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Abstract: This paper presents the application of the observability technique for the structural system
identification of 2D models. Unlike previous applications of this method, unknown variables appear
both in the numerator and the denominator of the stiffness matrix system, making the problem
non-linear and impossible to solve. To fill this gap, new changes in variables are proposed to linearize
the system of equations. In addition, to illustrate the application of the proposed procedure into
the observability method, a detailed mathematical analysis is presented. Finally, to validate the
applicability of the method, the mechanical properties of a state-of-the-art plate are numerically
determined.

Keywords: observability method; structural system identification; plane strain analysis; 2D elements;
structural health monitoring; inverse analysis; finite element method

1. Introduction

In recent years, the maintenance, health monitoring, and identification of structural
systems are becoming more frequent all around the world [1,2]. A methodology to identify
the mechanical properties of existing structures according to in situ measurements is
defined as structural system identification [3] and is a necessary part of any Structural
Health Monitoring system. In the maintenance and rehabilitation process of the structures,
in addition to the in situ measurements and visual inspections, precise damage detection
might be performed using numerical and analytical analysis [4,5]. Examples of non-model-
based damage identification approaches can be found in [6,7].

Many structural system identification methods have been proposed for estimating
the mechanical parameters of structures modelled with 1D elements, such as steel and
concrete buildings as well as cable-stayed bridges, trusses, and frames [8–10]. However,
despite the intricate nature of 2D structural models such as tunnels, dams, and culverts,
few investigations have been conducted on the structural system identification of these
structures [11–15]. For instance, geotechnical engineers who tried to estimate the behavior
of buried structures encountered insufficient sets of input data [16,17]. In the case of
segmental underground structures, both the constraining effect of the soil and the existence
of the segment joints will generate problems for acquiring dynamic characteristics [18–20].
Khamsei et al. presented a new intelligent inverse analysis technique combining fuzzy
systems, an imperialistic competitive algorithm, and numerical analysis for the back
analysis of the Karaj Subway in Iran [21]. Dehghan et al. determined the geotechnical
parameters using inverse analysis based on convergence data [22]. They also proved
that their proposed method would be a more economical and time-saving technique in
comparison to a design based on soil mechanic tests carried out by consultant engineers.

Structural system identification methods can be categorized as parametric and non-
parametric [23–25]. With the quick increase in computer technology, jutting numerical
software, and well-known packages such as MatLab or Mathematica, the popularity of
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non-parametric methods has increased. These methods define the transfer functions of a
system, which implies that the input–output relation is characterized by a set of equations
that may not have any explicit physical meaning. Vardakos et al. estimated the potential
use of the differential evolution genetic algorithm in the back analysis of a tunnel response
to obtain improved estimates of the model parameters by matching the model prediction
with the monitored response [25].

Xiang et al. proposed two algorithms by means of automatically generating optimal
measurements [26]. They proved the validity of their methods with academic examples.
They used their proposed method for the Munich subway tunnel project. Santos et al.
presented a procedure to carry out back analysis of the tunnel excavation problem in
an automatic manner [27]. They verified their measurements with ones obtained from a
finite element analysis. However, in parametric methods all the parameters have physical
meaning in the equations and may be used as a method to identify the parameters of the
structures. Lozano-Galant et al. proposed a parametric method to uniquely identify the
mechanical properties of structures as well as the flexural and axial stiffness (EA, EI) [28].
This technique is called the observability method (OM) and is enforceable for the structural
system identification of 1D elements (Bernoulli and Timoshenko beam elements) but not
for finite element models with 2D elements.

OM stands as one of the unique structural system identification parametric approaches
presented in the literature for the static [29–36] and dynamic analysis of the stiffness matrix
method [37]. The advantages of using this deterministic and physics-based approach are:
1—the mathematical foundation of the technique is simple and comprehensible; 2—OM
defines whether all the variables or a subset of them are observable or not; 3—OM permits
engineers to acquire unique solutions of a structural system in a reasonable time; 4—OM
allows the identification of the mechanical parameters of the structure even if the involved
parameters are not linearly related; 5—if there is not a unique solution for a specific part of
a system, with a quick evaluation of the system relations are obtained that allow the user to
specify which measurements must be obtained to have more or complete observability [38].

OM was applied satisfactorily to solve engineering structural problems. For instance,
Lozano-Galant et al. facilitated the application of OM for the identification of the parame-
ters of complex concrete and steel bridges by proposing a graphical method for the selection
of measurement sets, which is called observability trees [34]. The use of observability trees
proved that, in the analyzed system, the probability of selecting the appropriate measure-
ment set with a minimum number of measurements at random was practically negligible.
In addition, Castillo et al. utilized OM to assist in decision-making and risk management
processes during the maintenance and service life of structures [30].

