[FiFied applied
o sciences

Article

HASPO: Harmony Search-Based Parameter Optimization for
Just-in-Time Software Defect Prediction in Maritime Software

Jonggu Kang !, Sunjae Kwon 1, Duksan Ryu >* and Jongmoon Baik !

Citation: Kang, J.; Kwon, S.; Ryu, D.;
Baik, J. HASPO: Harmony
Search-Based Parameter Optimization
for Just-in-Time Software Defect
Prediction in the Maritime Software.
Appl. Sci. 2021, 11, 2002.
https://doi.org/10.3390/app11052002

Academic Editor: Zong Woo Geem

Received: 30 December 2020
Accepted: 20 February 2021
Published: 24 February 2021

Publisher’s Note: MDPI stays
neutral with regard to jurisdictional
claims in published maps and

institutional affiliations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(http://creativecommons.org/licenses

/by/4.0/).

1 School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
jjang9dr@kaist.ac.kr (J.K.); cadet6465@kaist.ac.kr (S.K.); jbaik@kaist.ac.kr (J.B.)

2 Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Korea

* Correspondence: duksan.ryu@jbnu.ac.kr

Abstract: Software is playing the most important role in recent vehicle innovations, and
consequently the amount of software has rapidly grown in recent decades. The safety-critical
nature of ships, one sort of vehicle, makes software quality assurance (SQA) a fundamental
prerequisite. Just-in-time software defect prediction (JIT-SDP) aims to conduct software defect
prediction (SDP) on commit-level code changes to achieve effective SQA resource allocation. The
first case study of SDP in the maritime domain reported feasible prediction performance. However,
we still consider that the prediction model has room for improvement since the parameters of the
model are not optimized yet. Harmony search (HS) is a widely used music-inspired meta-heuristic
optimization algorithm. In this article, we demonstrated that JIT-SDP can produce better
performance of prediction by applying HS-based parameter optimization with balanced fitness
value. Using two real-world datasets from the maritime software project, we obtained an
optimized model that meets the performance criterion beyond the baseline of a previous case study
throughout various defect to non-defect class imbalance ratio of datasets. Experiments with open
source software also showed better recall for all datasets despite the fact that we considered
balance as a performance index. HS-based parameter optimized JIT-SDP can be applied to the
maritime domain software with a high class imbalance ratio. Finally, we expect that our research
can be extended to improve the performance of JIT-SDP not only in maritime domain software but
also in open source software.

Keywords: harmony search; meta-heuristic; parameter optimization; software defect prediction;
just-in-time prediction; software quality assurance; maintenance; maritime transportation;

1. Introduction

Nowadays software in various industries is an important and dominant driver of
innovation. The amount of software continues to grow to deal with demands and
challenges such as electrification, connectivity, and autonomous operations in vehicle
industries [1]. The maritime domain is also confronting similar engineering challenges
[2-4].

Software quality is the foremost concern in both software engineering and vehicle
industries. Software quality assurance (SQA) is one of the prerequisites for maintaining
such software quality owing to the safety-critical nature of vehicles. In particular, due to
pressure and competition in these industries (i.e., tradeoff relationship among time, cost,
and quality), effectual allocation of quality assurance (QA) resources to detect defects as
quickly as possible in the early stages of the software lifecycle has become critical to
reduce quality costs [5,6].

Just-in-time software defect prediction (JIT-SDP) aims to conduct software defect
prediction (SDP) on commit-level code changes to achieve effective SQA resource
allocation [7]. By pointing out potentially defect-prone modules in advance, SQA team

Appl. Sci. 2021, 11, 2002. https://doi.org/10.3390/app11052002

www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 2002

2 of 25

allocates more efforts (e.g., spending more time on designing test cases or concentrating
on more code inspection) on these identified modules [8]. SDP techniques are actively
studied and developed to minimize time and cost in maintenance and testing phases in
the software lifecycle. Machine learning and deep learning are widely used to predict
defects in newly developed modules using models that are learned from past software
defects and update details (e.g., commit id, committer, size, data and time, etc.) [9-13].

A previous case study [14] in the maritime domain discussed the fact that, as ships
are typically ordered and constructed in series with protoless development, defects are
prone to be copied on all ships in series once they occur. In comparison, the cost of
removing defects is very high due to the global mobility of ships and restricted
accessibility for defect removal. Due to these characteristics of the domain, the residual
software defects should be minimized in order to avoid high post-release quality cost.
The results of the case study showed that SDP can be applied effectively to allocate QA
resources with feasible prediction performance with an average accuracy of 0.947 and
f-measure of 0.947 yielding post-release quality cost reduction of 37.3%. The case study
of SDP in the maritime domain showed feasible prediction performance and the best
model was constructed using a random forest classifier. However, we still believe that
the prediction model has room for improvement since the parameters’ optimization in
the model have not been considered so far. For this problem, we mainly consider
parameter optimization for bagging of decision trees as a base classifier with balanced
fitness value which consider class imbalance distribution.

In this article, we demonstrated that performance of JIT-SDP can be improved by
applying harmony search-based parameter optimization in an industrial context.
Harmony search (HS) is a population-based meta-heuristic optimization algorithm,
proposed by Geem et al. [15]. The algorithm imitates the design of a unique harmony in
music to solve optimization problems. Its applications across an enormous range of
engineering problems, such as power systems, job shop scheduling, congestion
management, university timetables, clustering, structural design, neural networks, water
distribution, renewable energy, data mining, and software have provided excellent
results [16-24].

This article investigates the following research questions:

¢ RQ1: How much can HS-based parameter optimization improve SDP performance
in maritime domain software?

e RQ2: By how much can HS-based parameter optimization method reduce cost?

e RQ3: Which parameters are important for improving SDP performance?

e RQ4: How does the proposed technique perform in open source software (OSS)?

The main contributions of this article are summarized as follows:

e To the best of our knowledge, we first apply HS-based parameter optimization to
JIT-SDP and the maritime domain.

e We first apply HS-based parameter optimization with search space of the decision
tree and bagging classifier together with balanced fitness function in JIT-SDP.

The remainder of this article is organized as follows. Section 2 explains the context of
the maritime domain application and the HS algorithm. Section 3 describes the
application of the JIT-SDP tailored parameter based on HS in the maritime domain.
Section 4 discusses the experimental setup and research questions. The experimental
results are analyzed in Section 5. Sections 6 and 7 deal with the discussion and threats to
validity, respectively. Section 8 explains the related work of this study. Finally, Section 9
concludes this article and points out some future work.

2. Background

This section describes the background in two main areas: (1) software practices and
unique characteristics in the maritime domain, and (2) HS, which is used for parameter
optimization.

Appl. Sci. 2021, 11, 2002

3 of 25

2.1. Software Practices and Unique Characteristics in the Maritime Domain

The maritime and ocean transport industry is essential as it is responsible for the
carriage of almost 90% of international trade. In large ships (i.e., typical type of maritime
transportation), various equipment is installed to ensure flotation, mobility, independent
survival, safety, and performance suitable for their intended use. Large ships also have
cargo loading space, crew’s living space, an engine room for mobility, as well as more
than three control rooms for operators to control the ship’s navigation, machinery, and
cargo. Each control room has integrated systems, including workstations, controllers,
displays, networks, and base/application software. These are networked systems with
many types of sensor, actuator, and other interface systems, in accordance with their
assigned missions. Each system or remote controllers can be acquired from various
venders, and are integrated, installed and tested by an integrator. Only after an
independent verifier audit-required tests can the ship be delivered to the customer.

Software plays significant roles in handling human inputs and interactions while
coordinating essential control logic and/or tasks dependent on external input and output.
With the emerging innovative future ships, the value of software continues to rise. Future
maritime applications, for instance, can enable connectivity and autonomous operation
including identification of obstacles in the environment [3,4]. The software-intensive
systems installed on large ships include an integrated navigation system, engineering
automation system, power generation or propulsion engine control system and cargo
control system, each of which contains tens to hundreds of thousands of lines of source
code. All systems installed to vehicles including ships need to be certified by a relevant
certification authority when they are first developed, upgraded, or actually installed. The
process of obtaining approval of a sample of the developed system from the authorized
agency is referred to as type approval. Provided that the defined design or operating
environment is identical, the same copy or product of a sample which was previously
authorized can be approved as well [14].

Software development practices in the maritime and ocean transportation industry
have not received much attention despite differences from other domains. Not only are
they completely different from the IT development environment, but they are also very
different from other vehicle industries; they constantly move around the world.

