previously, we conceptually defined the similarity between datasets by the distances
between features; however, simple distances can be a problem. This is because each
feature not only has a different distribution of values, but also has a different degree of
contribution to model accuracy. In other words, the same similarity distance between
features has different effects on predictive power. For example, although features A and B
have equally strong similarity distances, A may have a very strong effect on model accuracy,
whereas B may have a weak effect. Therefore, when calculating the distances between each
feature, we must apply the weight according to the effect of each feature.

There are many methods to evaluate the effects of features, such as information gain
and chi-square. We used the Shapley value-based feature importance method [16]. The
Shapley value is a method for evaluating the contribution of each feature value in an
instance to the model. It takes the idea of game theory to distribute profits fairly according
to the contribution of each player. Recently, Covert [16] proposed a method to measure
feature importance from a global perspective of the Shapley value as a dataset rather than
each instance. This method, called SAGE, has also been published as a Python package.
We used this method to obtain feature importance and assign weights when calculating

https://cran.r-project.org/web/packages/emdist/index.html
https://cran.r-project.org/web/packages/emdist/index.html
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the similarity distances. The weighted distance between the entire dataset and the given
train/test sets was defined as follows:

d = ∑n
i=1 w( fi)× (dtrain( fi) + dtest( fi)) (1)

• d: similarity distance of given train/test sets
• w( fi): weight of i-th feature
• dtrain( fi): Similarity distance between whole dataset and training set for i-th feature
• dtest( fi): Similarity distance between whole dataset and test set for i-th feature

The pseudocode for proposed FWS method is described in Figure 7.
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2.3. Evaluation of FWS Method

To confirm the performance of the proposed sampling method, we compared it with
the original RBS, because RBS has traditionally outperformed other methods. Other
methods have already been compared with RBS, and we can omit the comparison with
other methods. MAI was used as an evaluation metric. For the benchmark test, 20 datasets
and 4 classification algorithms were employed.

2.3.1. Evaluation Metric: MAI

Measuring the quality of given train/test sets is a difficult issue, because we do not
know which ideal train/test sets completely reflect the entire dataset. Kang [2] proposed
MAI as a solution. He generated 1000 train/test sets by random sampling and measured
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the mean accuracies of a classification algorithm. He considered the mean accuracy as the
accuracy of ideal train/test sets. In statistics, the mean of large samples converges to the
mean of the population. Let us suppose that AEV is the mean accuracy from n train/test
sets. The AEV can be defined as follows:

AEV = (∑n
i=1 test_acci )/n (2)

where test_acci is the test accuracy generated by the ith random sampling. MAI is defined
by the following equation:

MAI =
|ACC− AEV|

SD
(3)

where ACC refers to the test accuracy derived from the classification model for a test
set in n train/test sets, and SD is the standard deviation of test accuracies (test_acci) in
the AEV. The intuitive meaning of MAI is “how far the given ACC is from the AEV”.
Therefore, the smaller the MAI is, the better. We used the MAI as an evaluation metric for
the train/test sets.

2.3.2. Benchmark Datasets and Classifiers

To compare the proposed FWS and RBS, we used 20 benchmark datasets with vari-
ous numbers of features (attributes), classes, and instances. The datasets were collected
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/mL/, accessed on
25 February 2021) and Kaggle site (https://www.kaggle.com/, accessed on 25 February
2021), and are listed in Table 1. Four classification algorithms, KNN, SVM, RF, and C50
were tested. They are supported by R packages. The packages and parameters used are
listed in Table 2. We divided the entire dataset into training and test sets at a 75:25 ratio to
build and evaluate the classification models.

Table 1. List of benchmark datasets.