Although it has applicability to many structures, OM has never been applied to models
made out of 2D elements. Along with the undertaken studies and the proposed existing
gaps, for the first time we propose a new system of equation for the application of OM to
the inverse analysis of 2D models. This application is not as straightforward as it might
look. The 1D OM unknowns (Young’s modulus E, area A, Inertia I, and flexural or axial
stiffnesses) are located only in the numerator of the stiffness matrix [28]. However, for
the implementation of 2D models an obstacle arises, as the Poisson ratio appears in the
both the numerator and the denominator of the elements of the stiffness matrix. This
location of unknowns creates a nonlinear system of equations that prevents defining the
unknowns through traditional OM. The location of the unknowns creates a non-linear
system of equations that prevents the identification of the mechanical properties of the 2D
element structures with the traditional OM. To solve this problem, this paper proposes a
new methodology to enable the application of the OM to 2D model structures. The main
contribution of this work refers to the use of changes in variables to linearize non-linear
systems of equations. To illustrate the introduction of this change of variable into the
observability method, a detailed mathematical analysis is presented. Finally, to validate
the applicability of the method, the mechanical properties of a state-of-the-art plate are
numerically determined. It is important to highlight that the proposed mathematical
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methodology is characterized by its generality, as it can be used for other systems of
equations, including unknown variables in both the numerator and the denominator.
With the proposed methodology, scholars can derive the mechanical parameters of crucial
structures, such as tunnels, gravity dams, retaining walls, buttress dams, culverts, and
underground pipelines.

This paper is organized as follows. In Section 2, the observability technique is elu-
cidated and we demonstrate how it could be exerted to the stiffness matrix method of
2D elements. In Section 3, an example of a state-of-the-art technique is analyzed to show
the applicability of OM to 2D element structures. Moreover, a statistical analysis of the
required number of measurements for reaching different levels of observability is shown in
this section. Finally, the conclusions of the article are presented in Section 4.

2. Structural System Identification of Structures with 2D Elements by
Observability Techniques

In this section, the application of the observability method (OM) to the inverse analysis
of structures modeled by 2D elements is firstly described. Then, the proposed algorithm to
implement the application of the OM to 2D element structures is presented. Finally, the
differences in the system of equations of structures with 1D and 2D elements are reviewed.

2.1. Inverse Analysis of the Stiffness Matrix Method

According to the Finite Element Method ([39]), the stiffness matrix of 2D element
structures [K] can be obtained from the strain-displacement matrix [B] and elastic matrix
[D], as presented in Equation (1):

[K] =
∫

V
[B]T[D][B] dV. (1)

In the stiffness matrix method, matrix [K] is used to relate the equilibrium equations
in terms of the nodal displacements, as presented in Equation (2).

[K](2NN×2NN)·{δ}(2NN×1) = {f}(2NN×1), (2)

where, [K] depends on the following characteristics: thickness (h), Young’s modulus (E),
and Poisson ratio (ϑ). {δ} is the vector of displacements, which includes the vertical (vi)
and horizontal (ui) deflections at each node i, and {f} is the force vector that contains
the vertical (Vi) and horizontal (Hi) applied forces at each node i. Finally, NN refers to
the number of nodes in the finite element equation. For the case of tunnel, dam, and
culvert analysis, the plane strain assumption is traditionally considered and the thickness
is assumed as one.

In the traditional application of the stiffness matrix method, the parameters in [K] are
known and the nodal displacements can be directly obtained from Equation (2). Then, the
internal forces in the elements as well as the reactions at the boundary conditions can be
obtained from these displacements. This methodology is traditionally used by computer
software to simulate the structural responses. A detailed explanation of the application of
this approach can be found in [38].

The stiffness matrix method can be also used to identify unknown mechanical prop-
erties of the structural elements (e.g., hj, ϑj, Ej) from the structural response measured on
site (inverse approach). In this approach, some terms in the stiffness matrix are assumed
as unknown together with the reactions at the boundary conditions and the unmeasured
deflections on site. In this inverse approach, non-linear products of unknown variables
appear. To identify these non-linear products of unknown in 1D element structures, the
OM was proposed in the literature. This method requires the rearrangement of the system
of equations of the stiffness matrix method to join all the unknown variables together. To
do so, the system in Equation (2) can be reordered as follows [28]:

[K]∗·{δ}∗ = {f}, (3)
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where, the products of variables are located in the modified vector of displacements {δ*}
and the modified stiffness matrix [K]* is a matrix of coefficients with different dimensions
than the initial stiffness matrix [K]. Once the boundary conditions and the applied forces at
the nodes during the nondestructive test are introduced, it can be assumed that a subset of
deflections δ1* of {δ*} and a subset of forces in nodes f1 of {f} are known and the remaining
subset δ0* of {δ*} and f0 of {f} are unknown. By the static condensation procedure, the
system in (3) can be partitioned as follows [28]:

[K]∗·{δ∗} =
[

K∗00 K∗01
K∗10 K∗11

]
·
{
δ∗0
δ∗1

}
=

{
f0
f1

}
= {f}, (4)

where, K∗00, K∗01, K∗10, and K∗11 are the partitioned matrices of [K]∗ and δ∗0 , δ∗1 , f0, and f1 are
the partitioned vectors of {δ∗} and {f}. In order to join the unknowns, system (4) can be
written in the equivalent form [29]:

[C]·{z} =
[

K∗10 0
K∗00 −I

]
·
{
δ∗0
f0

}
=

{
f1 −K∗11δ

∗
1

−K∗01δ
∗
1

}
= {f∗}, (5)

where, 0 and are the null and the identity matrices, respectively. In this system, the vector of
unknown variables, {z}, appears on the left-hand side and the vector of observations, {f∗},
on the right-hand side. Both vectors are related by a coefficient matrix [C]. A summary of
the couple variables and the nonlinear product of unknowns appearing in vector { δ*} for
the case of 2D element structures (modeled by 6-noded triangular element) is presented
in Table 1.

Table 1. Coupled variables and products of unknowns in the system of equation.

Coupled
variables

Eihi
ϑi+1

Eihi
2ϑi

2+ϑi−1
Eihi(ϑi−1)
2ϑi

2+ϑi−1
Eihi(5ϑi−3)
2ϑi

2+ϑi−1
Eihi(10ϑi−9)
2ϑi

2+ϑi−1

Nonlinear
products of
unknowns

Eihi
ϑi+1 .ui

Eihi
2ϑi

2+ϑi−1 .ui
Eihi(ϑi−1)
2ϑi

2+ϑi−1 .ui
Eihi(5ϑi−3)
2ϑi

2+ϑi−1 .ui
Eihi(10ϑi−9)
2ϑi

2+ϑi−1 .ui
Eihi
ϑi+1 .vi

Eihi
2ϑi

2+ϑi−1 .vi
Eihi(ϑi−1)
2ϑi

2+ϑi−1 .vi
Eihi(5ϑi−3)
2ϑi

2+ϑi−1 .vi
Eihi(10ϑi−9)
2ϑi

2+ϑi−1 .vi

In order to check if the system has a solution, it is sufficient to calculate the null space
[V] of [C] and check that [V][C] = {0}. The general solution (the set of all solutions) of
Equation (5) has the structure of Equation (6) (see Castillo et al. [39]):

{z} =
{
δ∗00
f00

}
+ [V].{ρ}, (6)

where, {z} refers to the general solution and
{
δ∗00
f00

}
is a particular solution of the system

(6). This particular solution may be derived by different subroutines in Matlab [40] either
parametrically (backslash function (\)) or numerically (Moore–Penrose pseudoinverse
function (pinv)). The product [V]{ρ} represents the set of all solutions of the associated
homogeneous system of equations (a linear space of solutions, where the columns of [V]
are basis and the elements of the column matrix, and {ρ} are arbitrary real values which
represent the coefficients of all possible linear combinations). It is interesting to note that
a variable has a unique solution not only when matrix [V] has zero dimensions but also
when the associated row in matrix [V] is null. This matrix might provide full (FO) or
partial (PO) observability, depending on the number of parameters identified. The PO
might help to identify new parameters in the structure through a recursive process. In this
recursive process, the observed information is successively introduced as input data in the
observability analysis. For a more detailed analysis of the mathematical manipulation of
the system of equations presented, the reader is addressed to Lozano-Galant et al. [28]. In
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this work, detailed step by step analyses of the application of the observability techniques
to beam structures (1D element) are presented.

The application of the observability techniques to the identification of 2D element
structures is not presented in the literature. In this work, triangular elements are assumed.
This type of element has been extensively used in the literature ([41]). In fact, this geometry
does not include some of the limitations of the straight-sided elements, which displacement
functions induce their vertices to stay straight without allowing curved deformations. In
addition, they present a higher convergence rate. Three-noded constant strain triangle (CST)
elements can be satisfactorily used for meshing complex structures, as they have lower
accuracy than linear strain triangle (LST) ones. Although some scholars have improved
both the accuracy and convergency of CST elements (see, e.g., Yang et al. [42], Piltner and
Taylor [43], and Neto et al. [44]), in this work LSD elements are considered.

Although how it may appear, the application of OM to the structures modeled by LST
elements is not straightforward, as ϑ is located in both the numerator and denominator of
the stiffness matrix parameters. It can be seen in Table 1 that this system of equations is
non-linear, as coupled variables are coupled to other unknowns (nodal displacements). In
order to solve the above-cited issue and linearize the system of equations, the following
change in variables is proposed:

NUp
i = 1/(ϑi + 1), (7)

NUN
i = 1/(2ϑi − 1). (8)

The super indices in these equations refer to the positive (P) and negative (N) signs in
the denominator. Table 2 presents the parameters that may appear in the classical stiffness
matrix of the structures modeled by LST elements, the above change in variables, and the
updated variables in the system of equations.

Table 2. Unknown variables before and after the proposed changes in variables.