In short, there are three main characteristics [14].

e In general, ships are made to order and built in series with protoless development.
e Ships move around the world and have low accessibility for defect removal
activities.

Figure 1 illustrates an example of how to induce a bug and duplicate it to multiple
ships and removals during the manufacturing and operation of ships in series. The
maritime and ocean industry is a conventional made-to-order industry that builds and
delivers ships and offshore infrastructure that customers want. The fact that ships are
mainly planned and constructed in sequence indicates that those same sister ships are
virtually identical. Although ships do not have a prototype, the system, including the
software, is tested during production to ensure that the predefined functions are
working correctly. [14] As a result, various software installed onboard the ships shall be
able to adapt or update functions promptly in advance or upon urgent adjustment
requirements. Although most of the defects are avoided and prevented during testing,
the characteristics of the maritime domain make it possible that defects will be induced
into a whole series of ships until the bug is revealed and fixed if they are not found
during testing. While defects detection is aimed in the test process to improve software
quality and reduce cost, some defects are exploited in the operating phase. It can be very
costly to patch such late-detected defects.

Appl. Sci. 2021, 11, 2002

4 of 25

o gy, No Bug ~
b4
Bug introducin Bug fix
s5s |f ssssssnsgy * <) gﬁ Bug reporting d ;K

- Bug dupncated\\\ \pQ(\’X
—_— e T

A4
. Bug fix before delivery
¥ e ¥ ¥
‘ g s | sessnamsgy }: X
O Delivery 7
=88 fssssesmsgy No Bug

Figure 1. Case of bug inducing and removing during the development and service of ships in
series.

Once a ship is constructed and delivered to the ship owner, the ship will carry
passengers and/or cargo while navigating designated or irregular routes. Ships travel
around the world according to the route they operate. In the general IT environment,
distribution or update of software through the internet or an automated distribution
system are very common activities during deployment. However, in the maritime
domain, an engineer would get to work on a ship at least once. If defects occur, the
activity and visit of the engineer to the ship increases accordingly, raising the costs of
installation and maintenance. The complexity of the service engineer’s job encompasses
not just the time spent working on software, but also the time spent entering and leaving
the shipyard and getting on the ship, and the unavoidable time spent. In addition, in
order for a service engineer to visit the ship after the delivery, he/she must monitor the
arrival and departure schedule of the ship, while taking into account the cost of overseas
travel, ways to access to the port and to get on a ship, and unexpected changes of the
schedule of the ship; it is common to wait one or two days or go to another port to get on
a ship due to the delay in the schedule as depicted in Figure 2.

Service Request

s Ship

“A Engineer

Figure 2. Ship’s mobility around the world.

2.2. Harmony Search

The harmony search algorithm (HSA) is a population-based meta-heuristic
optimization algorithm that imitates the music improvisation process where instrument

Appl. Sci. 2021, 11, 2002

5 of 25

players search the best harmony with repeated trails considering their experience [15].
Table 1 shows the parameters on which the HSA works. Harmony is a set of notes that
each instrument player has decided. The harmony is stored in the harmony memory
(HM) as an experience where each instrument player can refer to. A harmony memory
size (HMS) indicates the maximum number of harmonies that instrument players can
refer to. Whenever a new harmony is generated, each instrument player decides their
own note considering a harmony memory considering rate (HMCR), a pitch adjusting
rate (PAR), and a fret width (FW). HMCR is the probability that each player refers to a
randomly selected harmony in the HM. PAR is the probability of adjusting a harmony
that was picked from HM. FW is the bandwidth of the pitch adjustment. [25,26] The
overall HS process iterates the maximum improvisation (MI) number of consecutive
trails.

Table 1. Parameters of harmony search.

Parameter Description
Harmony memory size The maximum number of harmonies that
(HMS) instrument players can refer to
Harmony memory The probability where each player refers to

considering rate (HMCR) a randomly selected harmony in the harmony memory

Pitch adjusting rate (PAR) The prol?ablhty of adjusting a harmony
that was picked from the harmony memory

Fret width (FW) The bandwidth of the pitch adjustment
Maximum improvisation

M)

The maximum number of iterations

Figure 3 describes overall process of the HSA. We supposed each harmony consists
of N instrument player, and HMS consists of M harmony.

Initialization
Phase

Iteration
phase

Fill M random
Harmony memory

!

| Evaluate Harmonies

Forf =1..N playersin a harmony
if (random[0,1] < "HMCR’) then
r = random[1,HMS]
if R, < 'PAR’ then
if R, < 05 then
\ NHIf] = HM,[f] + FW
else
NH[f] = HM,[f] - FW
else
NH[f] = HM,[f]
else
! NH[f] = random[min,max]

Improvising
New Harmony

* NH =New Harmony, HM = Harmony memory

Yes

Sorting and
Cut M Harmonies
Reach to MI?
Yes

Figure 3. Overall process of harmony search.

Appl. Sci. 2021, 11, 2002

6 of 25

Ship

System

S/W

Initialization phase: The HS process starts from generating HMS number of
randomly generated harmonies, and evaluate performance of the generated
harmonies.

Iteration phase:

A. The iteration phase starts from improvising a new harmony. Each instrument
player decides their notes considering HMCR, PAR, and FW. The pseudocode
for these functions is described in the right side of the Figure 3. Finally, this
phase evaluates the newly improvising harmony.

B. HSA generates M new harmonies, and updates the harmony memory with the
new solution which is superior to the worst solution within the HM.

C. The A and B processes iterate until the iteration is reached to the MI.

The main advantages of the HSA are clarity of execution, record of success, and

ability to tackle several complex problems (e.g., power systems, job scheduling,
congestion management) [16-18]. Another reason for its success and reputation is that
the HSA can make trade-offs between convergent and divergent regions. In the HSA

rule,

exploitation is primarily adjusted by PAR and FW, and exploration is adjusted by

the HMCR [19].

3. Harmony Search-Based Parameter Optimization (HASPO) Approach

Commit

Extract
ves Features

Extract
Features

Extract
Additional
Info

Figure 4 shows the conceptual context of applying JIT-SDP in the maritime
industry.

Installation

S/W Update

Instance

Feature Set Make

Prediction

I
-G~

Classifier

Feature Set

Feature Set

S |
N — N

Iprocessing |

Evaluate
Performance

Train
Classifier

Generate
Dataset

Harmony Search-based Parameter Optimization

Figure 4. Application of harmony search-based parameter optimized just-in-time software defect prediction (JIT-SDP).

The overall context of HS-based parameter optimized JIT-SDP in the maritime

domain is as follows [14]:

1.

Data source preparation: sources of datasets such as version control systems
(VCSs), issue tracking systems (ITSs), and bug databases are managed and
maintained by software archive tools. The tools automate and facilitate the next
feature extraction and a whole SDP process.

Feature extraction: this step extracts instances that contain set of features and class
labels, i.e., buggy or clean, from the VCSs. The feature set, so-called prediction
metrics, play a dominant role in the construction of prediction models. In this
article, we picked 14 change-level metrics [7] as a feature set and the class label as
either buggy or clean in the binary classification. The reason we used the process

Appl. Sci. 2021, 11, 2002

7 of 25

metrics is the quick automation of the features and labels and the opportunity to
make a prediction early in the project.

3. Dataset generation: dataset with instances which were extracted in the previous
step can be generated. For each change commit, an instance can be created. In this
stage, practitioners relied on a SZZ tool [27] to extract datasets with 14 change-level
metrics from the VCS. The detailed explanation can be referred to the original
article [14].

4. Preprocessing: preprocessing is a step in-between data extraction and model
training. Each preprocessing technique (e.g., standardization, selection of features,
elimination of outliers and collinearity, transformation and sampling) may be
implemented independently and selectively [28]. Representatively, the
over-sampling methods of the minority class [29] or under-sampling from the
majority class can be used to work with the class imbalance dataset (i.e., the class
distribution is uneven).

5. Model training with HS-based parameter optimization and performance
evaluation: this step is the main contribution of our article. Normally, classifiers can
be trained based on the dataset collected previously. The existing ML techniques
have been facilitated many SDP approaches [30-33]. The classifier with the highest
performance index is selected by evaluating the performance in terms of balance
which reflects class imbalance. A previous case study [14] in the maritime domain
showed the best model was constructed using a random forest classifier. Optimizing
the parameters of the predictive model was expected to improve the performance of
the existing technique. For this problem, we mainly consider HS-based parameter
optimization for bagging of decision trees as a base classifier. The detailed
explanations of our approach, search space and fitness function are described in
Sections 3.1 and 3.2.