No Name # of Features # of Instances # of Class

1 audit 25 772 2
2 avila 10 10,430 12
3 breastcancer 30 569 2
4 breastTissue 91 106 6
5 ecoil 7 336 8
6 Frogs_MFCCs 22 7127 3
7 gender_classification 7 5001 2
8 glass 9 214 6
9 hill_Valley 100 1212 2
10 ionosphere 33 351 2
11 iris 4 150 3
12 liver 6 345 2
13 music_genre 26 1000 10
14 pima_diabetes 8 768 2
15 satimage 36 4435 6
16 seed 7 210 3
17 statlog_segment 16 2310 7
18 wdbc 30 569 2
19 winequality 11 4893 6
20 Wireless_Indoor 7 2000 4

http://archive.ics.uci.edu/mL/
https://www.kaggle.com/
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Table 2. Summary of classifier and applied parameters.

Classifier R Package Parameter Values

KNN class k = 5
SVM e1071 Default
RF randomForest Default
C50 C50 trials = 1

3. Results

In the first phase of generating a candidate train/test set, the MAI value was examined
while adjusting the K value, which determines the sensitivity of category overlap during
balanced sampling. We experimented with the influence of K. Figure 8 and Table A1 in
Appendix A describe the results. The average MAI was measured according to K. In this
experiment, the bin width was fixed at 0.2. As we can see, the overall performance was the
best when K was 3. When the value of K increased, the number of groups also increased,
and instances in a specific group tended to become sparse. When the instances of each
group were insufficient, the diversity of the distribution could not be secured. Therefore, a
small number of K is advantageous for the proposed method.
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The value of bin width is another important parameter for the proposed FWS. There-
fore, we experimented with the influence of the bin width. We tested the value 0.2 (the
number of bins is 5), 0.1 (the number of bins is 10), and 0.05 (the number of bins is 20), and
K was fixed at 3. Figure 9 and Table A2 in Appendix A summarize the results. When the bin
width was 0.2, the performance was slightly good, but there was no significant difference
overall. In another experiment, we confirmed that 0.2 was the best for multi-class datasets
(number of classes > 2), whereas 0.05 was the best for binary-class datasets. Therefore,
we used 0.05 and 0.2 as hybrid methods for the final FWS method.
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Table 3 shows the final experimental results when k = 3 and the bin width is hybrid.
The 61 cases (76%) of MAI of FWS were better than those of RBS, and RBS was better than
FWS in 19 cases (24%). This result indicates that FWS is a more improved method than
original RBS and previous methods. The details are discussed in the next section.

Table 3. Final experimental results.

