
applied
sciences

Article

Wankelmut: A Simple Benchmark for the Evolvability of
Behavioral Complexity

Thomas Schmickl 1, Payam Zahadat 2 and Heiko Hamann 3,*

����������
�������

Citation: Schmickl, T.; Zahadat, P.;

Hamann, H. Wankelmut: A Simple

Benchmark for the Evolvability of

Behavioral Complexity. Appl. Sci.

2021, 11, 1994. https://doi.org/

10.3390/app11051994

Academic Editor: Donato Romano

Received: 18 November 2020

Accepted: 10 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, 8010 Graz, Austria;
thomas.schmickl@uni-graz.at

2 Computer Science Department, IT University of Copenhagen, 2300 Copenhagen, Denmark; paza@itu.dk
3 Institute of Computer Engineering, University of Lübeck, 23562 Lübeck, Germany
* Correspondence: hamann@iti.uni-luebeck.de

Abstract: In evolutionary robotics, an encoding of the control software that maps sensor data
(input) to motor control values (output) is shaped by stochastic optimization methods to complete
a predefined task. This approach is assumed to be beneficial compared to standard methods of
controller design in those cases where no a priori model is available that could help to optimize
performance. For robots that have to operate in unpredictable environments as well, an evolutionary
robotics approach is favorable. We present here a simple-to-implement, but hard-to-pass benchmark
to allow for quantifying the “evolvability” of such evolving robot control software towards increasing
behavioral complexity. We demonstrate that such a model-free approach is not a free lunch, as already
simple tasks can be unsolvable barriers for fully open-ended uninformed evolutionary computation
techniques. We propose the “Wankelmut” task as an objective for an evolutionary approach that starts
from scratch without pre-shaped controller software or any other informed approach that would
force the behavior to be evolved in a desired way. Our main claim is that “Wankelmut” represents
the simplest set of problems that makes plain-vanilla evolutionary computation fail. We demonstrate
this by a series of simple standard evolutionary approaches using different fitness functions and
standard artificial neural networks, as well as continuous-time recurrent neural networks. All our
tested approaches failed. From our observations, we conclude that other evolutionary approaches
will also fail if they do not per se favor or enforce the modularity of the evolved structures and if
they do not freeze or protect already evolved functionalities from being destroyed again in the later
evolutionary process. However, such a protection would require a priori knowledge of the solution
of the task and contradict the “no a priori model” approach that is often claimed in evolutionary
computation. Thus, we propose a hard-to-pass benchmark in order to make a strong statement
for self-complexifying and generative approaches in evolutionary computation in general and in
evolutionary robotics specifically. We anticipate that defining such a benchmark by seeking the
simplest task that causes the evolutionary process to fail can be a valuable benchmark for promoting
future development in the fields of artificial intelligence, evolutionary robotics, and artificial life.

Keywords: evolutionary computation; complexity; artificial neural networks; CTRNN; agent-based
model; stochastic optimization

1. Introduction

Robots are used more and more frequently in inherently unpredictable outdoor envi-
ronments: aerial search, rescue drones, deep-diving underwater AUVs, and even extra-
terrestrial explorative probes. It is impossible to program autonomous robots for those
tasks in a way that a priori accommodates all possible events that might occur during such
missions. Thus, on-line and on-board learning, conducted for example by evolutionary
computation and machine learning, becomes a significant aspect in those systems [1–4].
Evolutionary robotics has become a promising field of research to push forward the ro-
bustness, flexibility, and adaptivity of autonomous robots, which combines the software

Appl. Sci. 2021, 11, 1994. https://doi.org/10.3390/app11051994 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2458-8289
https://doi.org/10.3390/app11051994
https://doi.org/10.3390/app11051994
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11051994
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/1994?type=check_update&version=2

Appl. Sci. 2021, 11, 1994 2 of 25

technologies of machine learning, evolutionary computation, and sensorimotor control
with the physical embodiment of the robot in its environment.

We claim here that evolutionary robotics operating without a priori knowledge can fail
easily because it suddenly hits an obscured “wall of complexity” with the current state-of-
the-art of unsupervised learning. Extremely simple (trivial) tasks evolve well with almost
every approach that was tested in literature [2,5–7]. However, already slightly more difficult
tasks make all methods fail that are not a priori tailored to the properties that are needed to
be able to evolve a solution for the software controller for the given task [2,7,8]. However,
these are often unknown for black-box problems where evolutionary computation and
evolutionary robotics are applied most usefully. As is well known, there is no free lunch
in optimization techniques [9]. The more specifically an optimizer is tailored to a specific
problem, the more probable it is that it will fail for other types of problems. Thus, only
open-ended, uninformed evolutionary computation will allow for generality in problem
solving as required in long-term autonomous operations in unpredictable environments.
For example, many studies in the literature that have evolved complex tasks of cooperation
and coordination in robots used pre-structured software controllers [6,10], while many
studies that have evolved robotic controllers in an uninformed open-ended way produced
only simple behaviors, such as coupled oscillators that generate gaits in robots [11–14]
including simple reactive gaits [15], homing, collision avoidance, area coverage, collective
pushing/pulling, and similar straight-forward tasks [16].

We hypothesize that one reason for the lack of success of evolving solutions for com-
plex tasks is the improbable emergence of internal modularity [17] in software controllers
using open-ended evolution without explicitly enabling the evolution of modules. In an
evolutionary approach, it is possible to push towards modularity by pre-defining a certain
topology of Artificial Neural Networks (ANNs) [18], by allowing evolving a potentially
unlimited number of modules within a pre-defined modular ANN structure [19,20] or by
switching between tasks on the time scale of generations [21], which can then also be
improved by imposing costs for links between neurons [22]. However, if modularity is
not pre-defined and not explicitly encouraged by a designer, then a modular software
controller will not emerge from scratch even if modularity is directly required by the
task. While nature is capable of evolving highly layered, modularized, and complex brain
structures [23] by starting from scratch, evolutionary computation fails to achieve similar
progress within a reasonable time.

To support our claim, we searched for the most simple task that leads to the failure of
plain-vanilla uninformed unsupervised evolutionary computation starting from a 100%
randomized control software without any interference (guidance) by a designer during
evolution and without any a priori mechanism or impetus to favor self-modularization.
An easy way to define such a task is to construct it from two simple, but conflicting tasks that
are both easily evolvable in isolation for almost any evolutionary computation and machine
learning approach of today. However, we require that the behavior that solves Task 1 is the
inverse of the behavior that solves Task 2 (e.g., positive and negative phototaxis). Hence,
once one behavior has been evolved, the other behavior needs to be added together with
an action selection mechanism. We propose a task that operates in one-dimensional space,
and as it is shown in the paper, it can be solved by a very simple pseudo-code and also by
hand-coded ANNs. Compared to the classification scheme of Braitenberg [24], an agent
that solves the Wankelmut (German, meaning roughly “whiffler”: a person who frequently
changes opinions or course; see https://www.merriam-webster.com/dictionary/whiffler
(accessed on 29 January 2021)) task would be placed between Vehicle #4 and Vehicle #5
concerning the complexity of its behavior. Given that it operates in a one-dimensional space,
this introduces a relation to Vehicle #1. We anticipate that searching to define the definition
of such a “most simple task to fail” is a valuable effort benchmark for promoting future
development in the fields of artificial intelligence, evolutionary robotics, and artificial life.

For simplicity, we suggest simple plain-vanilla ANNs as an evolvable runtime control
software in combination with genetic algorithms [25] or evolution strategies [26] as an un-

https://www.merriam-webster.com/dictionary/whiffler

Appl. Sci. 2021, 11, 1994 3 of 25

supervised adaptation mechanism. For our benchmark defined here, we accept either large
fully-connected and randomized ANNs as initialization, as well as ANN implementations
that allow restructuring (adding and removing of nodes and connections) as a starting
point. However, we consider all implementations that have special implementations to
facilitate or favored modular networks as “inapplicable for our focal research question”
because the main challenge in our benchmark task is to evolve modularization from scratch
as an emergent solution to the task.

2. Our Benchmark Task

For the sake of simplicity, we restrict ourselves to a very simple task that is hard
to evolve in an open-ended, uninformed, and unguided way. As shown in Figure 1,
we assume an agent that moves in an environment expressing one single quality factor
(e.g., height, water or air pressure, luminance, temperature) and that has to evolve a
behavior that first makes the agent move uphill in this environmental gradient.

: two lateral sensors

θ θ

Figure 1. (A) Schematic drawing of the problem posed in our focal benchmark task. The evolved
software controller should make a vehicle cycle between the high and the low region. (B) The focal
task is broken down to a 1D cellular simulation with discrete space and time to achieve the maximum
simplification without losing the difficulty of the benchmark.

In the “uphill-walk” phase of the experiment, the agent always should move in the
direction of the sensor that reports the higher value of the focal quality factor. As soon as
the agent reaches an area of sufficiently high quality (above a threshold Θmax), the agent
should switch its behavioral mode and start to seek areas of low environmental quality.
In this “downhill-walk” phase, the agent should always move towards the side where
its sensor reports the lowest environmental quality value. After the agent has reached a
sufficiently low quality area (below a threshold Θmin), the agent should switch back to the
“uphill-walk” behavior again.