6. Prediction: the proposed approach successfully builds a prediction model to
determine whether or not a software modification is defective. Once the developer
has made a new commit, the results of the prediction have been labeled as either
buggy or clean.

3.1. Optimization Problem Formulation

In this section, we formulate our parameter optimization problem in JIT-SDP.

JIT prediction models can be constructed by a variety of machine learning classifiers
(e.g., decision tree and bagging in this paper). Each machine learning classifier has a
given list of parameters with a default value. For example, a random forest classifier has
the number of decision trees with default 100 [34]. The result of prediction Y can be
represented as function F of new commits Xi and a list of parameters P.i.e.,, Y = F (X, P)

Objective function. The performance of prediction result Y can be evaluated as mean
of balances defined as: B = 1 — \/((1 — PD)% + PF?)/2, where PD is Probability of
Detection and PF is Probability of False Alarm, described in Section 4.3.

Parameter. Parameters P selected for optimization are listed in Table 2. The whole
candidate parameters and their description are listed in Tables A1l and A2 in Appendix.
Among the parameters in Tables Al and A2, we selected parameters for optimization by
excluding the following parameters, respectively:

(1) random_state in both classifiers is not selected because we already separated
training and test dataset randomly before training.

(2) min_impurity_split for a decision tree is not selected because it has been
deprecated.

(3) warm_start, n_jobs, verbose for bagging are not selected because they are not
related to prediction performance.

Appl. Sci. 2021, 11, 2002

8 of 25

The constraints for each parameter are listed in “range” column in Table 2. In the
“interval” column of the table, “By HSA” means the interval is adjusted using FW by the

HSA.

Our problem is computationally intensive. i.e., over 67,200,000 discrete candidates x
10 stratified x (2 x 5 + 6) cases. Thus, it is necessary to find optimal performance in a
limited time and computation power through a heuristic approach. [35]

Table 2. Search space, range, and interval of harmony search.

Classifier Parameters Candidate Search Space Range Interval
‘“" b AN TS t 17 f lt =
criterion (Cr) Vgini”, en”rc?p.};) defau C:={"gini”, “entropy”} -
gini
l/b t/l i“ d ” d f lt =
splitter (Sp) ("best”, raf} on}, }; defau Sp = {"best”, “random”} -
best
. 5 < Dmax < 50,
max_depth (Dmax) int, default = None 0: Unlimited 5
min_samples_split (SSmin) int or float, default =2 2 < SSmin <10
min_samples_leaf (SLmin) int or float, default =1 1<SLmin<10
Decision mln—wefxiﬁ_a)dwn—leaf float, default = 0.0 0.0 < WLanin <05 By HSA
T min
ree max_features (Frs) int, float or {“auto”, “sqrt”, 1 £ Fmax < Max, 1
- - “log2”}, default = None Max is number of features
, 1 < Lmax £ 100,
max_leaf_nodes (Lmax) int, default = None 0: Unlimited 10
mm-lmp‘glfy)-de“ease float, default = 0.0 0.0 <Tmin < 1.0 By HSA
. dict, list of dict or “balanced”, 0.0 < Wc<1.0 for each
class_weight (W) default = None class By H5A
ccp_alpha (Ca) non-negative float, default = 0.0 0.0001 < Ca<0.001 By HSA
n_estimators (Enum) int, default =10 10 £ Enum <100 5
max_samples (Smax) int or float, default =1.0 0.0 <Smax<1.0 By HSA
. max_features (Fmax) int or float, default =1.0 1 < Fma< Max 1
Bagging

bootstrap (B)

bool, default = True

B ={True, False}

bootstrap_features (Bt)

bool, default = False

Bt = {True, False}

oob_score (O)

bool, default = False

O = {True, False}

3.2. Harmony Search-Based Parameter Optimization of [IT-SDP

Figure 5 is the overall process of the proposed HS-based parameter optimization for
JIT-SDP. The process consists of two parts: updating harmony memory and getting

fitness values.

Appl. Sci. 2021, 11, 2002

9 of 25

w

Original Dataset

|

Harmony Search

a Generate new harmony
| a memory update

Harmony
M y

(D Generate N samples

(e.g.) with class imbalance ratio of
+ Clean:Buggy (100:20)

+ Clean:Buggy (100:40)

« Clean:Buggy (100:60)

+ Clean:Buggy (100:80)

+ Clean:Buggy (100:100)

® Apply candidate parameters |

(@stratified
10-Folds

N Datasets with varied
class imbalance ratio

-— Optlmlzed Optimized
= @Learnlng Model @ Make a [DEvaluate Performance
Prediction Fitness
Tralnlng
Dataset Mean

(Balance)

Default setting Default
~——1 del Performance
[—)

S
-—
Test
Dataset
X1

Figure 5. Detailed process of harmony search-based parameter optimization.

top

The detailed process of HS-based parameter optimization is as follows:

In step 1, N datasets (e.g., five datasets in this article), which have different class
imbalance ratio, are generated. The reason for changing the class imbalance ratio
between defects and non-defects in N steps is to show that this approach can be
applied in various data distributions.

In step 2, N datasets are divided into 9 training datasets and a test dataset for a
stratified 10-fold cross-validation. The stratified method divides a dataset,
maintaining the class distribution of the dataset so that each fold has the same class
distribution as the original dataset [36].

Step 3 makes a prediction model with a training set on a set of parameters, i.e., the
harmony, in a harmony memory. We have 10 training and test sets, and thus can
make nine more prediction models with the same set of parameters.

Each 10 generated models predict the outcome of each test dataset matched to the
model and extracts the confusion matrix to calculate each model’s balance
performance in step 4.

Step 5 calculates the mean of 10 balance values and store it in the harmony memory
as a harmony’s fitness value.

Finally, it updates harmony memory and applies the harmony to the prediction
model, and iterates as many times as ML

Harmony memory is a crucial factor of HSA. The harmony memory is where the
HMS harmonies of all generated harmony are stored, and newly generated

harmonies are referred to the harmony memory for selecting search direction globally

and

locally. Figure 6 is a brief summary of the harmony memory of the proposed

method.

Appl. Sci. 2021, 11, 2002

10 of 25

Decision Tree Parameters Bagging Parameters Fitness

D1 D2 Dn B1 B2 Bn Value
Harmony_1 | ©tunDlwd | [D2unD2ud (O DOnd | BlunBlund | [B2umD2und BrwnBrusd | Balance
Ha rmony_2 [D1vinDmax] | [D2winD2max] [Dnyin.Dnad | [BTwinBTmax] [B2yinD2ax] [BrninBNmax] Balan Ce_z
H armony 3 | PwwDlwsd | [D2uinD2uad [Py Dnvad | [B1uinBlvad | [B2uinD2mad [BnvinBNmax] Ba|ance_3
Harmony_y; | ©tunDtwud | [D2unD2ud (O DOPnd | BlunBlund | [B2umD2und Brwnrusd | Balance

- 2 2
* Fitness Values = Balance (1 — /%)

Figure 6. Brief summary of harmony memory applying parameters.

Harmony memory is composed of the number of harmonies (i.e., HMS), which is M
in the Figure 6. Each harmony consists of the parameter values of variables and a fitness
value presenting the harmony’s goodness. A harmony has 17 variables; 11 decision tree
parameters and 6 bagging parameters, and each variable is between minimum and
maximum, which each parameter can have. Each harmony’s fitness value is the balance of
the prediction model, which is generated using the harmony.

4. Experimental Setup

This section explains the experimental setup to address our research questions.

4.1. Research Questions

e RQ1: How much can HS-based parameter optimization improve SDP performance
in maritime domain software?

e RQ2: By how much can HS-based parameter optimization method reduce cost?

¢ RQ3: Which parameters are important for improving SDP performance?

e RQ4: How does the proposed technique perform in Open Source Software (OSS)?

4.2. Dataset Description

As seen in Table 3, we performed experiments with two real-world maritime
datasets, the same as the previous case study [14], and six open source software (OSS)
projects which were published by Kamei et al. [7]. For the maritime projects, we call
these two datasets dataset A and dataset B, respectively. The two datasets are extracted
from defects recorded in domain software applied to large ships over 15 years. The
numbers in parentheses mean the defect ratio, but the industrial dataset is omitted for
security reasons. Additionally, for OSS projects, we shortened their full name into BU,
CO, JD, PL, MO, PO, respectively.