Dataset Classifier MA SD RBS
Accuracy

FWS
Accuracy

RBS
MAI

FWS
MAI

1 C50 0.998 0.004 0.99479 0.990 0.972 2.383
KNN 0.957 0.014 0.94792 0.949 0.628 0.552

RF 0.998 0.003 0.99479 1.000 1.083 0.479
SVM 0.969 0.012 0.9375 0.959 2.623 0.792

2 C50 0.974 0.004 0.97694 0.974 0.645 0.076
KNN 0.698 0.007 0.69254 0.702 0.758 0.474

RF 0.979 0.003 0.97771 0.975 0.388 1.233
SVM 0.69 0.011 0.68255 0.678 0.652 1.075

3 C50 0.936 0.021 0.986 0.951 2.389 0.741
KNN 0.968 0.013 0.986 0.965 1.348 0.202

RF 0.959 0.017 0.972 0.958 0.740 0.061
SVM 0.974 0.012 0.993 0.972 1.532 0.155

4 C50 0.665 0.069 0.708 0.676 0.632 0.161
KNN 0.661 0.078 0.625 0.595 0.458 0.845

RF 0.699 0.066 0.583 0.649 1.746 0.760
SVM 0.598 0.070 0.583 0.514 0.215 1.213

5 C50 0.803 0.036 0.783 0.822 0.546 0.538
KNN 0.850 0.027 0.855 0.856 0.209 0.214

RF 0.860 0.029 0.831 0.878 0.987 0.618
SVM 0.807 0.061 0.735 0.778 1.191 0.485

6 C50 0.963 0.005 0.967 0.961 0.754 0.268
KNN 0.992 0.002 0.991 0.992 0.319 0.243

RF 0.987 0.003 0.984 0.987 0.973 0.159
SVM 0.992 0.002 0.990 0.990 1.037 0.737

7 C50 0.972 0.004 0.970 0.970 0.369 0.347
KNN 0.965 0.005 0.970 0.965 1.086 0.122

RF 0.974 0.004 0.977 0.973 0.655 0.317
SVM 0.972 0.004 0.973 0.970 0.298 0.252

8 C50 0.686 0.055 0.615 0.694 1.275 0.145
KNN 0.634 0.049 0.596 0.645 0.768 0.231

RF 0.779 0.048 0.750 0.758 0.608 0.439
SVM 0.686 0.048 0.673 0.629 0.276 1.185

9 C50 0.505 0.002 0.505 0.503 0.110 0.807
KNN 0.548 0.025 0.558 0.549 0.380 0.025

RF 0.600 0.026 0.653 0.601 2.061 0.065
SVM 0.515 0.017 0.545 0.510 1.776 0.297

10 C50 0.9 0.03 0.862 0.890 1.276 0.344
KNN 0.844 0.029 0.839 0.846 0.169 0.071

RF 0.934 0.022 0.954 0.923 0.882 0.500
SVM 0.942 0.022 0.943 0.923 0.017 0.848

11 C50 0.938 0.036 0.944 0.951 0.174 0.365
KNN 0.96 0.031 0.944 0.951 0.484 0.267

RF 0.956 0.03 0.944 0.951 0.376 0.152
SVM 0.961 0.031 0.944 0.951 0.538 0.316
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Table 3. Cont.

Dataset Classifier MA SD RBS
Accuracy

FWS
Accuracy

RBS
MAI

FWS
MAI

12 C50 0.648 0.048 0.756 0.637 2.252 0.213
KNN 0.607 0.045 0.605 0.560 0.062 1.047

RF 0.725 0.043 0.767 0.714 0.983 0.257
SVM 0.693 0.04 0.721 0.648 0.689 1.112

13 C50 0.485 0.03 0.484 0.466 0.029 0.641
KNN 0.616 0.027 0.568 0.617 1.790 0.058

RF 0.645 0.027 0.628 0.652 0.610 0.256
SVM 0.654 0.028 0.648 0.633 0.229 0.784

14 C50 0.736 0.029 0.724 0.745 0.423 0.289
KNN 0.734 0.026 0.719 0.724 0.570 0.349

RF 0.762 0.025 0.734 0.760 1.109 0.078
SVM 0.761 0.026 0.724 0.755 1.405 0.209

15 C50 0.857 0.010 0.859 0.852 0.225 0.454
KNN 0.901 0.008 0.898 0.898 0.343 0.318

RF 0.910 0.008 0.914 0.915 0.548 0.667
SVM 0.891 0.008 0.892 0.894 0.056 0.425

16 C50 0.908 0.039 0.882 0.912 0.664 0.100
KNN 0.928 0.032 0.882 0.930 1.421 0.066

RF 0.927 0.035 0.882 0.930 1.276 0.085
SVM 0.929 0.030 0.882 0.930 1.533 0.023

17 C50 0.964 0.008 0.977 0.973 1.644 1.062
KNN 0.959 0.007 0.963 0.956 0.661 0.424

RF 0.978 0.006 0.980 0.974 0.465 0.613
SVM 0.944 0.008 0.955 0.950 1.340 0.826

18 C50 0.936 0.021 0.986 0.951 0.895 0.741
KNN 0.968 0.013 0.986 0.965 0.965 0.202

RF 0.959 0.017 0.972 0.958 0.951 0.061
SVM 0.974 0.012 0.993 0.972 0.979 0.155

19 C50 0.573 0.014 0.636 0.581 4.636 0.636
KNN 0.543 0.012 0.571 0.541 2.329 0.099

RF 0.684 0.011 0.723 0.699 3.404 1.309
SVM 0.571 0.011 0.577 0.572 0.497 0.033

20 C50 0.97 0.007 0.972 0.968 0.296 0.226
KNN 0.984 0.005 0.98 0.980 0.732 0.693

RF 0.984 0.005 0.978 0.984 1.040 0.086
SVM 0.981 0.005 0.98 0.984 0.158 0.610

MA: mean classification accuracy, SD: standard deviation.