Unknowns Change of Variables Updated Unknowns
Eihi
ϑi+1

NUp
i = 1

ϑi+1
NUN

i = 1
2ϑi−1

Ei.hi.NUp
i

Eihi
2ϑi

2+ϑi−1
Ei.hi.NUp

i .NUN
i

Eihiϑi
2ϑi

2+ϑi−1
Ei.hi.ϑi.NUp

i .NUN
i

Eihi(ϑi−1)
2ϑi

2+ϑi−1
Ei.hi.ϑi.NUp

i .NUN
i − Ei.hi.NUp

i .NUN
i

Eihi(5ϑi−3)
2ϑi

2+ϑi−1
5.Ei.hi.ϑi.NUp

i .NUN
i − 3.Ei.hi.NUp

i .NUN
i

Eihi(10ϑi−9)
2ϑi

2+ϑi−1
10.Ei.hi.ϑi.NUp

i .NUN
i − 9.Ei.hi.NUp

i .NUN
i

As shown in Table 2, after the proposed change in variables in [K]∗, the unknown vari-
ables are generated and reduced to the following products:

{
Ei.hi.NUp

i

}
,
{

Ei.hi.NUp
i .NUN

i

}
,

and
{

Ei.hi.ϑi.NUp
i .NUN

i

}
. This paper is focused on plane strain structures, where hi is

assumed to be 1. In comparison with the traditional observability techniques, dealing
with this type of structure produces the following difficulties: (1) The product of unknown
variables (nonlinearity of the problem): The following variables (such as Ei, ϑi, NUp

i , and
NUN

i ) are unknown and coupled to each other. To solve this issue, the target unknowns are
identified as monomial-coupled elements (for example, the unknown variable Ei.hi.NUp

i is
considered as a new linear variable named EihiNUp

i ). In addition, the observed products
of variables can be used to calculate the value of single variables (e.g., using Ei to uncouple
{Ei.ϑi}). (2) The components of the stiffness matrix might be composed of the sum of
different linearized products of variables (see, for example, the last three rows of Table 2).
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To deal with this problem, the columns of [K]* were split, following the methodology in
the traditional application of OM [28]. This operation increases the size of Equation (3) to:

[K]∗(2NN×(2NN×EN×3))·{δ}∗((2NN×EN×3)×1) = {f}(2NN×1), (9)

where, NN refers to the number of nodes and EN to the number of elements. (3) The
calculation of the null space. The application of OM to the 1D element structures enables the
symbolical calculation of the null space. This symbolical approach enables the visualization
of the dependences on the variables. Unfortunately, the symbolical calculation of the null
space in 2D element structures is very time-consuming; thus, a numerical calculation was
used for this research. This numerical analysis can reduce the computation time by more
than 99.6%.

2.2. Proposed Algorithm

To illustrate the application of the procedure presented above, an algorithm is pro-
posed in this section for the structural system identification of 2D element structures with
the OM. This algorithm is presented in Figure 1. The whole package of the 2D observability
technique was written in MatLab [40]. This package contains two main connected parts.
The first part contains only direct analysis codes. In this part, 2D finite element analyses
were developed for the plane strain analysis and the user only needs to input the node
coordinates, the mechanical properties, the boundary conditions, and the applied forces.
Afterwards, through the interface the user selects the defined structure and runs the direct
analysis to calculate the deflections at the free nodes and the reactions at the boundary
conditions. Some of the information calculated in this step is used as input data for the
inverse analysis of the structure in the second part. The second part of the package was only
assigned to inverse analysis and contains the procedure presented in the preceding section.
To carry out the inverse analysis, the user has to define the condition of the inverse analysis
through the interface. In this step, the interface offers all the possible measurements of
the structure calculated in the direct analysis. After selecting the measured degrees of
freedom, an observability analysis is performed and the observable variables are provided
together with their numerical values. The steps of the algorithm for the inverse analysis of
the structure are as follows:

• Step 1. Generate the classical stiffness matrix equation presented in Equation (2).
• Step 2. Exert the change in variable to the stiffness matrix using the functions of

Poisson’s ratio presented in Equations (7) and (8).
• Step 3. Establish Equation (3) considering the variables defined in Step 2.
• Step 4. Reorder the columns in matrix to isolate the monomial products of variables.
• Step 5. Introduce the boundary conditions, the known forces, and the measured

deflections.
• Step 6. Reorder the system following Equation (5).
• Step 7. Calculate the null space of [C] numerically and identify the observed variables.
• Step 8. Calculate the particular solution of the system numerically using the Moore–

Penrose pseudoinverse function.
• Step 9. Use the observed parameters or the observed coupled variables to simplify the

other coupled variables.
• Step 10. Introduce the observed parameters into Step 5. Repeat until no additional

parameters are observed (end of the recursive process).
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Figure 1. Flow chart of the algorithm.

A summary of the aforementioned algorithm is illustrated in Figure 1.

2.3. Comparison of the Application of OM to the 1D and 2D Element Structures

To illustrate the effect of changing the type of element into the observability method,
Table 3 is presented. This table compares the application of 1D (2-noded beam element)
and 2D (6-noded triangular element, LST) element structures and includes the following
information: (1) type of element, (2) degrees of freedom per element, (3) unknown variables,
(4) products of unknown variables, and (5) size of the stiffness matrix and, (6) type of
analysis of the null space. The information of the 2D elements is presented before and after
the change in variables described in Section 1.