Table 4 summarizes the description of 14 change-level metrics [7], which are widely
used in JIT-SDP researches. Each instance of the dataset contains 14 metrics and a class
label. At the time of testing, stratified 10-fold cross-validation was introduced where the
first nine folds were used as training data and the last fold was used as test data while
preserving the dataset class distribution such that each fold has the same class
distribution as the initial dataset. The model was then trained using the first nine training
data and its performance was assessed using the last test data. In the same manner, a new
model was iteratively built, while the other nine folds became the training dataset. At the
end of training, the performances were consolidated for all 10 outcomes [14,36].

Our experiments were performed on Google Colaboratory, which is free and online
python environment accessible via the Chrome web browser. Datasets were uploaded to
Google drive and accessible by python optimization source code on Colaboratory. Client
environment was a personal laptop with Intel Core i7 processor @1.8 GHz, 16 GB
memory and installing Windows 10 OS and the Chrome web browser.

Appl. Sci. 2021, 11, 2002

11 of 25

Table 3. Project description [14].

Languages Description Period Number of Total Number of Changes
Features

A C/C++ Maritime Project A 10/2004-08/2019 14 931 ()

B C/C++ Maritime Project B 11/2015-08/2019 14 8498 (-)
BU Bugzilla 08/1998-12/2006 14 4620 (36%)
Cco Datasets were Columba 11/2002-07/2006 14 4455 (31%)
JD Eclipse JDT 05/2001-12/2007 14 35,386 (14%)
pp, Coxtracted by Eclipse Platform 05/2001-12/2007 14 64,250 (14%)

Kamei et al. [7] -
MO Mozilla 01/2000-12/2006 14 98,275 (5%)
PO PostgreSQL 07/1996-05/2010 14 20,431 (25%)
Table 4. Fourteen change-level metrics [7].
Group Metric Definition
LA Lines of code added
Size LD Lines of code deleted
LT Lines of code in a file before the changes
NS Number of modified subsystems
Diffusion ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file
Purpose FIX Whether the change is a defect fix or not
NDEV Number of developers that changed the modified files
History AGE Average time interval between the last and the current change
NUC Number of unique changes to the modified files
Experienc EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

4.3. Performance Metrics

Table 5 shows the confusion matrix utilized to define these performance evaluation

indicators.

Table 5. Confusion matrix.

Confusion Predicted Class
Matrix Buggy (P) Clean (N)
Actual Buggy True Positive (TP) False Negative (FN)
class Clean False Positive (FP) True Negative (TN)

For performance evaluation, balance, probability of detection (PD), and probability
of false alarm (PF), which are widely used, were employed for the performance
evaluation. The balance is a good indicator when considering class imbalance [37].

e Probability of detection (PD) is defined as percentage of defective modules that are

classified correctly. PD is defined as follows: PD = TP/(TP + FN)

e Probability of false alarm (PF) is defined as proportion of non-defective modules
misclassified within the non-defect class. PF is defined as PF = FP/(FP + TN)

e Balance (B) is defined as a Euclidean distance between the real (PD, PF) point and
the ideal (1,0) point and means a good balance of performance between buggy and
clean classes. Balance is defined asB= 1 — \/((1 —PD)2+ (0 —PF)?)/2

Appl. Sci. 2021, 11, 2002

12 of 25

For analyzing cost effectiveness, we defined new performance metric, commit
inspection reduction (CIR), derived from file inspection reduction (FIR) and line
inspection reduction (LIR) [37,38]. CIR is defined as how much effort reduce the effort for
code inspection in commit-level compared to random selection inspection.

e The commit inspection reduction (CIR) is defined as the ratio of reduced lines of
code to inspect using the proposed model compared to a random selection to gain
predicted defectiveness (PrD): CIR = (PrD - CI)/PrD, where CI and PrD are defined
below.

e The commit inspection (CI) ratio is defined as the ratio of lines of code to inspect to
the total lines of code for the reported defects. Lines of code (LOC) in the commits
that were true positives is defined as TPLoc and similarly with TNroc, FProc, and
FNroc. CI is defined as follows: CI = (TProc + FProc)/(TProc + TNroc + FProc + FNroc)

e The predicted defectiveness (PrD) ratio is defined as the ratio of the number of
defects in the commits predicted as defective to the total number of defects. The
number of defects in the commits that were true positives is defined as TPo and
similarly with TNp, FPp, and FNb. PrD is defined as follows: PrD = TPo/(TPp + FNb)

4.4. Classification Algorithms

In this article, we selected a decision tree classifier as a base estimator and a
bagging classifier as an ensemble meta-estimator. The reason for our selection was that
in Kang et al. [14] a random forest classifier, which is bagging of decision trees, has good
prediction performance in the maritime domain. Rather than just using parameters of
random forest classifier for HS-based parameter optimization, instead we separately
handled parameters of decision tree and bagging for detailed effect analysis.

All parameters of decision tree and bagging classifiers are listed in Table A1 and A2
in the Appendix. All experiments were implemented and conducted using Python, a
well-known programming language, with Scikit-learn library, a popular ML library
[39,40], and pyHarmonySearch library [41], a pure Python implementation of the HS
global optimization algorithm.

The hyper parameters for HS we chose are listed in Table 6.

Table 6. Hyper-parameter values of harmony search.

Parameter Value
HMS 10000
HMCR 0.75
PAR 0.5
W 0.25 for continuous variable
10 for discrete variable
MI Adjusted

5. Experimental Results

This section explains corresponding results and corresponding analysis to answer
each of the research questions.

5.1. RQ1: How Much Can Harmony Search (HS)-Based Parameter Optimization Improve
Software Defect Prediction (SDP) Performance in Maritime Domain?

Table 7 shows how much the HS-based parameter optimization can improve the
prediction performance, answering RQ1. The best performance values in the table are
indicated in bold face.

The datasets A and B were preprocessed by adjusting the class ratio in 5 steps (i.e.,
100:20. 100:40, 100:60, 100:80, 100:100) before parameter optimization. Once again, the
reason for the pre-processing of changing the class ratio between defects and non-defects

Appl. Sci. 2021, 11, 2002

13 of 25

was to show that this approach can be covered in various data distributions of maritime
domain. In the table, DT indicates decision tree only, DT+BG indicates decision tree and
bagging together, and DT+BG+HS indicates decision tree and bagging with HS-based
parameter optimization.

Compared to DT and DT+BG, the balance which reflects PD and PF showed that in
all cases, DT+BG+HS produces the best performance. For dataset A, in the case when the
ratio between the majority and minority classes is 100:100, the best PD and B are 0.95 and
0.94 with HS-based parameter optimization. For dataset B, when the ratio between the
majority and minority classes is 100:80, the best PD and B are 0.99 and 0.97. As a result of
the effect size test, the difference was significant beyond the medium size.

Compared to previous case study [14], HS-based parameter optimization showed
higher performance results at all ratios. The results showed that in the class imbalance
ratio between defect and non-defect is high (e.g., Al, A2, Bl), more performance
improvement was observed through parameter optimization. The significant differences
beyond medium size were underlined in the table. On the other hand, there was
improvement of small effect in the dataset with low class imbalance ratio (e.g., A3, A4,
A5, B2, B3, B4, and B5), which already showed high performance of defect prediction
through the oversampling technique [29]. Thus, this approach will have a greater effect
on data distribution with high class imbalance ratio.

Table 7. Experimental results to answer RQ1.

DT DT+BG DT+BG+HS Kang et al. [14]
PD PF B PD PF B PD PF B PD PF B
Al 0.33 0.08 0.51 0.50 0.06 0.63 0.83 0.15 0.82 0.54 0.05 0.67
A2 0.72 0.09 0.77 0.82 0.07 0.85 0.88 0.06 0.90 0.84 0.05 0.88
A3 0.88 0.13 0.85 0.87 0.08 0.86 0.92 0.07 0.91 0.89 0.06 0.91
A4 0.87 0.09 0.86 0.90 0.08 0.89 0.95 0.08 0.93 0.94 0.07 0.93
A5 0.90 0.12 0.87 0.94 0.13 0.88 0.95 0.06 0.94 0.94 0.07 0.93
B1 0.72 0.03 0.79 0.83 0.03 0.87 0.93 0.08 0.92 0.86 0.02 0.90
B2 0.83 0.08 0.86 0.92 0.04 0.94 0.94 0.05 0.95 0.93 0.03 0.95
B3 0.86 0.08 0.88 0.91 0.04 0.92 0.96 0.03 0.96 0.95 0.05 0.95
B4 0.93 0.06 0.93 0.95 0.04 0.95 0.99 0.04 0.97 0.97 0.04 0.96
B5 0.91 0.10 0.90 0.94 0.04 0.94 0.98 0.04 0.97 0.97 0.05 0.96

5.2. RQ2: By How Much Can HS-Based Parameter Optimization Method Reduce Cost?

This section shows how predictive models reduce the effort for code inspection
compared to random selection inspection.