4. Discussion

RBS is an efficient sampling method compared to the previous methods. The proposed
FWS is a more improved method than RBS. Figure 10 shows how much more advanced
FWS is than RBS. As shown in Figure 10a, the average MAI value of FWS was 0.460, whereas
that of RBS was 0.920. As we can see, the smaller the MAI, the better. Therefore, FWS
improved MAI by 56% compared to RBS. Figure 10b compares the standard deviations
of the MAI. The standard deviation of FWS was 0.403, whereas that of RBS was 0.779.
In other words, this means the distribution of the MAI value of the FWS was smaller than
that of the RBS. FWS yielded more stable sampling results than RBS. Figure 10c shows
the range of MAI. The range was calculated as (maximum of MAI) − (minimum of MAI).
It also shows the distribution of MAI values. The ranges of FWS and RBS were 2.359 and
4.619, respectively. The fluctuation range of the FWS was smaller than that of the RBS.
All statistics in Figure 10 show that FWS is a more stable and accurate method than RBS.
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Furthermore, it is proven that the similarity of distribution between the train/test sets and
whole dataset is an important factor for their ideal splitting.
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Figure 10. Comparison of RBS and FWS.

In the development of the prediction model, the quality of the features determines
the performance of the model. In general, the influence of features is greater than that
of classification algorithms [17]. Therefore, considering the feature weight for distance
calculation in the classification is reasonable. Figure 11 shows the influence of feature
weighting in the FWS method. We compared FWS with and without feature weights. In the
average of MAI, the “without case” was 0.634 whereas “with case” was 0.490 (Figure 11a).
This means that feature weighting improved the performance of the FWS. In terms of the
standard deviation, both cases were similar (Figure 11b). The ranges of “with case” and
“without case” were 2.314 and 1.801, respectively (Figure 11c). This is because the maximum
value of “with case” was large, which is less important than the standard deviation.
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Figure 11. FWS with and without feature-weighted distance.

We analyzed the variance in the MAI according to the number of classes. In the result
of RBS, the MAI value of binary-class datasets was higher than that of multi-class datasets,
whereas the difference was not large in FWS (Figure 12). This means that FWS is not
influenced by the variance in the class number. FWS is a more stable method than RBS.
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Figure 12. MAI of FWS according to number of class (K = 3, bin width = hybrid).

In this study, we confirmed that the similarity of distribution between the original
dataset and train/test sets is an important factor for accurate sampling. Furthermore,
feature-weighted distance calculation can improve the sampling performance. If we
use the proposed FWS for splitting train/test sets, we can more accurately evaluate the
classification models. In our experiment, FWS performed better than RBS in 61 of 80 cases
of train/test sets. This shows that the FWS has room for further improvement and is a
topic for further research.
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Appendix A

Table A1. MAI of FWS according to K (bin width = 0.2).

No Classifier K = 3 K = 4 K = 5 K = 6 K = 7

1 C50 2.383 2.368 0.499 0.499 0.499
KNN 0.552 0.534 1.252 0.480 0.480

RF 0.479 0.479 0.479 1.020 0.479
SVM 0.792 0.775 0.940 1.568 0.543

2 C50 0.076 0.491 0.232 0.719 0.120
KNN 0.474 0.241 0.515 2.064 0.390

RF 1.233 0.211 1.328 0.153 3.192
SVM 1.075 1.557 0.058 1.175 0.418
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Table A1. Cont.

