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Abstract: The characterization of voice quality is important for the diagnosis of a voice disorder.
Vocal fry is a voice quality which is traditionally characterized by a low frequency and a long
closed phase of the glottis. However, we also observed amplitude modulated vocal fry glottal
area waveforms (GAWs) without long closed phases (positive group) which we modelled using an
analysis-by-synthesis approach. Natural and synthetic GAWs are modelled. The negative group
consists of euphonic, i.e., normophonic GAWs. The analysis-by-synthesis approach fits two modelled
GAWs for each of the input GAW. One modelled GAW is modulated to replicate the amplitude
and frequency modulations of the input GAW and the other modelled GAW is unmodulated. The
modelling errors of the two modelled GAWs are determined to classify the GAWs into the positive
and the negative groups using a simple support vector machine (SVM) classifier with a linear kernel.
The modelling errors of all vocal fry GAWs obtained using the modulating model are smaller than
the modelling errors obtained using the unmodulated model. Using the two modelling errors as
predictors for classification, no false positives or false negatives are obtained. To further distinguish
the subtypes of amplitude modulated vocal fry GAWs, the entropy of the modulator’s power spectral
density and the modulator-to-carrier frequency ratio are obtained.

Keywords: voice quality; glottal area waveforms; vocal fry; irregular phonation

1. Introduction

Vocal fry is a voice quality which is synonymously referred to as creaky voice, pulse
register, glottal fry or creak [1–3]. In addition, the term vocal fry is used to designate a
subtype of creaky voice [4]. The remaining subtypes are multipulsed voice, aperiodic
voice, nonconstricted creak and tense/pressed voice. Vocal fry is mainly characterized
by a low fundamental frequency which gives an auditory impression of “a stick being
run along a railing”, “popping of corn” or “cooking of food on a pan” [1,2,5]. Other
characteristics include shimmer, jitter, and damping of pulses. Furthermore, subglottal
air pressure and air flow were found to be smaller in vocal fry than in modal registers [2].
However, fundamental frequency is one of the main factors which distinguishes vocal fry
from modal and harsh voice [6]. In our work, we identify vocal fry based on the impulsivity
of voice samples, i.e., the auditory attribute associated with the separate perception of the
glottal cycles. It was shown in the past that the peak prominence observed in loudness
versus time curves may reflect the temporal auditory segregation of the glottal cycles in
vocal fry [7].

Vocal fry has been identified in healthy and dysphonic speakers. In particular, vocal
fry was reported to be one of the salient voice characteristics of male patients with contact
granuloma [8]. Hence, vocal fry may be an indicator for the presence of a pathology which
makes the study of characteristics of vocal fry clinically important. Although it can be a
sign of a voice disorders, Hollien et al. reported vocal fry voice quality in nonpathological
voice [9,10]. These studies investigated the fluctuation of pulse rate of vocal fry samples,
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and evidence against classifying vocal fry as pathological is provided. The results were
further supported by an investigation of vocal fry with 104 first year graduate students [11].
Of the students in the study group, 86% had a nonpathological voice and the remaining
14% were reported to use vocal fry along with a pathological voice. However, 16% of the
students with nonpathological voice quality also used vocal fry.

For the objective detection of vocal fry and creak, these following acoustic features
have been used in the past. The presence of vocal fry segments in speech utterances was
detected based on the autocorrelation properties of the audio signals [3]. The insertion and
detection rates obtained were 13% and 74%, respectively. In [12], audio features like inter-
frame periodicity, interpulse similarity, peak fall and peak rise, H2-H1, i.e., the difference
in amplitudes of the first two harmonics, F0 contours in each frame and peak prominence
were used for vocal fry detection. An aperiodicity, periodicity and pitch (APP) detector,
which uses a dip profile of the average magnitude difference function (AMDF) at lags, was
used to distinguish between irregular phonation and modal phonation [13]. A Fourier
spectrum analysis approach of the audio signals was also proposed for distinguishing
vocal fry segments from diplophonic voice [14]. The ratio of the numbers of harmonics
present in consecutive frames was determined to detect transitions of modal to vocal fry
regimes, or vice versa. In total, 81% of the voice segments were correctly detected as vocal
fry. The distinct characteristics of the creaky and modal regions were obtained using so
called epoch parameters [15]. Epochs are negative to positive zero crossing instances of
zero frequency filtered audio signals. The used epoch parameters were the number of
epochs in a frame, the time instants of epochs, and the time interval between successive
epochs. Based on the variance of these epoch parameters, a neural network classifier was
developed to identify creaky regions. This study was done using voice samples of several
speaker groups. The F1 scores were analyzed to validate the detector. The maximum
F1 score was found to be a little over 0.8 for female Finnish speakers when compared to
the other groups. Convolutional neural networks (CNN) based on the detection of the
creaky voice from emergency calls was also proposed, where 32 mel-scale log filter-bank
outputs were used as input features [16]. The data consist of emergency call recordings
and a conversational speech corpus with 30 recordings each. Though these methods detect
vocal fry or creaky segments, they do not allow a detailed study of voice production.