Table 3. Comparison of 1D and 2D observability methods (OMs).

1D OM 2D OM

Before Change of Var. After Change of Var.

Type of element 2-noded beam element 6-noded triangular element 6-noded triangular element
Degrees of freedom per element 6 12 12

Number of unknows 2 2 4
Unknown variables per element Ei Ai, Ei Ii Ei and ϑi Ei, ϑi, NUp

i , NUN
i

Products of unknowns (Ei Ai/Li) and (Ei Ii/Li)
(Eihi/ϑi + 1)

(Eihi/2ϑi
2 + ϑi − 1),

(Eihiϑi/2ϑi
2 + ϑi − 1)

Ei.hi.NUp
i

Ei.hi.NUp
i .NUN

i ,
Ei.hi.ϑi.NUp

i .NUN
i

Size of stiffness matrix [3NN × 3NN ] [2NN × 2NN ] [2NN × (2NN × EN × 3)]
Calculation of the null space Symbolical Numerical Numerical
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The analysis of Table 3 shows that the number of unknown variables per element is
doubled (changing from 2 to 4) after applying the change of variables in the 2D elements.
Therefore, the number of columns of the stiffness matrix is also consequently increased.
This table also illustrates that, unlike the analysis of 1D elements, a numerical simulation
of the null space is required for the analysis of 2D element structures.

3. Example of the Application

In this section, a state-of-the-art example is analyzed to illustrate the applicability of
the proposed algorithm to the structural system identification of 2D element structures
with observability techniques. Firstly, the geometry, boundary, and loading conditions
of the example are detailed together with the results of the direct analysis. Then, some
steps of the inverse analysis of the structure are detailed. Finally, a statistical analysis is
presented to illustrate the role of the measuring set on the observability of the structural
parameters of this structure.

3.1. Definition of the Analyzed Structure

The analyzed structure was chosen from Peter Kattan’s book [45]. This structure
corresponds with the discretization of a clamped plate simulated with the plane strain
theory. For the finite element model, two quadratic 6-noded LST elements (see Figure
2a) were considered, leading to a system with 9 nodes and 18 degrees of freedom. The
boundary and loading conditions as well as the node and element numbering are presented
in Figure 2b. The uniform force at the right edge of the structure (corresponding to a
distributed load of W = 3000 kN/m2) has been simulated as concentrated forces at the
element nodes (nodes 3, 6, and 9), according to the tributary area of each node. As
illustrated in this figure, the clamp conditions are modeled by fixing the horizontal and
vertical deflections of nodes 1, 4, and 7. The horizontal and vertical deflections of the rest
of the nodes in the structure remain free.

Figure 2. Example: (a) 6-noded triangular element (LST), and (b) node and element numbering
together with the boundary and loading conditions [45].

The analyzed structure has a length of 0.5 m, a height of 0.25 m, and the thickness of
1 (plane strain assumption). The Young’s modulus and Poisson’s ratio are E = 210 GPa
and ϑ = 0.3, respectively. The first part of the developed package was used to calculate the
horizontal and vertical deflections at the free nodes as well as the reactions at the boundary
conditions (direct analysis). The obtained deflections and reactions are summarized in
Table 4. The results obtained from the direct analysis are considered in good agreement
with those in [45] (in fact, both results present the same number of decimal numbers).

Table 4. Deflections and reactions at the example from the direct analysis.

Node 1 2 3 4 5 6 7 8 9

ui(m)
e-6 0.080 0.1580 0.0739 0.1568 0.0716 0.1580

vi(m)
e-6 0.0227 0.0288 0.0055 0.0113 −0.011 −0.007

Hi(KN) −3.541 −11.67 −3.541
Vi(KN) −2.863 0.012 2.851
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3.2. Inverse Analysis

In this section, the proposed algorithm is used for the inverse analysis of the structure
from the following measurement set (u2, v2, u3, v3, u5, v5, u6, v6, u9, and v9). The numerical
values of these deflections correspond with those presented in Table 4.

To identify the observable parameters in the structure, the stiffness matrix system
described in Step 1 of the algorithm was calculated. This example contains 18 components
for displacements (9 for both u and v). Unfortunately, the large size of this matrix (18 × 18)
prevents its representation in the paper and only the first equation (the one related to the
horizontal force at node 1, H1 is depicted) is presented in Equation (10):

H1 =



((E1.h1)/2(ϑ1 + 1)) + ((E2.h2)/(ϑ2 − 1))/((4.(2ϑ2 − 1).(ϑ2 + 1))
0

((E2.h2).(ϑ2 − 1))/(3.(2ϑ2 − 1).(ϑ2 + 1))
−(2.E2.h2.ϑ2)/(3(2.ϑ2 − 1).(ϑ2 + 1))