Table 8 shows the results of cost effectiveness to answer RQ2. As we explained in the
experiment setup, CIR is a performance metric, which is the ratio of reduced lines of code
in commit to inspect using the proposed model compared to a random selection. For
dataset A, CIR was an average of 35.4% and for dataset B, CIR was an average of 44%, so
such efforts can be reduced compared to a random inspection, respectively. In most cases,
we concluded that HS-based parameter optimization could reduce efforts for code
inspection.

Appl. Sci. 2021, 11, 2002

14 of 25

Table 8. Experimental results to answer RQ2.

CIR CI PrD
A1 (100:20) 0.28 0.55 0.83
A2 (100:40) 0.32 0.56 0.88
A3 (100:60) 0.39 0.53 0.92
A4 (100:80) 0.39 0.56 0.95
A5 (100:100) 0.39 0.56 0.95
B1 (100:20) 0.42 0.51 0.93
B2 (100:40) 0.43 0.51 0.94
B3 (100:60) 0.45 0.52 0.96
B4 (100:80) 0.46 0.53 0.99
B5 (100:100) 0.44 0.54 0.98

5.3. RQ3: Which Parameters are Important for Improving SDP Performance?

Figure 7 shows the correlation matrix between each variable and fitness value to
answer RQ3. The correlation is displayed by color and size of circles at the intersection of
the x-axis and y-axis indicating each variable. The color of a circle indicates positive
correlation in blue, and negative correlation in red. The size of a circle indicates how
good correlation is. The diagonal line has no meaning because it is related to the same
variable. The following two facts were observed in particular in the matrix. The most
important observation was that class_weight showed a positive correlation of about 0.4,
and we could estimate that the class_weight was the one of influential parameter. On the
other hand, as min_impurity_decrease showed the negative correlation of about 0.3.
From this measurement, we excluded the variables min_impurity_decrease in our search
space to improve performance.

Appl. Sci. 2021, 11, 2002

15 of 25

w
@ ©
2 o
c
=~ « © o
s w5 O 5
o @ O (7 BT
w = ® [V -
w w E o T |
» o . o 2 2 =
£ = = £ = = O
52 8 2 9 2 < 3 3
o E E g ® @ o
T @8 2 o o £ =
o = L 9
| llll->| m| 'a| | | '_| w
P x x w
wmw £ £ £ ® @ £ w®
E E E E E E E ©

max_depth
min_samples_split
min_samples_leaf
min_weight_fraction_leaf
max_features
max_leaf_nodes
min_impurity_decrease
class_weight

ccp_alpha

n_estimators

ccp_alpha

n estimators

balance

balance

Figure 7. Correlation matrix analysis of parameters.

0.8

0.6

0.4

r0.2

0.2

r-0.4

Figure 8 plots the correlation between class weight and balance, which has positive
correlation of 0.4. Figure 9 also plots the correlation between min_impurity_decrease
and balance, which has negative correlation of 0.3. Both class_weight and

min_impurity_decrease had weak correlation of less than 0.5.

7o) o o] o
@
[=]
o o
o
o o o (=]
o @ o §o° o ° °© °©
2 o * 00 o
o =]
o a O 8 g <
o % @ ° 40 ° . o
e Q@ o ‘2:80 €
1] = o =] o
g [=] [s] o O < 8
o o O o 0e® o, @ =)
© =)
o % i R, Lo}
o= o)
] o © o o
o
7o)
~ o 5 o
o =]
[=]
~
o
o
T T T T
0.2 04 06 08
class_weight

Figure 8. Correlation between class_weight and balance.

Appl. Sci. 2021, 11, 2002

16 of 25

[Te]
&
o
)
o o o =]
= e 0g 0h0 07 g
— o
=] o
e oo o 5 Go g ° & o
o
o =} (s]
o oo
w & 2 % Loo g P
o | g oo ® o o o
® ° v @
2 o o ° o 9% ooB
% [=] o © L=l o o
o [} s}
o o
] =] Q o [} 5
o
[Te]
~ o 4 (=)
=] <]
o
~ -
o
o
I I I I I I
0.00 0.02 0.04 0.06 0.08 0.10

min_impurity_decrease
Figure 9. Correlation between min_impurity_decrease and balance.

5.4. RQ4: How Does the Proposed Technique Perform in Open Source Software (OSS)?

In order to reinforce the rationale for our statement in RQI, experiments were
performed on 6 OSS datasets. We conducted additional experiments on the performance
of our approach in open source projects with different characteristics and class
imbalance ratios compared to the maritime domain. Table 9 shows the results of the
experiment. The results are compared to the PD performed by Kamei et al. [7], and show
that all PDs and balances were improved in all datasets with significant difference
beyond large effect size. Note that we considered balance, increasing PD without
worsening PF, in JIT-SDP. The best performance values are indicated in bold face and
significant differences beyond medium size were underlined in the table.

Table 9. Experimental results to answer RQ4.

DT DT+BG DT+BG+HS Kamei et al. [7]
PD PF B PD PF B PD PF B PD PF B
BU 0.571 0.147 0.679 0.571 0.147 0.679 0.748 0.287 0.729 0.69 0.347 0.671
CcO 0.503 0.244 0.608 0.468 0.111 0.616 0.750 0.322 0.711 0.67 0.272 0.698
D 0305 0127 0500 0.184 0.023 0423 0.661 0.278 0.690 0.65 0.329 0.660
PL 0217 0.049 0445 0.094 0005 0359 0.747 0304 0.720 0.70 0.304 0.698
MO 0335 0126 0.521 0230 0.027 0455 0.716 0200 0.754 0.63 0224 0.694
PO 0.475 0.181 0.607 0.451 0.076 0.608 0.730 0.241 0.744 0.65 0.191 0.718

6. Discussion

In this section, we discuss additional observations obtained through the result of the
HS-based parameter optimization we performed.

The first is the relevance of the search space we designed. In our correlation matrix
analysis conducted in RQ3, class_weight was an important parameter which had a weak
positive correlation. On the other hand, since min_impurity has a negative correlation, it
is a parameter that does not help to improve performance. Thus, it has become a guide to
reducing prediction performance. We recommend that the search space can be effectively
designed through the correlation analysis between the harmony and fitness values
recorded in HM. In our experiment, changing class imbalanced ratio and class_weight of
decision tree influenced the performance of prediction.

We also analyzed the impact of the performance by the presence or absence of a
bagging classifier. We compared the performance results in RQ1 with the optimization

Appl. Sci. 2021, 11, 2002 17 of 25

using only the decision tree classifier. The results are summarized in Table 10. The best
performance values are indicated in bold face and significant differences beyond
medium size were underlined in the table. They showed that bagging increases PD and
B, decreases PF, with significant differences. The bagging classifier is known as good
meta-learner to prevent overfitting and reduce variance [42-46]. Catolino et al. [46]
reported that they compare four base classifiers and four ensemble classification
methods, but they did not find significant differences between the two. They mentioned
that ensemble techniques should be able to improve the model performance with respect
to single classifiers, but they concluded that ensemble techniques do not always
guarantee better performance with respect to a single classifier in their work. In our
experiment, the presence or absence of bagging had a significant effect on the
performance improvement. Our dataset had unique characteristics that reflect practice in
2 maritime and 6 open source projects, and Catolino et al. had dataset characteristics that
reflect practice in 14 mobile app projects. In the two studies, because contexts such as
dataset, prediction model, and development environment are different from each other,
the results seem to be different. [47,48]

Finally, a comparison of performance improvement was made between maritime
domain software and open source software. Both groups showed improvement in
performance, but the baseline of maritime domain software already had high
performance, so there was a limit to improve it. In our experiment in RQ1 varying class
imbalance ratio, we observed significant performance improvement with high class
imbalance datasets. On the other hand, in experiment RQ4, open source software showed
a relatively high effect of performance improvement.

Table 10. Effect of bagging classifier.