We call the behavior that we aim to evolve “Wankelmut”, a term that expresses in
German a character trait in which one always switches between two different goals as soon
as one of the goals is reached. A “Wankelmut” agent is never satisfied and thus does not
decide one thing and does not stick with it. It is a variant of “the grass is always greener,”
a commonly found personality feature in natural agents (from humans to animals), and
despite its negative perception in many cultural moral systems, it has its benefits. It keeps
the agent going, being explorative, curious, and never satisfied. That is exactly the desired
behavior of an autonomous probe on a distant planet that needs to be explored.

In summary, the task is to follow an environmental gradient up and down in an
alternating way, hence maximizing the coverage (monitoring, observation, patrolling) of

Appl. Sci. 2021, 11, 1994 4 of 25

the areas between Θmin and Θmax. There are many examples that have been evolved by
natural selection [27]. In social insects (ants, termites, wasps, honeybees), foragers have
first to go out of the nest, and after they encounter food, they switch their behavior and
go back to the nest. After they have unloaded the food to other nest workers, they go
outwards to forage again [28]. Often, environmental cues and gradients are involved in
the homing and in the foraging behaviors (sun compass, nest scent, pheromone marks)
and are exploited differently by the workers in the outbound behavioral state compared
to the inbound behavioral state [29]. Other biological sources of inspiration are animals
following a diurnal rhythm (day-walkers and night-walkers). In an engineering context,
the rhythm might be imposed by energy recharging cycles, water depths, or aerial heights
in transportation tasks by underwater vehicles or aerial drones.

Figure 1B shows that we de-complexified the benchmark task to a one-dimensional
cellular space of N cells in which always one cell of index P(t) is occupied by the agent
that has state S(t). The environmental gradient is produced by the Gauss error function:

erf(x) =
2√
π

∫ x

0
e−t2

dt , (1)

whereby the quality of every cell i is modeled as:

quality[i] = erf

(
4(i− N

2)

N

)
. (2)

In every time step t ∈ [0, tmax], the agent has access to two lateral sensor readings,
which are modeled as:

sl(t) =

{
quality[P(t)− 1] if (P(t) > 0)
quality[P(t)] otherwise

(3)

and:

sr(t) =

{
quality[P(t) + 1] if (P(t) < N − 1)
quality[P(t)] otherwise

. (4)

The agent changes its position based on these sensor readings:

P(t + 1) = min(N − 1, max(0, P(t) + f (sl(t), sr(t)))) , (5)

whereby the agent’s position is restricted by the boundaries of the simulated world. Its
motion (f) is restricted to a maximum of one step to the left or to the right of the agent’s
current position.

Initially, the agent is in the uphill, state which means it should move uphill. If the
agent’s local quality[P(t)] ≥ Θmax, then the state is changed to downhill, and if the agent’s
local quality[P(t)] ≤ Θmin, then the agent’s state is changed back to uphill.

3. Known Solutions

The Wankelmut task is actually very simple to solve, as it is just a greedy uphill walk in
combination with a greedy downhill walk complemented by a threshold-dependent switch.

A simple algorithm, such as the Python-like pseudo-code in Figure 2, solves the
task with a few lines of code in the desired reactive and optimal way. We used this
code to calculate the “maximum reachable fitness” in our Quantitative Analysis Section.
The variable stateand the constant theta define the agent’s own state and the thresholds
at which it should switch from one behavior to the other and vice versa. The two variables
S_l and S_r hold the current sensor values at the left and at the right side of the agent
and report values between −1.0 and +1.0. The function set-actuators() drives the robot
to the left with positive numbers and to the right with negative numbers used as the
only argument. In our study, we use this simple hand-coded solution as a reference and

Appl. Sci. 2021, 11, 1994 5 of 25

investigate how close the evolved control software gets to the fitness values achieved by
this simple, but optimal solution.

Simulator framework:

Agent’s runtime behavioral program:

Check the environmental situation:

Internal initialization of the agent:

State = 1 # 1: Uphill, -1: Downhill walk

Theta = 0.95 # Switching threshold: For a
 # uphill walk θ is used. We use
 # (1 - θ) for a downhill walk.

If (S1 * State) > (S2 * State):
 set_actuators(State)
Else:
 set_actuators(State * -1)

Update the agent‘s internal state:

If ((S1 + S2) * State / 2) > Theta:
 State = State * -1

Agent‘s initial positioning:

Set the agent‘s location
to a desired position in
the simulated environment.

Provide sensor data:

Provide the sensor values
reported by the two
sensors S1 and S2 for the
agent‘s current location.

Move the agent:

Update the agent‘s current
location according to its
current actuator setting.

Please note: Only the functionality inside of this green box is
subject to adaptation by the evolutionary computation!

Evaluation:

Update the agent‘s fitness
evaluation based on its
location and state.

Figure 2. The functionality of the basic simulation framework and Python-like pseudo-code of an
optimal hand-coded controller for the Wankelmut behavior. Only the content of the green box is
subject to the evolutionary process; the content of of the blue and gray boxes is provided by the
simulation framework and by the initialization we provide in all examples analyzed here. This
indicates that the task for the evolutionary algorithms basically is to create a functional surrogate of
the few lines of code shown inside the yellow and orange boxes.

It is noteworthy that this reactive solution of the Wankelmut task would operate in
gradients of any shape and size in an optimal way as long as gradients are strictly monotone
between the two points Θmin and Θmax. While we used a sigmoid-type non-linear gradient
by using the Gauss error function, our hand-coded solution, presented as pseudo-code in
Figure 2, works optimally also in linear gradients of any size and steepness.

4. Evolvable Agent Controllers

In the following, we describe the different representations of robot controllers that we
tested: simple artificial neural networks (Section 4.1), continuous-time recurrent neural
networks (Section 4.2), and as a control experiment, also hand-coded artificial neural
networks (Section 4.3). In Section 5, we present the results for all controller variants in
two environments (mirrored gradient) for different fitness functions. For an overview,
see Figure 3.

Appl. Sci. 2021, 11, 1994 6 of 25

Experiment Computational
Substrate

Method
Description

Environment
Types

Fitness Function
Design

Results
shown in

Fitness Evaluation Result Post-hoc Analysis Rationale of Experimental Setup Benchmark
passed?

1 hand-coded program Fig.2, Sect. 3.0 2 types n/a in the text n/a optimal To demonstrate that the Wankelmut is solvable by a very simple set of
computational instructions.

Yes

2 1 type Switch-based Fig. 5 near-optimal fitness non-adaptive/non-reactive To test if an artificial evolutionary process can optimise in a simple
'fully plain vanilla' way.

No

3 2 types
Switch-based

(mean of 2 evals) Fig. 6
medium fitness (by 'gambling'

on one of the two
environemnts to appear)

non-adaptive/non-reactive
stereotypic behaviour

We tried to force the evolution process to produce reactive/adaptive
behaviours by exposing it to two variants of behaviours and combining
the results in both in the fitness evaluation.

No

4 2 types
Switch-based

(min of 2 evals) Fig. 7 low
non-adaptive/non-reactive

stereotypic behaviour

We tried to increase the selection pressure in the evolutionary process
and to give an incentive to notz favor genomes that 'gamble' to be
evaluated in one specific environmental setting.

No

5 2 types Cumulative
(min of 2 evals)

Fig. 8
even above optimal fitness

values (achieved by exploiting
the fitness function)

non-adaptive/non-reactive
stereotypic exploitative

behaviour

We tried to favor the evolving of reactive/adaptive behaviours by
rewarding every single step into the "right" direction.

No

6 2 types
Instant+Switch
(min of 2 evals) Fig. 9 low

non-adaptive/non-reactive
stereotypic behaviour

We tried to combine the benefits of rewarding the successful switches
(exp. 4) with an addotional infortmation which is derived from the final
positioning of the agent.

No

7 2 types Cumulative+Switch
(min of 2 evals)

Fig. 10 low non-adaptive/non-reactive
stereotypic behaviour

We tried to combine the rewarding every single step into the correct
direction (exp. 5) with rewarding successful switches (exp. 4).

No

8 2 types Cumulative+Switch
(min of 2 evals)

Fig. 11 low non-adaptive/non-reactive
stereotypic behaviour

We tried to favor adaptive behaviours by evaluating short-term
behaviour.

No

9 1 type Switch-based Fig. 5 near-optimal fitness non-adaptive/non-reactive
stereotypic behaviour

To test if an artificial evolutionary process can optimise in a simple
'fully plain vanilla' way

No

10 2 types
switch-based

(mean of 2 evals) Fig. 6
high fitness values (by

'gambling' on one of the two
environemnts to appear)

non-adaptive/non-reactive
stereotypic behaviour

We tried to force the volutionary process to produce reactive/adaptive
behaviours by exposing it to two variants of behaviours and combining
the results in both in the fitness evaluation.

No

11 2 types
Switch-based

(min of 2 evals) Fig. 7 high
non-adaptive/non-reactive

stereotypic behaviour

We tried to increase the selection pressure in the evolutionary process
and to give an incentive to notz favor genomes that 'gamble' to be
evaluated in one specific environmental setting.