No Classifier K = 3 K = 4 K = 5 K = 6 K = 7

3 C50 0.078 0.446 1.189 0.835 0.164
KNN 1.766 0.166 1.195 0.659 0.639

RF 0.351 0.027 0.379 0.414 0.407
SVM 0.721 0.682 0.682 0.663 0.644

4 C50 0.161 1.010 0.932 1.293 0.079
KNN 0.845 0.532 1.135 0.458 0.313

RF 0.760 0.055 1.117 1.495 1.112
SVM 1.213 0.332 0.023 1.407 0.107

5 C50 0.538 0.078 0.414 0.322 1.122
KNN 0.214 0.286 0.326 0.165 0.430

RF 0.618 0.251 1.441 0.502 1.316
SVM 0.485 0.576 0.182 0.730 0.731

6 C50 0.268 0.837 0.832 1.184 1.943
KNN 0.243 0.027 0.025 0.576 0.845

RF 0.159 0.503 0.167 0.948 0.274
SVM 0.737 0.447 0.729 0.447 0.727

7 C50 0.347 0.524 0.337 0.883 0.160
KNN 0.122 0.466 0.241 0.066 0.235

RF 0.317 0.905 0.484 1.097 0.084
SVM 0.252 1.006 0.810 0.620 0.246

8 C50 0.145 0.920 1.169 2.073 0.344
KNN 0.231 0.346 0.361 0.689 1.287

RF 0.439 1.023 0.502 0.140 0.502
SVM 1.185 2.047 0.529 1.490 0.217

9 C50 0.807 0.075 7.890 1.820 0.818
KNN 1.039 0.482 0.517 0.719 0.144

RF 0.690 0.633 0.830 0.778 0.085
SVM 1.652 2.145 0.086 1.531 0.086

10 C50 0.020 0.448 0.508 0.832 1.027
KNN 0.675 0.183 0.781 0.123 0.241

RF 0.500 0.054 0.115 1.340 0.948
SVM 0.359 1.253 0.232 1.212 1.123

11 C50 0.365 0.398 0.273 0.429 0.273
KNN 0.267 0.230 0.533 0.195 0.230

RF 0.152 0.114 0.114 0.844 0.114
SVM 0.316 0.278 0.500 0.242 0.500

12 C50 0.930 0.702 1.616 0.899 1.128
KNN 0.312 0.912 0.912 0.422 0.067

RF 0.514 0.768 0.512 1.283 0.512
SVM 0.839 1.615 2.160 0.294 1.112

13 C50 0.641 0.311 0.825 0.634 1.249
KNN 0.058 0.498 1.366 0.460 0.133

RF 0.256 1.089 1.402 0.063 0.787
SVM 0.784 1.250 0.619 0.414 1.642

14 C50 0.462 0.185 1.220 0.720 0.605
KNN 1.024 0.295 0.100 0.630 1.349

RF 0.328 0.375 0.840 0.018 0.135
SVM 0.405 0.619 0.746 0.502 0.453

15 C50 0.454 0.201 0.585 0.280 0.042
KNN 0.318 0.149 0.161 0.918 0.537

RF 0.667 0.091 0.129 1.118 1.073
SVM 0.425 0.150 0.643 0.506 0.678
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Table A1. Cont.

No Classifier K = 3 K = 4 K = 5 K = 6 K = 7

16 C50 0.100 0.138 0.176 0.138 0.247
KNN 0.066 1.184 0.391 0.976 0.723

RF 0.085 0.614 0.819 1.364 0.217
SVM 0.023 0.063 0.101 0.063 0.174

17 C50 1.062 2.067 0.677 0.145 2.023
KNN 0.424 0.382 1.763 0.807 1.272

RF 0.613 1.997 0.570 1.117 1.959
SVM 0.826 1.581 1.552 0.512 1.727

18 C50 0.078 0.446 1.189 0.835 0.164
KNN 1.766 0.166 1.195 0.659 0.639

RF 0.351 0.027 0.379 0.414 0.407
SVM 0.721 0.682 0.682 0.663 0.644

19 C50 0.636 0.062 0.347 1.515 0.388
KNN 0.099 2.152 0.724 0.747 0.243

RF 1.309 0.751 2.264 0.566 0.302
SVM 0.033 1.142 0.343 1.126 2.135

20 C50 0.226 0.459 0.366 0.737 0.381
KNN 0.693 0.656 0.104 0.110 0.266

RF 0.086 0.961 0.827 1.319 0.120
SVM 0.610 1.173 0.819 0.448 0.440

mean 0.554 0.654 0.775 0.754 0.645

Table A2. MAI of FWS according to bin width (K = 3).