DT DT+HS DT+BG+HS
PD PF B PD PF B PD PF B
Al 0.33 0.08 0.51 0.75 0.10 0.77 0.83 0.15 0.82
A2 0.72 0.09 0.77 0.92 0.20 0.84 0.88 0.06 0.90
A3 0.88 0.13 0.85 0.87 0.10 0.87 0.92 0.07 0.91
A4 0.87 0.09 0.86 0.88 0.08 0.88 0.95 0.08 0.93
A5 0.90 0.12 0.87 0.94 0.11 0.89 0.95 0.06 0.94
B1 0.72 0.03 0.79 0.85 0.06 0.88 0.93 0.08 0.92
B2 0.83 0.08 0.86 0.93 0.08 0.92 0.94 0.05 0.95
B3 0.86 0.08 0.88 0.92 0.06 0.92 0.96 0.03 0.96
B4 0.93 0.06 0.93 0.90 0.03 0.92 0.99 0.04 0.97
B5 0.91 0.10 0.90 0.92 0.04 0.93 0.98 0.04 0.97
BU 0.57 0.15 0.68 0.64 0.26 0.69 0.77 0.29 0.73
coO 0.50 0.24 0.61 0.42 0.12 0.58 0.75 0.32 0.71
JD 0.31 0.13 0.50 0.30 0.12 0.50 0.66 0.28 0.69
PL 0.22 0.05 0.45 0.32 0.10 0.52 0.75 0.30 0.72
MO 0.34 0.13 0.52 0.21 0.04 0.44 0.72 0.20 0.75
PO 0.48 0.18 0.61 0.47 0.15 0.61 0.73 0.24 0.74

7. Threats to Validity

The generalization of the results is one of the main threats. Experimental results
may differ if we use a dataset developed in a different environment than the dataset
used in this article. Two datasets obtained from the maritime domain were used in the
experiments. We chose HS-based parameter optimization in this work. There are widely
used optimization algorithms, thus, the results may vary with different optimization
algorithms with other classifiers.

Appl. Sci. 2021, 11, 2002

18 of 25

8. Related Work

The prediction of just-in-time software defects helps to determine the buggy
modules at such an earlier period and continuously once a change in software code is
made [7,8,14]. The key benefits of JIT-SDP are that it is easy to anticipate buggy changes
that are mapped to small parts of the code in order to save a lot of effort. It also makes it
easier to identify who made the change, saving time identifying the developer who
initiated the defect. Different granularity levels are categorized, such as software system,
subsystem, component, package, file, class, method, or change in code. Since the smaller
granularity will help practitioners lower their efforts, this contributes to
cost-effectiveness. The prediction of defects at finer-grained levels has been researched
to improve cost-effectiveness [7,14,49]. In many software defect datasets, class ratio of
defect to non-defect is typically unbalanced. The unbalanced datasets result in poor
prediction model [50]. The problem is called class imbalance. Class imbalance learning
can improve performance by dealing with class imbalance at the instance-level or
algorithm-level [29,51-53].

On the other hand, because researchers faced difficulties accessing industrial defect
datasets because of data protection and privacy, only a few industrial applications of
SDP were reported. Moreover, application of HS-based parameter optimization to both
industry and JIT-SDP are the first case to the best of our knowledge.

Kamei et al. [7] proposed a just-in-time defect prediction technique with a
large-scale empirical analysis that offers fine granularity. For the prediction model, a
regression model was used, based on data derived from a total of 11 projects (i.e., six
open source software and five commercial software). Fourteen change-level metrics
grouped into five kinds were used: three kinds of code size, four kinds of diffusion,
three kinds of history, three kinds of experience, and one kind of purpose. However, any
parameter optimization were not considered. Balance was not considered as well. In this
article, we also use the same 14 change level metrics, but the maritime industrial dataset
was selected, experimented with HS-based parameter optimization with balanced
fitness value.

Tosun et al. [54] addressed the implementation of SDP to a Turkish
telecommunication firm as part of a software measurement initiative. The program was
targeted to increase code quality and decrease both cost and defect rates. Using file-level
code metrics, the naive Bayes model was built. Based on their project experience, they
provided recommendations and best practice. However, parameter optimization was
not considered in this program.

Catolino et al. [46] applied JIT-SDP to 14 open source projects in the mobile context
with 14 change-level metrics. Two different groups of algorithm were compared: four
base classifiers and four ensemble classifiers. In each category, the best performance
result showed 49% f-measures with Naive and 54% f-measures with bagging, thus they
found no significant differences between the two. Parameter optimization was not
considered in this study.

Kang et al. [14] applied and performed experiments to explore the use of JIT-SDP in
the maritime domain, for the first time. They demonstrated that SDP was feasible in the
maritime domain and, based on their experimental findings, gave lessons learned and
recommendations for practitioners. However, when they built the prediction model,
except for the use of default values, parameter optimization for the various classification
algorithms was not considered.

Ryu and Baik [55,56] applied HSA in multi-objective naive Bayesian learning for
cross-project defect prediction. The HSA searched the best weighted parameters, such as
the class probability and the feature weights, based on three objectives. The three objects
were PD, PF, and overall performance (e.g., balance). As a result, the proposed
approaches showed a similar prediction performance compared to the within-project
defect prediction model and produced a promising result. They applied HS optimization

Appl. Sci. 2021, 11, 2002

19 of 25

for file-level defect prediction. In this article, granularity was code change level, which
has several of the merits mentioned above.

Tantithamthavorn et al. [34] applied automated parameter optimization on defect
prediction models. Several studies pointed out that the classifiers underperformed since
they used default parameters. Therefore, this paper studied the impact of parameter
optimization on SDP with 18 datasets. As a result, the automated parameter optimization
improved area under the curve (AUC) performance by up to forty percentage. This paper
also highlighted the importance of exploring the search space when tuning parameter
sensitive classification techniques, such as the decision tree.

Chen et al. [8] proposed multi-objective effort-aware just-in-time software defect
prediction with six open source projects. The logistic regression model was optimized
with coefficients such as decision variables and both accuracy and popt as fitness value. In
this study, not parameters but coefficients of logistics were optimized. In this article, we
used two industrial datasets in the maritime domain and six open source datasets
together. The model we chose was bagging of decision trees inspiring the previous case
study [14], and the performance index was balance considering class imbalance.

Through this literature review, we found that there is no case of parameter
optimization of JIT-SDP based on HS, and there are no cases applied to the maritime
domain.

9. Conclusions

The purpose of this study was to improve the performance of prediction applying
HS-based parameter optimized JIT-SDP, HASPO, in maritime domain software, which is
undergoing innovative transformations that require software technology. Using two
real-world datasets collected from the domain, we obtained a better optimized model
beyond the baseline of a previous case study [14] throughout various class imbalance
ratio of datasets. Additional experiments with open source software showed a rather
remarkably improved PD for all datasets despite the fact that we considered balance (i.e.,
maximization of PD and minimization of PF together) as performance index. Finally, we
recommend that HASPO can be applied to JIT-SDP in the maritime domain software
with high class imbalance ratio. Through this study, we found new possibilities in
expanding our approach to open source projects. Our contribution is, to the best of our
knowledge, that we apply HS-based parameter optimization with search space of
decision tree and bagging classifier together with balanced fitness function in both
JIT-SDP approach and the maritime domain for the first time.

In this paper, we consider metaheuristics for parameter optimization. To solve such
optimization problems, metaheuristics are not the only method but a numerical
optimization technique could be another solution [57-59]. Our research goal is to apply
harmony search in this paper, and numerical optimization is not the scope of this
research. In our future research, we will extend our work to perform comparative
experiments using more optimization algorithms or mathematical programming with
other classifiers, adding cost-aware fitness function, and improving generalization with
datasets from other industries and open source software.

Author Contributions: J.K.: Conceptualization, planning, formal analysis, data curation,
writing—original draft preparation. S.K.: writing—methodology and data visualization. D.R.:
Conceptualization, writing—review and editing. J.B.: writing—review and editing, supervision,
project administration. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was partly supported by National Research Foundation of Korea (NRF)
and Institute of Information & Communications Technology Planning and Evaluation (No.
NRF-2019R1G1A1005047 & No. IITP-2020-2020-0-01795).

Institutional Review Board Statement: Not applicable

Appl. Sci. 2021, 11, 2002

20 of 25

Informed Consent Statement: Not applicable
Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Parameters of Decision Tree Classifier

Decision tree classifiers are commonly used supervised learning techniques for both
classification and regression in order to construct prediction models by learning intuitive
features in decision-making [42]. The key benefits of these are easy to grasp in the human
context and to perceive by tree visualization. This needs little preparation of data and
performs well. Table Al shows the complete parameters of the decision tree classifier. We
referenced all listings of parameters, descriptions and search spaces in Python scikit-learn
library [39,40]. The selected column is our pre-designed values for each variable.

Table Al. Whole parameters and selected search space for decision tree classifier [18].