No

12 2 types Cumulative
(min of 2 evals)

Fig. 8
even above optimal fitness

values (achieved by exploiting
the fitness function)

non-adaptive/non-reactive
stereotypic exploitative

behaviour

We tried to favor the evolving of reactive/adaptive behaviours by
rewarding every single step into the "right" direction.

No

13 2 types
Instant+Switch
(min of 2 evals) Fig. 9 high

non-adaptive/non-reactive
stereotypic behaviour

We tried to combine the benefits of rewarding the successful switches
(exp. 11) with an addotional infortmation which is derived from the
final positioning of the agent.

No

14 2 types Cumulative+Switch
(min of 2 evals)

Fig. 10 high non-adaptive/non-reactive
stereotypic behaviour

We tried to combine the rewarding every single step into the correct
direction (exp. 11) with rewarding successful switches (exp. 12).

No

15 2 types Cumulative+Switch
(min of 2 evals)

Fig. 11 medium non-adaptive/non-reactive
stereotypic behaviour

We tried to favor adaptive behaviours by evaluating short-term
behaviour.

No

16 hand-coded and pre-
structured ANNs

Fig. 3, Sect. 4.3 2 types n/a Fig. 12 n/a optimal We demonstrate that ANNs are a sufficient substrate to create the
desired Wankelmut behaviour.

Yes

17 2 types
Switch-based

(min of 2 evals Fig. 13 near-optimal fitness
near-optimal

adaptive/reactive behaviour

To finally see the effect of the fitness-function versus the availability of
a-priori information, we evaluated the 'switch-based' fitness function
with the pre-informed network.

Yes

18 2 types
Cumulative

(min of 2 evals) Fig. 14
even above optimal fitness

values (achieved by exploiting
the fitness function)

non-adaptive/non-reactive
stereotypic exploitative

behaviour

To finally see the effect of the fitness-function versus the availability of
a-priori information, we evaluated the 'cumulative' fitness function
with the pre-informed network.

No

19 2 types
Instant+Switch
(min of 2 evals) Fig. 15 near-optimal fitness

near-optimal
adaptive/reactive behaviour

To finally see the effect of the fitness-function versus the availability of
a-priori information, we evaluated the 'Instant+Switch' fitness function
with the pre-informed network.

Yes

20 2 types Cumulative+Switch
(min of 2 evals)

Fig. 16 near-optimal fitness near-optimal
adaptive/reactive behaviour

To finally see the effect of the fitness-function versus the availability of
a-priori information, we evaluated the 'Cumulative+Switch' fitness
function with the pre-informed network.

Yes

ANNs
without a-priori

information provided

CTRNNs
without a-priori

information provided

Sect. 4.1

Sect. 4.2

a-priori informed with
a set of partially

correctly weighted
edges in ANNs

without structural
restrictions during the
evolutionary process

Fig. 3, Sect. 4.3

Figure 3. Summary of the experimental settings and results. The rightmost column indicates the combination of methods
for which a successful Wankelmut behavior was observed.

4.1. Simple Artificial Neural Network

Our simple approach made use of recurrent artificial neural networks. The activation
function used is a sigmoid function:

1/(1 + exp(−20x))− 0.5. (6)

The network has eleven neurons distributed over the input layer (two), a first hidden
layer (three), a second hidden layer (three), a third hidden layer (two), and the output layer
(one). Each neuron in the second hidden layer has a link to itself (loop) and an input link
from each of the neighboring nodes in addition to the links from the nodes in the previous
layer. Weights were randomly initialized with a random uniform distribution from the
interval [−0.5, 0.5].

4.2. Continuous-Time Recurrent Neural Networks

In a second approach, we used Continuous-Time Recurrent Neural Networks (CTRNNs),
which are Hopfield continuous networks with an unrestricted weight matrix inspired by
biological neurons [30]. A neuron i in the network is of the following general form:

τi ẏi = −yi +
N

∑
j=1

wjiσ(gj(yj + θj)) + Ii (7)

Appl. Sci. 2021, 11, 1994 7 of 25

where yi is the state of the ith neuron, τi is the neuron’s time constant, wji is the weight of
the connection from the jth to ith neuron, θi is a bias term, gi is a gain term, Ii is an external
input, and σ(x) = 1/(1 + exp(−x)) is the standard logistic output function.

The weights were randomly initialized. By considering the study of the parameter
space structure of the CTRNN by [31], the values of the θs were set based on the weights
in a way that the richest possible dynamics were achieved. We used 11 nodes where two
nodes received the sensor inputs and one node was used as the output node determining
the direction of the movement (right/left).

4.3. Hand-Coded Artificial Neural Network

In order to make sure that the topology of our evolved neural networks is sufficient
for solving the problem, we designed hand-coded neural network solutions that are based
on the same topology as at least one of the networks described above (ANN or CTRNN).

For the activation function, we used Equation (6), as before. Figure 4 shows two
examples of hand-coded neural networks. The first example is topologically consistent
with the CTRNN defined in the previous subsection. The second example is topologically
consistent with both the ANN and CTRNN defined in the previous subsections. That
means, in principle, it is possible for an evolutionary algorithm to evolve this problem from
a population of the above ANNs or CTRNNs.

(a) Hand-coded ANN (first example) (b) Hand-coded ANN (second example)

Figure 4. Schematic drawing of two example hand-coded ANN solutions.

To design the hand-coded networks, we followed a logic based on subnetworks for
various subtasks. In Figure 4a, an uphill and a downhill walk subnetwork and a switch
subnetwork are designed. The switch keeps the current state of the controller, and when
the inputs pass the thresholds, it switches to the other state. Finally, in the last subnetwork,
the information from the switch is used to choose between uphill and downhill walk.
Figure 4b has a slightly different design where the output of the switch and an uphill walk
subnetwork are combined by using a logical XOR subnetwork. The number of the nodes in
both networks is the same; however, the number of weights used in the second example
is lower.

The behaviors of an agent controlled by both networks are the same. The behaviors
in two different environments are demonstrated in Figure 5b,c. Figure 5b shows the
behavior when the quality of the environment is increasing from left to right. Figure 5c
shows the behavior when the quality of the environment is decreasing (the quality of the
environments is represented in gray-scale).

Appl. Sci. 2021, 11, 1994 8 of 25

space

ti
m
e

space

ti
m
e

(a) Schematic drawing of the (b) Example hand-coded ANN, (c) Example hand-coded ANN,
hand-coded ANN Environmental Setting 1 Environmental Setting 2

space

ti
m
e

space

ti
m
e

(d) Schematic drawing of the (e) Evolved ANN, (f) Evolved ANN,
evolved hand-coded ANN Environmental Setting 1 Environmental Setting 2

Figure 5. An example hand-coded ANN with sub-optimal fitness (a) is evolved to reach an ANN with the maximum
fitness (d).

In the next step, we allowed evolution to optimize the weights of the second hand-
coded network. For that, we made a population of ANNs with the topology described in
Section 4.1. The connection weights of the population were initialized with the weights
of the second hand-coded network. The non-existing weights in the hand-coded network
were set to zero in the population. The evolutionary algorithm was then allowed to change
the weights including the ones with zero value. The details of the evolutionary algorithm
and the results are described in Section 5.

4.4. What Do We Expect to See as a Solution to the Wankelmut Task?

Although the task might seem to be solved in a straight forward way, a number of
different strategies can be taken by an optimal controller. Notice also that we tested our
agents in two types of environments: one environment with the maximum at the left-hand
side and another environment with the maximum at the right-hand side.

An intuitive solution is a controller that can go uphill or downhill along the gradient
with a 1 bit internal memory for determining the current required movement strategy

Appl. Sci. 2021, 11, 1994 9 of 25

(uphill or downhill). The internal memory switches its state when the sensor values reach
the extremes (defined thresholds). The initial state of the memory should indicate the uphill
movement. Hence, a controller requires only this 1 bit internal memory. The comparison
between the instant values of the sensors then determines the actual direction of the
movement in each step. We would consider such a solution as a “correct” solution, as it
basically resembles the pseudo-code given in Figure 2. We assume that our chosen topology
of the ANNs allows in principle to evolve the required behavior based on one internal
binary state variable. Our simple ANN was a recurrent network and had two hidden layers
with three nodes each. These two hidden layers should have provided enough options
to evolve an independent (modular) uphill and downhill controller in combination with
a 1 bit memory and an action selection mechanism. Similarly, for the CTRNN approach,
we have nine neurons, and any topology between them was allowed.

Another solution to solve the task can be done in the following way: The controller
starts by deciding about the initial direction of the agent’s movement to the right or left
depending on the initial sensor value. Following this, it continues a blind movement
(i.e., not considering the directional information of the sensor inputs) until extreme sensor
values are perceived and then switches the direction of the agent. Here also, an internal
1 bit state variable is required to keep the direction of the agent’s movement.