(E2.h2.(ϑ2 − 1))/(12(2ϑ2 − 1).(ϑ2 + 1))
(E2.h2.ϑ2)/6.(2ϑ2 − 1).(ϑ2 + 1)
−(2.E1.h1)/3.(ϑ1 + 1)
(E1.h1)/3.(ϑ1 + 1)

0
((2.E2.h2.ϑ2)/(3(2ϑ2 − 1).(ϑ2 + 1)))− ((E1.h1)/3(ϑ1 + 1))

0
0

(E1.h1)/(6(ϑ1 + 1))
−(E1.h1)/(12(ϑ1 + 1))

0
0
0

((E1.h1)/2(ϑ1 + 1))− ((E2.h2.ϑ2)/(6(2ϑ2 − 1).(ϑ2 + 1))



T

.



u1
v1
u2
v2
u3
v3
u4
v4
u5
v5
u6
v6
u7
v7
u8
v8
u9
v9



(10)

As shown in Equation (10), Poisson’s ratio appears in both the numerator and denom-
inator of the matrix parameters. This location of Poisson’s ratio prevents the application
of traditional OM (proposed in the literature) and makes necessary the changes in vari-
ables proposed in Step 2. After this change in variables, the system of equations can be
rearranged. In this way, the size of the modified stiffness matrix is increased to 18 × 42.
Again, for size limitations only the obtained equilibrium equation of H1 is presented in the
paper. This equation is as follows:
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H1 =



0
0
0
0
0
−1/3
1/2

0
0
−2/3
1/6
2/3

0
−1/6

0
0
0
0
0
0
0
−1/3

0
−1/12
−1/3
−1/12

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



T

.



E1.ϑ1.NUp
1 .NUN

1 .u5
E1.ϑ1.NUp

1 .NUN
1 .u8

E1.ϑ1.NUp
1 .NUN

1 .u9
E1.ϑ1.NUp

1 .NUN
1 .v5

E1.ϑ1.NUp
1 .NUN

1 .v8
E2.ϑ2.NUp

2 .NUN
2 .u2

E2.ϑ2.NUp
2 .NUN

2 .u3
E2.ϑ2.NUp

2 .NUN
2 .u5

E2.ϑ2.NUp
2 .NUN

2 .u6
E2.ϑ2.NUp

2 .NUN
2 .v2

E2.ϑ2.NUp
2 .NUN

2 .v3
E2.ϑ2.NUp

2 .NUN
2 .v5

E2.ϑ2.NUp
2 .NUN

2 .v6
E2.ϑ2.NUp

2 .NUN
2 .v9

E1.NUp
1 .NUN

1 .u5
E1.NUp

1 .NUN
1 .u8

E1.NUp
1 .NUN

1 .u9
E1.NUp

1 .NUN
1 .v5

E1.NUp
1 .NUN

1 .v8
E1.NUp

1 .u5
E1.NUp

1 .u8
E1.NUp

1 .v5
E1.NUp

1 .v8
E1.NUp

1 .v9
E2.NUp

2 .NUN
2 .u2

E2.NUp
2 .NUN

2 .u3
E2.NUp

2 .NUN
2 .u5

E2.NUp
2 .NUN

2 .u6
E2.NUp

2 .NUN
2 .v2

E2.NUp
2 .NUN

2 .v3
E2.NUp

2 .NUN
2 .v5

E2.NUp
2 .NUN

2 .v6
E2.NUp

2 .NUN
2 .v9

E2.NUp
2 .u2

E2.NUp
2 .u3

E2.NUp
2 .u5

E2.NUp
2 .u6

E2.NUp
2 .u9

E2.NUp
2 .v2

E2.NUp
2 .v3

E2.NUp
2 .v5

E2.NUp
2 .v6



(11)

After introducing the known information (null deflections at the boundary conditions;
deflections at the measurement set; and known forces at nodes 3, 6 and 9), the system of
equations was arranged as presented in Step 6. To proceed this application, the equilibrium
equation of the horizontal reaction at node 2, H2, is presented. This equation is as follows:
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H2 =



0
0
0

2× 10−07

0
0
0
0
0
0

9× 10−08

9× 10−08

0
0
0
0
0
0



T

.



E1.ϑ1.NUp
1 .NUN

1
E1.ϑ1.NUp

1 .NUN
1 .u8

E1.ϑ1.NUp
1 .NUN

1 .v8
E2.ϑ2.NUp

2 .NUN
2

E1.NUp
1

E1.NUp
1 .NUN

1
E1.NUp

1 .NUN
1 .u8

E1.NUp
1 .NUN

1 .v8
E1.NUp

1 .u8
E1.NUp

1 .v8
E2.NUp

2
E2.NUp

2 .NUN
2

H1
H4
H7
V1
V4
V7



(12)

This equation shows that at this stage, the number of unknown variables in the
system is eight (E1, ϑ1, NUp

1 , NUN
1 , E2, ϑ2, NUp

2 , NUN
2 ). To identify the observability of the

variables, the null space [V] was numerically calculated in Step 7. With this information,
the general solution of the system {z} described in Equation (6) can be written as presented
in Figure 3.