Parameters Description Search Space Selected
The measurement function of the quality of a split. Supported {erini”
L criteria are y st . {“gini”,
criterion e . . entropy”}, p p
. gini” for the Gini impurity default = “eini” entropy”}
e “entropy” for the information gain 5
The strategy of the split at each node. [“best”
. Supported strategies are " a {“best”,
splitter o . random”}, " L
o best” for the best split default = “best” random”}
e “random” for the best random split
The maximum depth of the tree. If None, then expanded until all
max_depth leaves are pure or until all leaves contain less than int, default=None 10~20
min_samples_split samples.
min samples s litThe minimum number of samples required to split an internal ~ int or float, default 9-10
—SAMPIES ISP, ode =2
int or float, default
min_samples_leaf The minimum number of samples required to be at a leaf node 1_r11 or Hoal, defatl 1~10
i ight_fracti The mini ighted fraction of th 1 of weigh
min_weight_fracti The r.mnlmum weighted fraction of the sum total of weights float, default = 0.0 0-05
on_leaf required to be at a leaf node
int, float, default =
max_features The number of features to consider Eolneoa , defau 1~Max
random_state Controls the randomness of the estimator default = None None
Grow a tree with max_leaf _nodes in best-first fashion. If None 1~100,

max_leaf_nodes

then unlimited number of leaf nodes

int, default = None 0: Unlimited

min_impurity_decA node will be split if this split induces a decrease of the impurity float. default = 0.0

. 0.0~1.0
rease greater than or equal to this value
mm_lmpurlty_sphifhresh}olq for early stopping in tree grox./vth.. A node will split if its float, default = 0 0
t impurity is above the threshold, otherwise it is a leaf.
dict, list of dict or aftlflhnt
class_weight Weights associated with each class “balanced”,
0.0~1.0 for
default = None
each class
ccp_alpha Complexity parameter used for Minimal Cost-Complexity non-negative float, 0.0001~0.001

Pruning. No pruning is default

default=0.0

Appl. Sci. 2021, 11, 2002

21 of 25

Appendix B. Parameters of Bagging Classifier

A bagging classifier is an ensemble classifier that fits the base classifiers on each of
the original dataset subsets and then aggregates their predictions by either voting or
averaging to create a final prediction. It can be used to reduce the variance of a black-box
estimator, such as a decision tree, by integrating randomization into the creation process
and then constructing an ensemble model [43]. The complete parameters of the bagging
classifier are seen in Table A2. We referenced all listings of parameters, descriptions and
search spaces in Python scikit-learn library [39,40]. The selected column is our
pre-designed values for each variable.

Table A2. Whole parameters and selected search space for bagging classifier [18].

Parameters Description Search Space Selected
. The base estimator to fit on random subsets of the dataset. object, default =
base_estimator . . . default = None
If None, then the base estimator is a decision tree. None
n_estimators The number of base estimators int, default =10 10~100
The number of samples from training set int or float, default
max_samples . . 0.0~1.0
to train each base estimator =1.0
The number of features from training set int or float, default
max_features . . 1~Max
to train each base estimator =1.0
Whether samples are drawn with replacement. If False, bool, default =
bootstrap . .) 01
sampling without replacement is performed. True
bool, default =
bootstrap_features Whether features are selected with replacement or not False 0,1
Whether to use out-of-bag samples to estimate the bool, default =
oob_score . 01
generalization error. False
. . . bool, default =
warm_start Reuse the solution of the previous call to fit False False
n_jobs The number of jobs to run in parallel int, default = None None
int or
random_state =~ Controls the random resampling of the original dataset = RandomState, None
default = None
verbose Controls the verbosity when fitting and predicting int, default=0 0

Appendix C. Box Plots of Balance, Probability of Detection (PD), and Probability of
False Alarm (PF)

Figure Al depicted box plots of balance, PD, PF of HS-based parameter optimized
JIT-SDP. Each group has five graphs which have three box plots for DT, DT+BG,
DT+BG+HS. The order of graphs are Al, A2, through A5. The results showed balances
and PDs of DT+BG+HS in most cases have the highest distribution while not worsening
PF.

Appl. Sci. 2021, 11, 2002

22 of 25

000

1.00

050

050

0.00

- 100 . 100 |
$. . —— ——
—
050 . 050
’ 025 025
0.00 0.00
ot DT+8G DT+BG+HS DT DT+BG DT+BG+HS ot DT+BG DT+BG+HS
- 100
N 075 .
050
025
0.00
oT DT+8G DT+BG+HS oT DT+BG DT+BG+HS
Balance of A1, A2, A3, A4, A5
’—\ 100 | » ’:‘ 1.004
050 0501
025 ¥ 0.251
000 0001
oT DT+BG DT+BG+HS or DT+BG DT+BG+HS or DT+BG DT+BG+HS
e I ey (R — N S—
If,‘fl _'_1 \
075 .
050
025
0.00
oT DT+BC DT+BG+HS ot DT+BG DT+BG+HS
PD of Al, A2, A3, A4, A5
1.00 1.00
075 075
050 050
025 025
— I [] I | | L V_‘_I ——
[] [] J I
0.00 0.00
ot DT+BG DT+BG+HS or DT+BG DT+BG+HS oT DT+BG DT+BG+HS
1.00
075
050
028
\i\ C—— \ | ——

oT DT+BG DT+BG+HS

o7 DT+BG DT+BG+HS

PF of A1, A2, A3, A4, A5

Appl. Sci. 2021, 11, 2002

23 of 25

0785

025

075

025

1.00

0.00

— $
; —— ——
075 0754
050 0501
025 025
0.00 0.00
oT OT+8G DT+BG+HS oT DT+8G DT+BG+HS oT DT+8G DT+BG+HS
1.00
e ::| ————
075
050
028
000
oT oT+86 DT+BG+HS DT DT+BG DT+BG+HS
Balance of B1, B2, B3, B4, B5
100] 100 | | [—
| | — —— = — =
‘ 075 07
‘ 050 050
0.2 025
0.00 000
oT DT+BG DT+BG+HS oT DT+BG DT+BG+HS oT DT+BG DT+BG+HS
00
e e = ! . L _
=— ‘
075
050
025
0.00
o7 oriec L o e s
PD of B1, B2, B3, B4, B5
100 100
075 0758
050 050
025 025
: i —— : _ L 1
d ¥ 0.00 0.00
oT DT+BG DT+BG+HS ot DT+8G DT+BG+HS oT DT+BG DT+BG+HS
100
07s
0.50
025
I:":I $
T i 0.00
oT DT+BG DT+BG+HS ot DT+8G DT+BG+HS

PF of B1, B2, B3, B4, B5

Figure Al. Box plots of balance, probability of detection (PD), probability of false alarm (PF) of HS-based parameter

optimized JIT-SDP.

Appl. Sci. 2021, 11, 2002 24 of 25

References

1.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

Broy, M. Challenges in automotive software engineering. In Proceedings of the 28th International Conference on Software
Engineering, Shanghai, China, 20-28 May 2006; pp. 33—42.

Greenblatt,].B.; Shaheen, S. Automated vehicles, on-demand mobility, and environmental impacts. Curr. Sustain. Renew. Energy
Rep. 2015, 2, 74-81.

Kretschmann, L.; Burmeister, H.-C.; Jahn, C. Analyzing the economic benefit of unmanned autonomous ships: An exploratory
cost-comparison between an autonomous and a conventional bulk carrier. Res. Transp. Bus. Manag. 2017, 25, 76-86.

Hoyhtya, M.; Huusko, J.; Kiviranta, M.; Solberg, K.; Rokka,]J. Connectivity for autonomous ships: Architecture, use cases, and
research challenges. In Proceedings of the 2017 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, Korea, 18-20 October 2017; pp. 345-350.

Abdel-Hamid, T.K. The economics of software quality assurance: A simulation-based case study. MIS Q. 1988, 12, 395-411.
Knight,].C. Safety critical systems: Challenges and directions. In Proceedings of the 24th International Conference on Software
Engineering, 25 May 2002, Orlando, FL, USA; pp. 547-550.

Kamei, Y.; Shihab, E.; Adams, B.; Hassan, A.E.; Mockus, A.; Sinha, A.; Ubayashi, N. A large-scale empirical study of just-in-time
quality assurance. IEEE Trans. Softw. Eng. 2012, 39, 757-773.

Chen, X.; Zhao, Y.; Wang, Q.; Yuan, Z. MULTI: Multi-objective effort-aware just-in-time software defect prediction. Inf. Softw.
Technol. 2018, 93, 1-13.