There is even another solution possible. As our environment does not change in
size, the controller does not even need to consider the sensor values at any time except
the first time step: In this strategy, the robot has to initially classify the environment,
and then, the remaining task can be completed correctly by choosing one of two “pre-
programmed” trajectories. In this solution, the sensor information is only used at the
first time step, but then, a more complicated memory (more than 1 bit) is needed to
maintain the oscillatory movement between the two extremes. This is not a maximally
reactive solution meaning that it partially replaces reactivity to sensor inputs with other
mechanisms; i.e., using extra memory and pre-programmed behaviors. Such a solution
would not work in the way we expect it to work in other environments (e.g., changed size
of the gradient). Such a controller might achieve the optimal fitness in our evolutionary
runs, but a post-hoc test in a slightly different environment would identify that it generates
sub-optimal behavior. Thus, it does not represent a valid solution for the Wankelmut
task. A post-hoc test that detects such a solution could be done by changing the size or
the steepness of the environmental gradient or by using a Gaussian function (bell curve)
instead of the Gauss error function (erf) with randomized starting positions: in this case,
the agent should oscillate only in the left or in the right half of the environment, depending
on its starting position, to implement a true reactive solution to the Wankelmut task.

Other solution strategies can also concern the switching condition, for example the
switching may occur based on the extreme values of the sensors (defined thresholds),
the difference between the two sensor values, or the fact that at the boundaries of the arena,
the sensor values may not change even if the agent attempts to keep moving in the same
direction, as we do not allow the agent to leave the arena.

Here, we are interested in controllers that are maximally reactive, meaning that they
base their behaviors on reacting to sensor values instead of scheduling pre-programmed
trajectories. The usage of memory in such controllers is minimized since memory is
replaced by reactivity to sensors wherever possible. In our case, a valid controller is
expected to need a sort of 1 bit memory (which is not replaceable by reactivity to sensors) to
keep track of the direction of its movement. Solutions that use extra memory for scheduling
their pre-programmed trajectories are considered invalid.

We are aware that the “creativity” of evolutionary computation cuts both ways. It
can surprise the experimenter with the exploitation of Non-Adaptive Undesired Simple
Solutions (NAUSSs) where it manages to maximize its fitness reward without producing
the desired agent behavior, in a way that was initially not foreseen [32]. Often, such a
tendency can be a cause for trouble when applying evolutionary computation methods in
simulators in order to evolve robot control software. Such an approach is often chosen due

Appl. Sci. 2021, 11, 1994 10 of 25

to a lack of hardware or due to the fact that it allows much higher generation and population
numbers than real-world empirical experiments with robots. However, such simulators
have a so-called “reality gap” [5,33] (e.g., simplified simulation of physics). The tendency
of evolutionary computation to find simple-to-exploit solutions often detects features to
produce well-performing desired behavioral control software in the simulation that do
not perform in a similar way when the software is then executed on the real physically
embodied robotic agent(s). Considering this, we designed the Wankelmut task in a way
that such tricks would fail to perform well in the benchmark by setting the objective of
the evolution towards adaptive behavior with respect to extrinsic environmental cues and
with respect to intrinsic agent goals in dynamic combinations of each other. Only if the
robot shows a behavior that satisfies its intrinsic goals in various static or in a dynamic
environments can it achieve a high fitness value. There is no physics emulation involved in
the simulator, in order to avoid the exploitation of numerical artifacts; thus, there has to be
the evolution of an appropriate high-level behavioral control software in order to succeed
in our Wankelmut benchmark. Post-hoc, low-performing software controllers produced by
evolutionary computation are often considered to be a consequence of bad fitness function
design [7]. Therefore, we define several fitness functions and tested two software control
techniques (ANN and CTRNN) using each fitness function in 30 evolutionary runs per
setting, as is described in the following Quantitative Analysis Section.

5. Quantitative Analysis
5.1. Fitness Evaluation

In the experiments reported here, we used different fitness regimes based on the
number of correct switches and the positioning of the agents. In order to define the
different fitness regimes, three types of rewards are considered:

• Rewarding for switch: rewarding +1 point for every correct switch: Rswitch = n,
where n is the number of correct switches over the whole period of the experiment.

• Cumulative rewarding for positions: rewarding based on the state and the environ-
mental quality of the positions of the agent accumulated over the whole period of
the experiment:
Rcum = ∑T

t=0 quality[P(t)]× state. That means that an agent in uphill mode (state = 1)
is rewarded the current environmental quality of its position and an agent in downhill
mode (state = −1) is rewarded the current quality multiplied by −1. As a conse-
quence, agents in uphill mode are rewarded positively for locating themselves in
high-quality regions and agents in the downhill model for locating themselves in
low-quality regions.

• Instant rewarding for final position: rewarding based on the state and the environ-
mental quality of the final position of the agent: Rins = quality[P(T)]× state, where T
is the period of the experiment. In this case, the reward is given for the final position
of the agent. The exact value of the reward depends on the final state of the agent,
but in any case, a higher reward is given if the agent is closer to the next correct switch.
That means, if the agent is in the uphill mode, a higher reward is given if it is higher
up the hill, and if it is in the downhill mode, a higher reward is given if it is further
down the hill.

By giving different weights to the three types of rewards, the fitness function is defined
as follows:

F(wn, wcum, wins) = wswitch × Rswitch + wcum × Rcum + wins × Rins (8)

where wswitch, wcum, and wins are the parameters of the fitness function representing the
weights for every type of reward.

In this study, the following fitness regimes are investigated:

1. Switch: F(1, 0, 0), rewarding only for correct switches.
2. Cumulative: F(0, 1, 0), only cumulative rewarding for positions.

Appl. Sci. 2021, 11, 1994 11 of 25

3. Instant + Switch: F(100, 0, 0.01), rewarding for correct switches, as well as instant
rewarding for the final position.

4. Cumulative + Switch: F(100, 0.01, 0), rewarding for correct switches, as well as cumula-
tive rewarding for positions over the whole period.

5.2. Evolving Solutions with Non-Pre-Structured Neural Networks in Various Scenarios

In the following, we use a number of evolutionary setups (scenarios) and investigate
the resulting controllers achieved by evolution in each setup. Two different controller types,
ANN and CTRNN, were used. In all the scenarios, every controller ran for 250 time steps
unless otherwise stated. Results were pooled from 30 independent runs for each scenario.

We used a simple genetic algorithm [25] with proportionate selection based on fitness
and elitism of one. The population size was set to 150, and we ran it for 300 generations.
The genome for the ANN consisted of 41 genes each encoding a connection weight between
the nodes. The weights were randomly initialized between (−0.5, 0.5). The genome in the
CTRNN consisted of 121 genes for the weights of the connections, 11 genes for the values
of θ, and 11 genes for the τ values of every node. The weights and τ values were randomly
initialized in the range of (−15, 15) and (0.9, 5.9), respectively. The values of the θs were set
based on the weights such that the richest possible dynamics was achieved, as described
in [31]. We did not use a recombination operator. In the ANN, the weights were mutated
with a rate of 0.3 where a random value in (−0.4, 0.4) was added to the weight. In the
CTRNN, the mutation rate was 0.1 for weights and a random θ and τ were mutated at
a time. The values were changed in the range of (−0.4, 0.4) for weights and θ and in the
range of (−0.1, 0.1) for τ. Table 1 summarizes the evolutionary parameters.

Table 1. Parameters used for the evolutionary algorithm. CTRNN, Continuous-Time Recurrent
Neural Network.

Parameter ANN Parameter CTRNN

Population size 150 Population size 150
Number of genes 41 Number of genes (weights) 121

Number of genes (θ) 11
Number of genes (τ) 11

Init. range (weight) (−0.5, 0.5) Init. range (weight) (−0.5, 0.5)
Init. range (τ) (0.9, 5.9)
Init. range (θ) as in [31]

Mutation rate 0.3 Mutation rate (weights) 0.1
Mutation rate (θ, τ) randomly, one at a time

5.2.1. Single Environment vs. Double Environment and Mean Fitness vs. Minimum Fitness

At first, we evaluated the performance of evolution in a fixed environment as is
depicted in Figure 1. We found that evolution could quickly converge to a sort of pre-
programmed trajectory (see Figure 6c,e) that achieved very high fitness (see Figure 6a,b),
but was non-reactive as it did not consider sensor inputs in the wanted way. A post-hoc
test of the best evolved genomes in a flipped environment, where the gradient pointed to
the other side, failed for both evolved controller types, clearly indicating that no reactive
Wankelmut behavior had evolved (see Figure 6d,f). The trajectories in both post-hoc runs
show some difference from the runs in the environment that was used in evolution, and
this indicates that some sensor input was affecting the behavior, but not in the desired way:
the agents still started off in the wrong direction, and also, the oscillations ceased after
some time.

Appl. Sci. 2021, 11, 1994 12 of 25

0 100 200 300
Generation

0

2

4

6

8

10

12

14

16

Fi
tn
es

s

0 100 200 300
Generation

0

2

4

6

8

10

12

14

16

Fit
ne

ss

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space

ti
m
e

(c) ANN, env.used (d) ANN, env. used (e) CTRNN, env. used (f) CTRNN, env.,
in evolution in post-hoc eval. in evolution post-hoc eval.

Figure 6. Single Environment, Switchfitness = F(1, 0, 0). Top row: fitness dynamics of the ANNs (left) and CTRNNs (right).
The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut controller, as it was achieved
by the simple hand-coded controller. Bottom row: trajectory of the best performing genome of each controller type in the
environment used in evolution versus a run in a flipped environment as a post-hoc evaluation (only the initial 56 time steps
of 250 time steps are shown).