Figure 3. General solution of the system of equation.

The analysis of the null space presented in Figure 3 shows that the partial observability
of the structure is obtained. The particular solution of these parameters was numerically
obtained with the pseudoinverse of matrix [C] in MatLab (Step 8). In Figure 3, the ob-
servable parameters (the ones with a unique solution) are associated with the null rows
of the matrix [V]. The values of these parameters are (ϑ2.E2.NUp

2 .NUN
2 ) = −1.2× 10+08,

(E2.NUp
2 . NUN

2 )=−4.0× 10+08, and (E2.NUP
2 )= 1.6× 10+08. Finally, by dividing the observ-

able coupled variables to each other, the following results were obtained for element 2 of
the structure: NUP

2 = 7.7× 10−01, NUN
2 = −25× 10−1, E2= 2.1× 10+08 Pa, and ϑ2= 3× 10−01

Increasing the number of measurements may lead to increasing the number of observed
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parameters or full observability. To illustrate the effect of the number of measurements on
the observability of the system, a statistical analysis is presented in the following section.

3.3. Statistical Analysis

In this part, a statistical analysis of the example is presented to indicate the required
number of measurements for the partial and full observability of the system. To do so,
combinatorial analysis was conducted and the following combinatory equation was used:

C(n, r) = (n!)/(r!(n− r)!), (13)

with n as the number of possible measurement and r as the chosen number of measure-
ments in each combination. In the analyzed example, n is equal to 12, as the possible
measurements correspond to u2, v2, u3, v3, u5, v5, u6, v6, u8, v8, u9, and v9. This com-
binatorial analysis was carried out for 8 (C8

12 = 495), 9 (C9
12 = 220), 10 (C10

12 = 66), 11
(C11

12 = 12), and 12 (C12
12 = 1) measurements per set. It can be seen in Figure 4 that the full

observability of the structure requires at least nine measurements per set. In the case of
eight measurements, 0.6% of the sets lead to the partial observability of the system, and
99.4% lead to an indeterminate system. For the case of nine measurements, 3.6% lead to
the full observability of the system, 4.6% of the sets lead to the partial observability of
the system, and 91.8% lead to an indeterminate system. This figure also shows that by
conducting 10 measurements, 72.6% of the measurements lead to the full observability of
the system, 1.5% of the sets lead to the partial observability of the system, and 25.9% lead
to an indeterminate system.

Figure 4. Full observability of the system based on the various measurement sets.

As illustrated in Table 5, to distinguish the difference between the sets achieving
different levels of observability, they were classified into different patterns with regard
to the location of the measurements. For instance, in the case of eight measurements
{u|v2, u3, v3, u5, v5, u6, v6, u|v9 }, {u2, v2, u3, v3, u5, v5, u|v6, u|v9}, and {u2, v2, u3, v3, u5, v5,
u6, v6} were classified as

{
2, 3, 5, 6, 9

}
,
{

2, 3, 5, 6, 9
}

, and
{

2 , 3, 5, 6
}

, respectively (the
vertical bar between u and v indicates that either the vertical or horizontal degree of free-
dom is measured). In these patterns, the subscripts of the measurements (node number)
that identify the associated location are shown.
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Table 5. All the sets for achieving different levels of observability for 8, 9, and 10 measurements per
set. Partial observability (P.O.) and full observability (F.O.).

8
Measurements 9 Measurements 10 Measurements

P.O. F.O. P.O. F.O. P.O.

2, 3, 5, 6,9 2, 3, 5, 6,8,9 2, 3, 5, 6, 9 3,5,6,8,9 2, 3, 5, 6, 9
2, 3, 5,6,9 2, 5, 6, 8, 9 2, 3, 5, 6, 9 2,3,5, 6,8,9
2, 3, 5, 6 2, 3, 5,6,8,9 2, 3, 5, 6, 9 2,3, 5,6, 8, 9

2, 3, 5, 6,8 2, 3, 5, 6, 9 2, 3, 5, 6,8, 9
2, 3, 5, 6,9 2, 3, 5, 6, 8,9

2, 5, 6, 8, 9
2,, 6, 8, 9

2, 3, 5, 6, 8, 9
2, 3, 5, 6, 8,9
2, 3,5, 6,8, 9
2, 3, 5, 8, 9

2, 3, 5, 6, 8, 9
2, 3, 5,6, 8,9
2, 3, 5, 6, 8

The node numbers with the sign (−) indicate that both deflections, vertical and
horizontal, are measurements. However, no distinction is made between the measurements
of X and Y degrees of freedom, as the ones without any sign are indicative of either vertical
or horizontal measurements. All the sets related to the PO of the system in the cases of 8, 9,
and 10 measurements are listed in columns 1, 3, and 5 of Table 5, respectively. However,
columns 2 and 4 include the sets for FO of the system based on 9 and 10 measurements.
One of the surprising results of the method is that, with eight targeted unknowns, at least
nine measurements are required to obtain full observability. This is one of the drawbacks
inherent in the method. As the nonlinear problem is being solved as a linear one and
coupled unknowns are linearized, extra information might be required to uncouple them
and to obtain full observability.