No Classifier bw = 0.05 bw = 0.1 bw = 0.2

1 C50 2.383 2.383 2.383
KNN 0.552 0.552 0.552

RF 0.479 0.479 0.479
SVM 0.792 0.792 0.792

2 C50 0.076 1.519 1.519
KNN 0.474 0.615 0.615

RF 1.233 1.016 1.016
SVM 1.075 1.040 1.040

3 C50 0.741 0.078 0.078
KNN 0.202 1.766 1.766

RF 0.061 0.351 0.351
SVM 0.155 0.721 0.721

4 C50 0.161 0.941 0.161
KNN 0.188 0.188 0.845

RF 0.871 1.687 0.760
SVM 0.054 0.719 1.213

5 C50 0.538 0.538 0.538
KNN 0.214 0.214 0.214

RF 0.618 0.618 0.618
SVM 0.485 0.485 0.485

6 C50 0.268 0.268 0.268
KNN 0.243 0.243 0.243

RF 0.159 0.159 0.159
SVM 0.737 0.737 0.737
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Table A2. Cont.

No Classifier bw = 0.05 bw = 0.1 bw = 0.2

7 C50 0.347 0.347 0.347
KNN 0.122 0.122 0.122

RF 0.317 0.317 0.317
SVM 0.252 0.252 0.252

8 C50 0.148 0.148 0.145
KNN 0.888 0.888 0.231

RF 0.236 0.236 0.439
SVM 0.479 0.479 1.185

9 C50 0.807 0.807 0.807
KNN 0.025 0.640 1.039

RF 0.065 0.060 0.690
SVM 0.297 1.662 1.652

10 C50 0.344 0.344 0.020
KNN 0.071 0.071 0.675

RF 0.500 0.500 0.500
SVM 0.848 0.848 0.359

11 C50 0.365 0.365 0.365
KNN 0.514 0.514 0.267

RF 0.152 0.152 0.152
SVM 0.316 0.316 0.316

12 C50 0.213 0.930 0.930
KNN 1.047 0.312 0.312

RF 0.257 0.514 0.514
SVM 1.112 0.839 0.839

13 C50 1.667 1.667 0.641
KNN 0.483 0.483 0.058

RF 1.975 1.975 0.256
SVM 1.056 1.056 0.784

14 C50 0.289 0.462 0.462
KNN 0.349 1.024 1.024

RF 0.078 0.328 0.328
SVM 0.209 0.405 0.405

15 C50 1.290 0.197 0.454
KNN 0.206 0.802 0.318

RF 0.839 0.839 0.667
SVM 0.134 0.134 0.425

16 C50 0.348 0.348 0.100
KNN 1.033 1.033 0.066

RF 0.418 0.418 0.085
SVM 1.127 1.127 0.023

17 C50 1.697 0.419 1.062
KNN 1.368 0.896 0.424

RF 0.240 1.467 0.613
SVM 1.843 0.210 0.826

18 C50 0.741 0.078 0.078
KNN 0.202 1.766 1.766

RF 0.061 0.351 0.351
SVM 0.155 0.721 0.721

19 C50 0.695 0.636 0.636
KNN 0.842 0.099 0.099

RF 0.955 1.309 1.309
SVM 0.783 0.033 0.033
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Table A2. Cont.

No Classifier bw = 0.05 bw = 0.1 bw = 0.2

20 C50 0.226 0.055 0.226
KNN 0.693 0.080 0.693

RF 0.448 1.362 0.086
SVM 0.610 0.244 0.610

mean 0.827 0.831 0.829
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