As this approach did not yield the wanted reactive Wankelmut behavior, we decided
to evaluate each individual genome twice: One time, the gradient pointed uphill to the left,
and one time, it pointed uphill to the right side. The fitness function in all three scenarios
used the Switch fitness regime, which is described as fitness = F(1, 0, 0).

We evaluated two methods of associating a fitness value with each genome from
these two evaluations: first, we calculated the arithmetic mean value of both runs and,
as a second variant, we took the minimum value of both runs. As a consequence, a good
genome had to perform well in both environments; in the “minimum”-fitness function,
the selection was even harsher than in the “mean” variant. We found that the “minimum”
variant of selection showed a higher selection pressure on evolving the reactive control
(compare Figures 7 and 8): with the minimum fitness regime, the controllers found it harder
to gather high fitness values, as they had to perform well in both environments, preventing
evolution from “just considering one of the two environments”. We hoped that this would

Appl. Sci. 2021, 11, 1994 13 of 25

support the evolution of reactive control. As Figure 8c–f shows, it still did not produce the
desired reactive Wankelmut behavior in the long run. Based on these findings, we used
the double environment evaluation with a minimum-of-both-runs fitness function for all
further quantitative analysis in this study, in order to maximize the selection pressure
towards the reactivity of the evolved controller.

0 100 200 300
Generation

0

2

4

6

8

10

12

14

16

Fi
tn
es

s

0 100 200 300
Generation

0

2

4

6

8

10

12

14

16

Fit
ne

ss

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space

ti
m
e

(c) ANN, Env. Setting 1 (d) ANN, Env. Setting 2 (e) CTRNN, Env. Setting 1 (f) CTRNN, Env. Setting 2

Figure 7. Evolutionary results of the double environment setting, fitness regime Switch: fitness = F(1, 0, 0). The arithmetic
mean of both evaluations was used as the fitness value for a genome. Top row: fitness dynamics of the ANNs (left) and
CTRNNs (right). The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut controller,
as it was achieved by the simple hand-coded controller. Bottom row: trajectory of the best performing genome of both
controller types in both environments used in evolution (only the initial 56 time steps of 250 time steps are shown).

Appl. Sci. 2021, 11, 1994 14 of 25

0 100 200 300
Generation

0

2

4

6

8

10

12

14

16

Fi
tn
es

s

0 100 200 300
Generation

0

2

4

6

8

10

12

14

16

Fit
ne

ss

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space

ti
m
e

(c) ANN, Env. Setting 1 (d) ANN, Env. Setting 2 (e) CTRNN, Env. Setting 1 (f) CTRNN, Env. Setting 2

Figure 8. Evolutionary results of the double environment setting, fitness regime Switch: fitness = F(1, 0, 0). The minimum
of both evaluations was used as the fitness value for a genome. Top row: fitness dynamics of the ANNs (left) and CTRNNs
(right). The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut controller, as it was
achieved by the simple hand-coded controller. Bottom row: trajectory of the best performing genome of both controller
types in both environments used in evolution (only the initial 56 time steps of 250 time steps are shown).

5.2.2. Cumulative Fitness Regime

In another attempt to help the evolutionary algorithm develop good reactive con-
trollers, we decided to reward genomes purely with cumulative fitness. The idea behind
this was that every single step in the correct direction would be paying off in evolution.
We assumed that, on the one hand, bootstrapping problems of achieving early success
during evolution were minimized in this way. On the other hand, early developments
of appropriate, reactive turns of agents were rewarded even if they did not yet occur at
the correct positions according to an appropriate switching threshold. In this scenario,
the fitness was computed by the Cumulative fitness regime described as fitness = F(0, 1, 0).

We found that the idea of cumulative fitness for every step was exceptionally bad.
To our surprise, both controller types managed to even significantly outperform the hand-
coded “optimal” controller (see Figure 9a,b). Looking at the trajectories revealed that
the evolutionary algorithm had found the NAUSS to maximize this purely cumulative

Appl. Sci. 2021, 11, 1994 15 of 25

fitness function without evolving the desired task: the controllers approached the threshold
areas, thus gained the maximum reward without having to switch the behavior. They
kept this place for the rest of the run. Such undesired solutions were found by the evo-
lutionary process with both controller types, with the ANNs (see Figure 9c,d) and also
with CTRNNs (see Figure 9e,f) in a less effective way. In both cases, the agent actively
avoided behaving similar to the desired reactive Wankelmut controller by avoiding cross-
ing the threshold places. This way of maximizing the fitness function without improving
the agent’s behavioral quality is clearly a shortcoming in the fitness function design that
resulted in the evolutionary algorithm getting stuck in the local optimum by gaining re-
wards for a behavior that does not allow further complexification towards the desired final
behavioral program.

0 100 200 300
Generation

−200

−150

−100

−50

0

50

100

150

Fi
tn
es

s

0 100 200 300
Generation

−200

−150

−100

−50

0

50

100

150

Fit
ne

ss

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space
ti
m
e

(c) ANN, Env. Setting 1 (d) ANN, Env. Setting 2 (e) CTRNN, Env. Setting 1 (f) CTRNN, Env. Setting 2

Figure 9. Evolutionary results of the Cumulative fitness regime: fitness = F(0, 1, 0); the minimum of both evaluations was
used as the fitness value for each genome. Top row: fitness dynamics of the ANNs (left) and CTRNNs (right). The horizontal
orange line indicates the maximum fitness achievable by a reactive Wankelmut controller, as it was achieved by the simple
hand-coded controller. Bottom row: trajectory of the best performing genome of both controller types in both environments
used in evolution (only the initial 56 time steps of 250 time steps are shown).

Appl. Sci. 2021, 11, 1994 16 of 25

5.2.3. Instant + Switch Fitness Regime

In order to prevent the evolutionary computation from getting stuck due to being able
to exploit the NAUSS we discovered in the previous section, we again revised our fitness
function to the Instant + Switch reward setting: We again rewarded for every correct switch
the agent performed, and instead of a cumulative reward every time step, we rewarded
the final (one instant) position of the agent. This way, bootstrapping problems could also
be mediated as again movement in the right direction without reaching the threshold
place for switching the behavior would be rewarded, but it did not pay out to keep the
position just before triggering the switch. The fitness function used here can be described
as fitness = F(100, 0, 0.01).

The highest fitness values in this setting were achieved by the CTRNNs (see Figure 10b).
However, this was again achieved by just quickly zig-zagging across the world without
adaptively reacting to the environmental situation: the agents started off in the wrong
direction (see Figure 10e,f) in one environmental setting. Evolved ANNs did not at all
develop highly rewarded behaviors in this setting (see Figure 10a). However, the best ANN
genome evolved in principle parts of the desired behaviors for the first period of time: they
started off in both environments in the correct direction and executed the behavioral switch
one time, but never closed the cycle back again (see Figure 10c,d). Overall, the desired
reactive Wankelmut behavior was never fully evolved in either one of the controller types.

0 100 200 300
Generation

0

200

400

600

800

1000

1200

1400

1600

Fi
tn
es

s

0 100 200 300
Generation

0

200

400

600

800

1000

1200

1400

1600

Fit
ne

ss

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space

ti
m
e

(c) ANN, Env. Setting 1 (d) ANN, Env. Setting 2 (e) CTRNN, Env. Setting 1 (f) CTRNN, Env. Setting 2

Figure 10. Evolutionary results of the Instant + Switch fitness regime: fitness = F(100, 0, 0.01); the minimum of both
evaluations was used as the fitness value for each genome. Top row: fitness dynamics of the ANNs (left) and CTRNNs
(right). The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut controller, as it was
achieved by the simple hand-coded controller. Bottom row: trajectory of the best performing genome of both controller
types in both environments used in evolution (only the initial 56 time steps of 250 time steps are shown).

Appl. Sci. 2021, 11, 1994 17 of 25

5.2.4. Cumulative + Switch Fitness Regime

In a final attempt to achieve the desired behavior, we also tested the Cumulative +
Switch fitness regime where the controller was rewarded cumulatively for positioning of
the agent over time, as well as significant rewards for the correct switches were given.
The fitness function can be described as fitness = F(100, 0.01, 0).

Introducing the additional rewarding for correct switches prevented the evolutionary
algorithm from falling into local optima (NAUSS) as it did when it was only rewarded
cumulatively per step. The results were almost similar to the ones obtained from the
previous Instant + Switch regime: the CTRNNs did not evolve anything close to the
desired reactive Wankelmut behavior (see Figure 11), and the ANNs evolved again the
first switching of behaviors, but failed to evolve the switch back (see Figure 11c,d). The
CTRNNs achieved again a significant reward by oscillating in both environments in a
non-reactive oscillatory behavior (see Figure 11e,f), like they evolved already in most of
the other evolution regimes.