It is clear that no set with 8, 9, or 10 measurements leads to the FO of the examined
structure. Hence, if those are not elected appropriately, the end of the recursive process
occurs before identifying all variables. In Table 5, the sets leading to the FO of the system
are selected at dispersed locations of the structure. With these sets, in the other words, the
distributed placement of the sensors keeps the observability flow, and, consequently, FO
will be obtained. If the measurements are conducted intensively at a local area or specific
element of the structure, the redundancy of the measurements will emerge.

In the same manner, in the case of
{

2, 3, 5, 6, 8, 9
}

(the first set related with nine
measurements), achieving the FO was due to the dispersed locations of the sensors at all
nodes of the structure. Accordingly, for the same number of measurements as well as 10,
the occurrence of PO in all sets (third and fifth columns of Table 5) is due to a lack of any
information about node 8. For instance, choosing the measurement set,

{
2 , 3, 5, 6, 9

}
leads

to partial observability despite 10 measurements being included in the set.
This set will only allow a unique solution for the following coupled unknowns{

E2.ϑ2.NUp
2 .NUN

2

}
,
{

E2.NUp
2 .NUN

2

}
, and

{
E2.NUp

2

}
. However, the first set in the fourth

column of Table 5,
{

3 ,5,6,8,9
}

, without any information about node 2 enabled the FO of the
system. In the first recursive step of the inverse analysis, the particular solutions for the cou-
ple

{
E1.NUp

1 .NUN
1

}
and

{
E1.NUp

1

}
related to element 1 as well as

{
E2.ϑ2.NUp

2 .NUN
2

}
and

{
E2.NUp

2 .NUN
2

}
related to element 2 are acquired. This information is sufficient to

derive the value of the parameters NUN
1 and ϑ2 first and the rest of unknowns of the

system. All the above information implies that the reason for the partial observability is
that the number of effective measurements is less than the number of unknowns.
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Figure 5 illustrates some of the mentioned possible sets (in Table 5) containing both
vertical and horizontal measurements. Figure 5a–c presents the sets that lead to the PO
of the system by measuring 8, 9, and 10 deflections, respectively. The FO of the problem
through 9 and 10 measurements is depicted in Figure 5b1,c1, respectively.

Figure 5. Required number of measurements for having the partial (a,b,c) and full observability (b1,c1) of the system.

4. Conclusions

The observability technique has been studied in the literature for the structural system
identification of 1D element structures (such as beams and trusses). Nevertheless, the
application of this method to 2D element structures (such as dams, tunnels, and culverts)
has not been studied yet. Despite how it may appear, this application is not straightforward,
as the unknown variables in the system are not only located in the numerator. In fact,
the location of these variables also in the denominator makes the system of equations
nonlinear and prevents the application of traditional observability techniques for this type
of structure. To fill this gap, an algorithm for the observability analysis of 2D element
structures was developed in this paper. The main contribution of this algorithm refers to the
development of a new change in variables to linearize the system of equations and makes
OM applicable for 2D element structures. The proposed methodology is characterized
by its generality, as similar changes in variables can be used to linearize other nonlinear
problems when the unknown variables appear in both the numerator and denominator of
the system of equations.

To illustrate the applicability of the proposed algorithm, a state-of-the-art example
(cantilever plate) was analyzed with the plane strain theory. This analysis included a step-
by-step mathematical review of the system of equations, as well as a statistical study of
the structural system identification with different measurement sets. The obtained results
show that the unknown parameters (such as the Young’s Modulus, E, and Poisson’s Ratio,
v) are successfully calculated with the proposed methodology.
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Abbreviations

1D One dimensional
2D Two dimensional
[B] Strain-displacement matrix
[C] Coefficient matrix
CST Constant Strain Triangle
[D] Elastic matrix
Ej Young’s Modulus
EN Number of elements
{ f } Force vector
f0 Subset of unknown forces
f1 Subset of known forces
h Plate thickness
Hi Horizontal force at the ith node
Ij Moment of inertia
[K] Stiffness matrix
[K*] Modified stiffness matrix
K∗ab Subset of the modified stiffness matrix
Lj Length of the jth element
LST Linear strain triangle
{N} Vector of known parameters
NN Number of nodes in the FEM
NUN

j Change of variable for the negative sign in denominator
NUp

j Change of variable for the positive sign in denominator
OM Observability method
ui Horizontal deflection at the ith node
[V] Null space of the system of equations
Vi Vertical force at the ith node
vi Vertical deflection at the ith node
{z} General solution of the system of equations
ϑ Poisson’s Ratio
{δ } Vector of displacements
{δ∗ } Modified vector of displacements
δ∗0 Subset of unknown deflections
δ∗1 Subset of known deflections
{ρ} Vector of arbitrary values
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