Yang, X,; Lo, D.; Xia, X,; Zhang, Y.; Sun, J. Deep learning for just-in-time defect prediction. In Proceedings of the 2015 IEEE
International Conference on Software Quality, Reliability and Security, Vancouver, BC, Canada, 3-5 August 2015; pp. 17-26.
Jha, S.; Kumar, R.; Son, L.H.; Abdel-Basset, M.; Priyadarshini, I.; Sharma, R.; Long, H.V. Deep learning approach for software
maintainability metrics prediction. IEEE Access 2019, 7, 61840-61855.

Shepperd, M.; Bowes, D.; Hall, T. Researcher bias: The use of machine learning in software defect prediction. IEEE Trans. Softw.
Eng. 2014, 40, 603-616.

Singh, P.D.; Chug, A. Software defect prediction analysis using machine learning algorithms. In Proceedings of the 2017 7th
International Conference on Cloud Computing, Data Science & Engineering-Confluence, Noida, India, 12-13 January 2017; pp.
775-781.

Hoang, T.; Dam, HK,; Kamei, Y.; Lo, D.; Ubayashi, N. DeepJIT: An end-to-end deep learning framework for just-in-time defect
prediction. In Proceedings of the 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
Montreal, QC, Canada, 25-31 May 2019; pp. 34-45.

Kang, Jonggu; Ryu, Duksan; Baik, Jongmoon. Predicting just-in-time software defects to reduce post-release quality costs in the
maritime industry. Softw. Pract. Exp. 2020, doi:10.1002/SPE.2927.

Geem, ZW._; Kim,].H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60—68.
Abualigah, L.; Diabat, A.; Geem, Z.W. A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications.
Appl. Sci. 2020, 10, 3827.

Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Del Ser, J.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey on applications of
the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818-1831.

Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl.
Math. Comput. 2007, 188, 1567-1579.

Geem, Z.W. (Ed.). Music-Inspired Harmony Search Algorithm: Theory and Applications; Springer: Berlin/Heidelberg, Germany,
2009.

Prajapati, A.; Geem, ZW. Harmony Search-Based Approach for Multi-Objective Software Architecture Reconstruction.
Mathematics, 2020, 8, 1906.

Alsewari, A.A.; Kabir, M.N.; Zamli, K.Z.; Alaofi, K.S. Software product line test list generation based on harmony search
algorithm with constraints support. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 605-610.

Choudhary, A.; Baghel, A.S.; Sangwan, O.P. Efficient parameter estimation of software reliability growth models using
harmony search. IET Softw. 2017, 11, 286-291.

Chhabra, J.K. Harmony search based remodularization for object-oriented software systems. Computer Languages, Systems &
Structures 2017, 47, 153-169.

Mao, C. Harmony search-based test data generation for branch coverage in software structural testing. Neural Comput. Appl.
2014, 25, 199-216.

Omran, M.G.H.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 643—656.

Geem, Z.W; Sim, K.-B. Parameter-setting-free harmony search algorithm. Appl. Math. Comput. 2010, 217, 3881-3889.

Borg, M.; Svensson, O.; Berg, K.; Hansson, D. SZZ unleashed: An open implementation of the SZZ algorithm-featuring example
usage in a study of just-in-time bug prediction for the Jenkins project. In Proceedings of the 3rd ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software Quality Evaluation, Tallinn, Estonia, 27 August 2019; pp. 7-12.
Kotsiantis, S.B.; Kanellopoulos, D.; Pintelas, P.E. Data preprocessing for supervised leaning. Int.]. Comput. Sci. 2006, 1, 111-117.
Chawla, N.V.; Bowyer, KW.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321-357.

Oztiirk, M.M. Comparing hyperparameter optimization in cross-and within-project defect prediction: A case study. Arab. J. Sci.
Eng. 2019, 44, 3515-3530.

Appl. Sci. 2021, 11, 2002 25 of 25

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Yang, X.; Lo, D.; Xia, X;; Sun, J. TLEL: A two-layer ensemble learning approach for just-in-time defect prediction. Inf. Softw.
Technol. 2017, 87, 206-220.

Huang, Q.; Xia, X.; Lo, D. Revisiting supervised and unsupervised models for effort-aware just-in-time defect prediction. Empir.
Softw. Eng. 2019, 24, 2823-2862.

Kondo, M.; German, D.M.; Mizuno, O.; Choi, E.H. The impact of context metrics on just-in-time defect prediction. Empir. Softw.
Eng. 2020, 25, 890-939.

Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. The impact of automated parameter optimization on defect
prediction models. IEEE Trans. Softw. Eng. 2018, 45, 683-711.

Deng, W.; Chen, H.; Li, H. A novel hybrid intelligence algorithm for solving combinatorial optimization problems. J. Comput.
Sci. Eng. 2014, 8, 199-206.

Zeng, X.; Martinez, T.R. Distribution-balanced stratified cross-validation for accuracy estimation. J. Exp. Theor. Artif. Intell. 2000,
12, 1-12.

Ryu, D.; Jang, J.; Baik, J. A hybrid instance selection using nearest-neighbor for cross-project defect prediction. J. Comput. Sci.
Technol. 2015, 30, 969-980.

Shin, Y.; Meneely, A.; Williams, L.; Osborne, J.A. Evaluating complexity, code churn, and developer activity metrics as
indicators of software vulnerabilities. IEEE Trans. Softw. Eng. 2010, 37, 772-787.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Prettenhofer, P.; Weiss, R.; Dubourg, V.,
Vanderplas, J.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler,
J.; et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, preprint,
arXiv:1309.0238.

Fairchild, G. pyHarmonySearch 1.4.3. Available online: https://pypi.org/project/pyHarmonySearch/ (Accessed on 28 July 2020).
Breiman, L. Pasting small votes for classification in large databases and on-line. Mach. Learn. 1999, 36, 85-103.

Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140.

Ho, T. The random subspace method for constructing decision forests. Pattern Anal. Mach. Intell. 1998, 20, 832-844.

Louppe, G.; Geurts, P. Ensembles on Random Patches. In Machine Learning and Knowledge Discovery in Databases; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 346-361.

CATOLINO, Gemma; DI NUCCI, Dario; FERRUCCI, Filomena. Cross-project just-in-time bug prediction for mobile apps: An
empirical assessment. In Proceedings of the 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), Montreal, QC, Canada, 25-26 May 2019; pp. 99-110.

Maclin, R.; Opitz, D. An empirical evaluation of bagging and boosting. AAAI/IAAI 1997, 1997, 546-551.

Bauer, E.; Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach.
Learn. 1999, 36, 105-139.

Pascarella, L.; Palomba, F.; Bacchelli, A. Fine-grained just-in-time defect prediction. . Syst. Softw. 2019, 150, 22-36.

Ryu, D.; Jang,].; Baik, J. A transfer cost-sensitive boosting approach for cross-project defect prediction. Softw. Qual. J. 2017, 25,
235-272.

Elkan, C. The foundations of cost-sensitive learning. In Proceedings of the International Joint Conference on Artificial
Intelligence, Seattle, WA, USA, 4-10 August 2001; Lawrence Erlbaum Associates Ltd.: Mahwah, NJ, USA, 2001; pp. 973-978.
Krawczyk, B.; Wozniak, M.; Schaefer, G. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft
Comput. 2014, 14, 554-562.

Lomax, S.; Vadera, S. A survey of cost-sensitive decision tree induction algorithms. ACM Comput. Surv. (CSUR) 2013, 45, 1-35.
Tosun, A.; Turhan, B.; Bener, A. Practical considerations in deploying ai for defect prediction: A case study within the turkish
telecommunication industry. In Proceedings of the 5th International Conference on Predictor Models in Software Engineering,
Vancouver, BC, Canada, 18-19 May 2009; pp. 1-9.

Ryu, D.; Baik,]. Effective multi-objective naive Bayes learning for cross-project defect prediction. Appl. Soft Comput. 2016, 49,
1062-1077.

Ryu, D.; Baik, J. Effective harmony search-based optimization of cost-sensitive boosting for improving the performance of
cross-project defect prediction. KIPS Trans. Softw. Data Eng. 2018, 7, 77-90.

Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms: The univariate case.
Appl. Math. Comput. 2018, 318, 245-259.

Paulavicius, R.; Sergeyev, Y.D.; Kvasov, D.E,; Zilinskas, J. Globally-biased BIRECT algorithm with local accelerators for
expensive global optimization. Expert Syst. Appl. 2020, 144, 113052.

Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. On the efficiency of nature-inspired metaheuristics in expensive global
optimization with limited budget. Sci. Rep. 2018, 8, 1-9.