0 100 200 300
Generation

0

500

1000

1500

Fi
tn
es

s

0 100 200 300
Generation

0

200

400

600

800

1000

1200

1400

1600

Fit
ne

ss

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space

ti
m
e

(c) ANN, Env. Setting 1 (d) ANN, Env. Setting 2 (e) CTRNN, Env. Setting 1 (f) CTRNN, Env. Setting 2

Figure 11. Evolutionary results of the Cumulative + Switch fitness regime: fitness = F(100, 0.01, 0); the minimum of both
evaluations was used as the fitness value for each genome. Top row: fitness dynamics of the ANNs (left) and CTRNNs
(right). The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut controller, as it was
achieved by the simple hand-coded controller. Bottom row: trajectory of the best performing genome of both controller
types in both environments used in evolution (only the initial 56 time steps of 250 time steps are shown).

Appl. Sci. 2021, 11, 1994 18 of 25

In another attempt to enforce the reactivity of the evolved controller and considering
the evolved solutions shown above, we tried to push the evolution towards more reactivity
of the controllers. Thus, the evolutionary experiment was repeated with only 56 time steps
per evaluation (see Figure 12). Again, the CTRNNs evolved a higher fitness (Figure 12b)
than the ANNs (Figure 12a). However, this was still achieved with non-reactive fast
oscillations (see Figure 12e,f). The ANNs evolved into a behavior that oscillated in one
environment although starting in the wrong direction initially (see Figure 12c. In the second
environment, the best agent progressed very slowly towards the threshold place, and no
switch back was observed there Figure 12d).

0 100 200 300
Generation

0

50

100

150

200

250

300

350

400

Fi
tn
es

s

0 100 200 300
Generation

0

50

100

150

200

250

300

350

400

Fi
tn
es

s

(a) ANN, fitness (b) CTRNN, fitness
space

ti
m
e

space

ti
m
e

space

ti
m
e

space

ti
m
e

(c) ANN, Env. Setting 1 (d) ANN, Env. Setting 2 (e) CTRNN, Env. Setting 1 (f) CTRNN, Env. Setting 2

Figure 12. Evolutionary results of short evaluations with only 56 time steps, the Cumulative + Switch fitness regime:
fitness = F(100, 0.01, 0); the minimum of both evaluations was used as the fitness value for each genome. Top row: fitness
dynamics of the ANNs (left) and CTRNNs (right). The horizontal orange line indicates the maximum fitness achievable by
a reactive Wankelmut controller, as it was achieved by the simple hand-coded controller. Bottom row: trajectory of the best
performing genome of both controller types in both environments used in evolution (all 56 time steps are shown).

The resulting controllers were also tested in a post-evaluation to check for reactive
behaviors. This was done with a different environment that had maximum quality in the
middle and two minima, one at the left end and one at the right end. Agents were tested in
two evaluations with one initially positioning the robot at the left end and the second one

Appl. Sci. 2021, 11, 1994 19 of 25

with initially positioning the robot at the right end. While some controllers managed to
operate reasonably in one of the two evaluations (oscillating between the initial position
and the middle place), none of them did so for both starting places. Hence, we concluded
that also in this experiment, we did not see the correct controller that solved the Wankelmut
task in a reactive way.

5.3. Evolving a Pre-Structured Hand-Coded Network

One of the hand-coded ANNs along with its behavior in the two environments is
represented in Figure 5a–c. Although the agent is reactive and switches after passing
the thresholds on each side, the behavior is not optimal. The agent exhibits a delay in
switching when it passes the thresholds in the environment represented in Figure 5c. In an
attempt to get closer to the known perfect behavior, we initialized an ANN described in
Section 4.1 with the weights of a hand-coded ANN and then used each of the described
fitness functions to further evolve the network. We performed this form of post-hoc
evolution process with all four fitness functions described above. When using the Switch
fitness function, the evolutionary process developed an ANN that showed near-optimal
adaptive behavior (see Figure 13), as it was also found to evolve when using both the
Cumulative + Switch fitness function (Figure 14) and the Instant + Switch fitness function
(Figure 15). However, when applying the Cumulative fitness function, an ANN evolved
with a non-reactive and non-adaptive NAUSS behavior (Figure 16). Figure 5d–f shows the
best evolved network, including the weights, as well as the behaviors of the agent that was
governed by this network and its set of weights in both tested environments. As seen in
these figures, the evolutionary process flattened the ANN by adding values to additional
links between nodes and layers. As a consequence, this evolved ANN demonstrated the
optimal behavior.

0 100 200 300 400 500 600 700 800 900 1000
Generation

0

2

4

6

8

10

12

14

16

Fi
tn
es

s

space

ti
m
e

space

ti
m
e

(a) fitness dynamics (b) Setting 1 (c) Setting 2

Figure 13. Evolutionary results of the Switch fitness regime starting with the hand-coded ANN (Figure 5a): fitness =

F(1, 0, 0); the minimum of both evaluations was used as the fitness value for each genome. (a) Fitness dynamics of the
evolutionary population. The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut
controller. (b,c) Trajectory of the best performing genome in both environmental settings.

Appl. Sci. 2021, 11, 1994 20 of 25

0 100 200 300 400 500 600 700 800 900 1000
Generation

0

200

400

600

800

1000

1200

1400

1600

Fi
tn
es

s

space

ti
m
e

space

ti
m
e

(a) fitness dynamics (b) Setting 1 (c) Setting 2

Figure 14. Evolutionary results of the Cumulative + Switch fitness regime starting with the hand-coded ANN (Figure 5a):
fitness = F(100, 0.01, 0); the minimum of both evaluations was used as the fitness value for each genome. (a) Fitness
dynamics of the evolutionary population. The horizontal orange line indicates the maximum fitness achievable by a reactive
Wankelmut controller. (b,c) Trajectory of the best performing genome in both environmental settings.

0 100 200 300 400 500 600 700 800 900 1000
Generation

0

200

400

600

800

1000

1200

1400

1600

Fi
tn
es

s

space

ti
m
e

space
ti
m
e

(a) Fitness dynamics (b) Setting 1 (c) Setting 2

Figure 15. Evolutionary results of the Instant + Switch fitness regime starting with the hand-coded ANN (Figure 5a):
fitness = F(100, 0, 0.01); the minimum of both evaluations was used as the fitness value for each genome. (a) Fitness
dynamics of the evolutionary population. The horizontal orange line indicates the maximum fitness achievable by a reactive
Wankelmut controller. (b,c) Trajectory of the best performing genome in both environmental settings.

Appl. Sci. 2021, 11, 1994 21 of 25

0 100 200 300 400 500 600 700 800 900 1000
Generation

0

50

100

150

200

Fi
tn
es

s

space

ti
m
e

space

ti
m
e

(a) fitness dynamics (b) Setting 1 (c) Setting 2

Figure 16. Evolutionary results of the Cumulative fitness regime starting with the hand-coded ANN (Figure 5a): fitness =

F(0, 0.01, 0); the minimum of both evaluations was used as the fitness value for each genome. (a) Fitness dynamics of the
evolutionary population. The horizontal orange line indicates the maximum fitness achievable by a reactive Wankelmut
controller. (b,c) Trajectory of the best performing genome in both environmental settings.

5.4. Summarizing Our Experimental Results

In total, we studied 20 different evolutionary settings with different combinations
of the computational substrate that the evolutionary process could shape, of the used
fitness function, and of the agent’s environment. Figure 3 shows the results of the different
experimental tracks and their final outcomes.

6. Discussion and Conclusions

We propose the Wankelmut task, which is a very simple task. Compared to the
classification scheme of Braitenberg [24], an agent that solves the Wankelmut task would
be placed between Vehicle #4 and Vehicle #5 concerning the complexity of its behavior.
Given that it operates in a one-dimensional space introduces a relation to Vehicle #1. In the
Wankelmut task, we evolve a controller that switches between two alternative conflicting
tasks. Yet, there is no prioritizing between the two subtasks, and therefore, it is not a
subsumption architecture. It also does not repeatedly alternate between two subtasks since
the switching between the two tasks is based on the environmental clues. The simplicity
of the pseudo-code shown in Figure 2 clearly demonstrates the simplicity of the required
controller that implements an optimal, flexible, and reactive Wankelmut agent.

Our results indicate that plain-vanilla evolving ANNs easily can evolve the reactive
uphill walk (see Figure 6c). However, switching to the opposite behavior (downhill motion)
and then flipping back was not found by any of our approaches, regardless of what fitness
regime we used and regardless of which neuronal architecture we used as a substrate for the
evolutionary process (ANN or CTRNN). In all tested fitness regimes, the desired behavior
did not evolve. In one of these fitness regimes (Cumulative regime), evolution found
a “heap trick” to maximize the fitness with a surprising behavior; however, the desired
reactive Wankelmut behavior did not evolve there.

In order to prove that the task is solvable by the encoding that we used here, we de-
signed two hand-coded ANNs to solve the task. However, the hand-coded networks

Appl. Sci. 2021, 11, 1994 22 of 25

demonstrated a behavior that was quite good, but not optimal. To further improve this,
we then evolved one of the hand-coded ANNs and achieved the optimal behavior showing
that the encoding covers the solution and the evolution can evolve the behavior when it is
searching in the vicinity of the solution (Figure 5).

In summary, Wankelmut is an easy-to-implement benchmark task that can be solved
by two simple hand-coded lines of code (see Figure 2). Despite its simplicity, it was
found to be a hard task for evolutionary algorithms to solve, as all our evolutionary
trajectories without access to a priori information about how to solve the task failed to
achieve the desired adaptive behaviors. To investigate the role of modularity in this
process, we created pre-structured neural networks, where the weights were initialized
to provide an appropriate adaptive, but still suboptimal solution, and allowed to be
optimized by the evolutionary process, as shown in Figure 3. These experiments yielded
sub-optimal, but reactive behavioral controllers that produced a correct Wankelmut-like
behavior, thus indicating a step forward concerning evolvability. By further hand-tuning
of these evolved networks, we were able to implement an improvement that resulted in
optimal adaptive behaviors, demonstrating that the offered computational substrate was
capable of producing the desired behavior.

When looking at Figure 3, it becomes clear that only the hand-coded controller de-
picted in Figure 2 showed the desired Wankelmut behavior, as did also the hand-coded
and pre-structured ANNs in an almost similar way. From all evolutionary runs that we
performed, only those showed a close-to-optimal Wankelmut behavior that started the
evolutionary process already with a pre-structured network and that then evolved this
structure further with an appropriate fitness function (Switch, Instant + Switch, or Cumu-
lative + Switch).This stresses, on the one hand, the simplicity of computational structures
that are required to fulfill the task and the need of having the evolutionary computation
already informed about the path towards the solution, which is a structure consisting of
three interconnected modules: two for each of the antagonistic behaviors and one as a
higher order regulatory element that negotiates between those two other modules.

Based on these observations, we come to the interpretation that a pre-defined suitable
modularity of the network helps, but is not sufficient for optimal results. A method to
achieve optimal results needs to either have the required modules available from the begin-
ning and then ensure that this modularity is used beneficially in the evolutionary process
or, even more desired, be able to create the needed modularity during the evolutionary
process by itself. We designed the Wankelmut task on purpose to consist of two opposing
behaviors (uphill and downhill walk) that cannot be performed at the same time in order
to generate a hard-to-learn task. Neural structures that are beneficial to create downhill
behavior cannot be easily converted into structures that produce uphill behavior without
“destroying” the previously learned network functionality, if there is no other higher level
of control preventing it (cf. catastrophic forgetting [34]). Thus, in order to evolve a com-
bination of both, it would require a specific evolutionary framework that is designed to
generate functional modules, to store (freeze) useful modules and then to combine them
with more complex behaviors like the Wankelmut task. However, such a functionality was
not found to evolve from scratch by itself in our system in an emergent way.

Given that the hand-coded solution is simple, a tree-based approach with exhaustive
search or a Genetic Programming (GP) approach [35] is expected to be able to find the de-
sired behavior. However, we would expect also here to hit the same “wall of complexity”, as
controllers that require a bit more complexity overwhelm the exhaustive tree-search, while
the existing local optima, that already fooled the ANN + Evoapproach and the CTRNN +
Evo approach, will also fool the stochastic GP search in a similar way. This remains to be
tested in future experiments.

We point out that the target of evolving controllers for the Wankelmut task from
scratch requires evolving a behavioral switch. However, the evolution of such a switch
represents a chicken-egg problem. The switch is useless without the two motion modules

Appl. Sci. 2021, 11, 1994 23 of 25

(subnets) for uphill and downhill motion, while those sub-modules are useless without
the switch.

In addition, we want to point out the fact that a similar behavior could be exerted
by just switching the environment in an oscillatory way. This is not the same as our
envisioned Wankelmut behavior, as our behavior intrinsically switches its behavioral
pattern in reaction to a stable environment. Therefore, it is intrinsic dynamics exhibited
in a global stable environment and not a fixed (stable) behavioral pattern in a globally
dynamic environment.

The Wankelmut task might also prove to be an interesting benchmark for more
sophisticated methods that push towards modularization. Examples are artificial epigenetic
networks as reported by Turner et al. [36]: they used the coupled inverted pendulums
benchmark [37], which requires the concurrent evolution of several behaviors similar to the
Wankelmut task. However, the control of coupled inverted pendulums is more complex
than the simple world of Wankelmut. Other methods alternate between different tasks on
evolutionary time-scales [21], and there are methods that, in addition, also impose costs on
connections between nodes in neural networks [22]. Other interesting approaches either
pre-determine or push towards modularity [18]. The approach of HyperNEAT was tested
for its capability to generate modular networks with a negative result in the sense that
modularity was not automatically generated [38]. Bongard [39] reported modularity by
imposing different selection pressures on different parts of the network.

In fact, we propose here two challenges for the scientific community at once:

1. The first challenge is to find the most simple uninformed evolutionary computation
algorithm that can solve the Wankelmut task presented here. Then, the community
can search for the next simple task that is shown to be unsolvable for this new
algorithm. This will yield iterative progress in the field.

2. The Wankelmut task is the simplest task found so far (concerning required mem-
ory size, number of modules, dimensionality of the world it operates in, etc.). Still,
there might be even simpler tasks that already break plain-vanilla uninformed evo-
lutionary computation, so we also pose the challenge to search for such simpler
benchmark tasks.

It should be noted that there is no evidence that such walls of complexity are consistent
in a way that breaking one wall may cause a new wall at a different position. This is quite
similar to the reasoning behind the “no free lunch” theorem. Theoretically, an optimization
algorithm cannot be optimal for all tasks. However, neither natural nor artificial evolution
achieve in general optimal solutions. Instead, especially natural evolution has proven to
be a great heuristic for which the walls might be fixed in a certain place but, definitely
far away from the wall for state-of-the-art artificial evolution. Hence, we should try to
search for that one heuristic that allows us to push all walls of many different tasks as far
as possible forward (while still accepting the implications of no free lunch).

We think that either dismissing all pre-informed methods or finding minimally pre-
informed methods to solve the Wankelmut task is important. Natural evolution has
produced billions of billions of reactive and adaptive behaviors of organisms much more
complex than the Wankelmut task, and it has achieved this without any information that
promoted self-complexification and self-modularization. In contrast, the evolutionary
process started from scratch and developed all of that due to evolution-intrinsic forces.
We think that this can be a lesson for evolutionary computation: studying how an unin-
formed process that is neither pre-fabricated towards complexification or modularization
and that is not specifically rewarded for complexification or modularization can still yield
complex solutions. Nature has shown this, and evolutionary computation and biologists
together should find out how this was achieved. Perhaps, this would then not be “evo-
lutionary computation’ anymore, but rather “artificial evolution”, a real valid, yet still
simple model of natural evolution. This might be achieved by incorporating the princi-
ples of biological growth, for example the mechanisms of Evolutionary Developmental
biology, “EvoDevo” [40], which might be the path to evolve future in silico neuromorphic

Appl. Sci. 2021, 11, 1994 24 of 25

computation systems [41] and virtual brains [42] via embryogenetic or morphogenetic
algorithms [43] that can develop the required capabilities of self-modularization and self-
complexification, in order to break through the walls of complexity that we discovered.

Author Contributions: T.S., P.Z. and H.H. contributed to the writing of the paper in equal parts. T.S.
had the initial idea of the study problem, defined the main problem statement, programmed the
initial cellular simulator used in this study, and produced the schematic drawings (Figures 1 and 2).
P.Z. programmed the CTRNN code, hand-coded the ANNs, parts of the analysis scripts, and the
scripts for the box plots. H.H. programmed the ANN code and the evolutionary code, parts of the
analysis scripts, and the “asymptote” script used to produce the trajectory figures. The numerical
analysis and interpretation of the results was a joint effort of all authors. All authors read and agreed
to the published version of the manuscript.

Funding: T.S. was supported by the EU FP7-FET PROACTIVE Grant #601074 (ASSISIb f), the EU
H2020 Grant #824069 (HIVEOPOLIS), and by the Field of Excellence COLIBRI (Complexity of Life in
basic Research and Innovation) at the University of Graz. P.Z. and H.H. were supported by the EU
H2020-FET PROACTIVE Grant #640959 (flora robotica).

Data Availability Statement: The data and code presented in this study are available on request
from the corresponding author. The data and code are not publicly available as we want to facilitate
immediate guidance on use and apprehension once requested.

Acknowledgments: We thank Jürgen Stradner for his early investigations of the problem (data not
used here) and Ronald Thenius for his input about artificial neural networks.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
2. Bongard, J.C. Evolutionary robotics. Commun. ACM 2013, 56, 74–83. [CrossRef]
3. Prokopenko, M. Grand challenges for Computational Intelligence. Front. Robot. AI 2014, 1. [CrossRef]
4. Eiben, A.E.; Smith, J. From evolutionary computation to the evolution of things. Nature 2015, 521, 476–482. [CrossRef] [PubMed]
5. Jakobi, N.; Husbands, P.; Harvey, I. Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics. In Proceedings of

the Third European Conference on Advances in Artificial Life; Springer: Berlin/Heidelberg, Germany, 1995; Volume 929, pp. 704–720.
6. Nolfi, S.; Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines; MIT Press:

Cambridge, MA, USA, 2000.
7. Nelson, A.L.; Barlow, G.J.; Doitsidis, L. Fitness functions in evolutionary robotics: A survey and analysis. Robot. Auton. Syst.

2009, 57, 345–370. [CrossRef]
8. Silva, F.; Duarte, M.; Correia, L.; Oliveira, S.M.; Christensen, A.L. Open Issues in Evolutionary Robotics. Evol. Comput. 2016,

24, 205–236. [CrossRef] [PubMed]
9. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. Evol. Comput. IEEE Trans. 1997, 1, 67–82. [CrossRef]
10. Marocco, D.; Nolfi, S. Origins of Communication in Evolving Robots. In From Animals to Animats 9: Proceedings of the Eighth

International Conference on Simulation of Adaptive Behavior; LNCS; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4095,
pp. 789–803.

11. Sims, K. Evolving 3D Morphology and Behavior by Competition. In Artificial Life IV; Brooks, R., Maes, P., Eds.; MIT Press:
Cambridge, MA, USA, 1994; pp. 28–39.

12. Clune, J.; Beckmann, B.E.; Ofria, C.; Pennock, R.T. Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative
Encoding. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), Trondheim, Norway, 18–21 May 2009;
pp. 2764–2771.

13. Zahadat, P.; Christensen, D.; Katebi, S.; Stoy, K. Sensor-coupled Fractal Gene Regulatory Networks for Locomotion Control of a
Modular Snake Robot. In Distributed Autonomous Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 517–530.

14. Hamann, H.; Stradner, J.; Schmickl, T.; Crailsheim, K. A Hormone-Based Controller for Evolutionary Multi-Modular Robotics:
From Single Modules to Gait Learning. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’10), Barcelona,
Spain, 18–23 July 2010; pp. 244–251.

15. Zahadat, P.; Schmickl, T.; Crailsheim, K. Evolving Reactive Controller for a Modular Robot: Benefits of the Property of State-
Switching in Fractal Gene Regulatory Networks. In From Animals to Animats 12; Lecture Notes in Computer Science; Ziemke, T.,
Balkenius, C., Hallam, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7426, pp. 209–218. [CrossRef]

16. Floreano, D.; Keller, L. Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection. PLoS Biol. 2010, 8, e1000292.
[CrossRef] [PubMed]

17. Lipson, H. Principles of modularity, regularity, and hierarchy for scalable systems. In Proceedings of the GECCO Workshop on
Modularity, Regularity, and Hierarchy in Evolutionary Computation, Seattle, WA, USA, 26–30 June 2004; pp. 125–128.

http://doi.org/10.1145/2493883
http://dx.doi.org/10.3389/frobt.2014.00002
http://dx.doi.org/10.1038/nature14544
http://www.ncbi.nlm.nih.gov/pubmed/26017447
http://dx.doi.org/10.1016/j.robot.2008.09.009
http://dx.doi.org/10.1162/EVCO_a_00172
http://www.ncbi.nlm.nih.gov/pubmed/26581015
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/978-3-642-33093-3_21
http://dx.doi.org/10.1371/journal.pbio.1000292
http://www.ncbi.nlm.nih.gov/pubmed/20126252

Appl. Sci. 2021, 11, 1994 25 of 25

18. Nolfi, S. Using Emergent Modularity to Develop Control Systems for Mobile Robots. Adapt. Behav. 1996, 5, 343–363. [CrossRef]
19. Urzelai, J.; Floreano, D.; Dorigo, M.; Colombetti, M. Incremental Robot Shaping. Connect. Sci. 1998, 10, 341–360. [CrossRef]
20. Duro, R.J.; Becerra, J.A.; Santos, J. Behavior reuse and virtual sensors in the evolution of complex behavior architectures. Theory

Biosci. 2001, 120, 188–206. [CrossRef]
21. Kashtan, N.; Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. USA 2005, 102, 13773–13778.

[CrossRef] [PubMed]
22. Clune, J.; Mouret, J.B.; Lipson, H. The evolutionary origins of modularity. Proc. R. Soc. B 2013, 280, 20122863. [CrossRef] [PubMed]
23. Shallice, T. From Neuropsychology to Mental Structure; Cambridge University Press: Cambridge, UK, 1988.
24. Braitenberg, V. Vehicles: Experiments in Synthetic Psychology; MIT Press: Cambridge, MA, USA, 1984.
25. Holland, J.H. Adaptation in Natural and Artificial Systems; Univ. Michigan Press: Ann Arbor, MI, USA, 1975.
26. Rechenberg, I. Evolutionsstrategie. Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution; Frommann Holzboog:

Stuttgart, Germany 1973.
27. Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859.
28. Seeley, T.D. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies; Havard University Press: Cambridge, MA, USA;

London, UK, 1995.
29. Camazine, S.; Deneubourg, J.L.; Franks, N.R.; Sneyd, J.; Theraulaz, G.; Bonabeau, E. Self-Organizing Biological Systems; Princeton

Univ. Press: Princeton, NJ, USA, 2001.
30. Funahashi, K.I.; Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw.

1993, 6, 801–806. [CrossRef]
31. Beer, R.D. Parameter space structure of continuous-time recurrent neural networks. Neural Comput. 2006, 18, 3009–3051. [CrossRef]

[PubMed]
32. Lehman, J.; Clune, J.; Misevic, D.; Adami, C.; Altenberg, L.; Beaulieu, J.; Bentley, P.J.; Bernard, S.; Beslon, G.; Bryson, D.M.; et al.

The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life
Research Communities. arXiv 2019, arXiv:1803.03453.

33. Koos, S.; Mouret, J.B.; Doncieux, S. Crossing the Reality Gap in Evolutionary Robotics by Promoting Transferable Controllers.
In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10, Portland, OR, USA,
7–11 July 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 119–126. [CrossRef]

34. French, R.M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 1999, 3, 128–135. [CrossRef]
35. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA,

USA, 1992.
36. Turner, A.P.; Caves, L.S.D.; Stepney, S.; Tyrrell, A.M.; Lones, M.A. Artificial Epigenetic Networks: Automatic Decomposition

of Dynamical Control Tasks Using Topological Self-Modification. IEEE Trans. Neural Networks Learn. Syst. 2016. [CrossRef]
[PubMed]

37. Hamann, H.; Schmickl, T.; Crailsheim, K. Coupled inverted pendulums: A benchmark for evolving decentral controllers in
modular robotics. In Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Dublin,
Ireland, 12–16 July 2011; Krasnogor, N., Lanzi, P.L., Eds.; ACM: New York, NY, USA, 2011; pp. 195–202.

38. Clune, J.; Beckmann, B.E.; McKinley, P.K.; Ofria, C. Investigating whether hyperNEAT produces modular neural networks.
In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Portland, OR, USA, 7–11 July 2010;
pp. 635–642.

39. Bongard, J.C. Spontaneous evolution of structural modularity in robot neural network controllers: Artificial life/robotics/evolvable
hardware. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, Dublin,
Ireland, 12–16 July 2011; ACM: New York, NY, USA, 2011; pp. 251–258.

40. Carroll, S.B. Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom; Number 54;
WW Norton & Company: New York, NY, USA, 2005.

41. Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.; McKinstry, J.L.; Melano, T.;
Barch, D.R.; et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. USA 2016,
113, 11441–11446. [CrossRef] [PubMed]

42. Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-Inspired Artificial Intelligence. Neuron 2017, 95, 245–258.
[CrossRef] [PubMed]

43. Doursat, R.; Sayama, H.; Michel, O. A review of morphogenetic engineering. Nat. Comput. 2013, 12, 517–535. [CrossRef]

http://dx.doi.org/10.1177/105971239700500306
http://dx.doi.org/10.1080/095400998116486
http://dx.doi.org/10.1078/1431-7613-00040
http://dx.doi.org/10.1073/pnas.0503610102
http://www.ncbi.nlm.nih.gov/pubmed/16174729
http://dx.doi.org/10.1098/rspb.2012.2863
http://www.ncbi.nlm.nih.gov/pubmed/23363632
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1162/neco.2006.18.12.3009
http://www.ncbi.nlm.nih.gov/pubmed/17052157
http://dx.doi.org/10.1145/1830483.1830505
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.1109/TNNLS.2015.2497142
http://www.ncbi.nlm.nih.gov/pubmed/26742145
http://dx.doi.org/10.1073/pnas.1604850113
http://www.ncbi.nlm.nih.gov/pubmed/27651489
http://dx.doi.org/10.1016/j.neuron.2017.06.011
http://www.ncbi.nlm.nih.gov/pubmed/28728020
http://dx.doi.org/10.1007/s11047-013-9398-1

	Introduction
	Our Benchmark Task
	Known Solutions
	Evolvable Agent Controllers
	Simple Artificial Neural Network
	Continuous-Time Recurrent Neural Networks
	Hand-Coded Artificial Neural Network
	What Do We Expect to See as a Solution to the Wankelmut Task?

	Quantitative Analysis
	Fitness Evaluation
	Evolving Solutions with Non-Pre-Structured Neural Networks in Various Scenarios
	Single Environment vs. Double Environment and Mean Fitness vs. Minimum Fitness
	Cumulative Fitness Regime
	Instant + Switch Fitness Regime
	Cumulative + Switch Fitness Regime

	Evolving a Pre-Structured Hand-Coded Network
	Summarizing Our Experimental Results

	Discussion and Conclusions
	References