Previous studies have tried to interlink vocal fold vibration patterns with voice quality
types. Several studies have investigated the vibration patterns of vocal fry, which include
the number of opening and closing phases of the vocal folds in a single modulator cycle,
and the duration of the closed phase. The authors of [17] and [18] found single- and
double-pulsed patterns, respectively, using high-speed videos, where the closed phase
is longer than the open phase. More evidence for the existence of multiple pulses in a
single cycle was reported in [1,2,5]. Furthermore, multiple pulses in a single cycle without
a long closed phase were observed using electroglottograms which reflect translaryngeal
electrical resistance that is proportional to the contact area of the vocal folds [19]. In this
paper, we observe vocal fry GAWs with multiple single-peak pulses in a single cycle. A
GAW is the time series of the glottal area, i.e., the projected area of the space between
the vocal folds, which vibrate during phonation. In the open phase, the magnitude of
the GAW monotonically increases and decreases while the vocal folds are opening and
closing, respectively. The magnitude becomes zero when the folds are closed completely,
i.e., during the closed phase. The pulses are amplitude modulated and no long closed phase
is observed. Throughout the paper, we refer to single-peak pulses. We model the GAWs
using an analysis-by-synthesis approach. A modified version of the analysis-by-synthesis
approach implemented in [20] for modelling diplophonic GAWs is used. Here, we use two
supporting points per pulse of GAW instead of one while modelling the input GAWs. This
helps in improving the estimation of the upper and lower envelopes,—discussed in Section 2.4.
Furthermore, instead of two fundamental frequencies, one fundamental frequency is used
for modelling GAWs.
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In this study, GAWs are used to distinguish between vocal fry and normal voice
quality. The remainder of this article is structured as follows. In Section 2, the extraction of
GAWs, the different types of observed amplitude modulated GAWs, and the modelling of
GAWs using analysis-by-synthesis are described. The results of automatic classification
of amplitude modulated vocal fry GAWs and euphonic GAWs are reported in Section 3.
Section 4 discusses the performance, limitations and the possible future works of this study.
Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Data

High-speed videos (HSVs) of the vocal folds with a frame rate of 4000 frames per
second are obtained by inserting a laryngeal endoscopic camera (HRES ENDOCAM 5562)
through the mouth into the pharynx [21]. Subjects are instructed to produce sustained
phonation of vowels for a duration of two seconds while the vocal fold vibrations are filmed.
Audio files are recorded simultaneously using a head worn microphone. The audio files
are synchronized with the captured video files. The voice samples are annotated by three
expert annotators with regard to presence or absence of vocal fry. Based on the annotations,
the corresponding video frames of the HSVs are cropped and used for GAW extraction.
The GAWs are extracted using a seeded region growing segmentation algorithm [22].
Seven GAWs annotated as vocal fry contain amplitude modulations without long phases.
They are used as a positive group. Eight euphonic i.e., normophonic GAWs are used as a
negative group.

The vocal fry GAWs are further distinguished into two categories based on the cyclic-
ity of the GAWs by visual inspection. Three out of seven amplitude modulated GAWs are
observed to be acyclically modulated. These GAWs are termed as Acyclically Amplitude
Modulated Pulse train (AAMP). The remaining four vocal fry GAWs are observed to have
a cyclic modulator. These cyclic GAWs are further subclassified based on the number
of pulses in each modulator cycle, one of which is characterized by double-pulsing, i.e.,
alternation of pulse magnitudes, timing, and/or shapes. This type is termed as Cyclically
Amplitude Modulated Pulse train-2 (CAMP = 2). The other cyclically modulated type
is characterized by more than two pulses per cycle. This type is termed as Cyclically
Amplitude Modulated Pulse train = 4 (CAMP = 4). Along with the natural GAWs, 1200 syn-
thetic GAWs are used. Of the synthetic GAWs, 300 belong to the euphonic group and
the remaining 900 are vocal fry GAWs, with each of the vocal fry type having 300 GAWs.
Synthetic GAWs are generated using parameter distributions obtained from estimated
parameters of the natural GAWs.

Regularity and symmetry of vocal fold vibration is analyzed using phonovibrograms
(PVGs). A PVG displays the deflections of the vocal folds from the glottal axis represented
as the color intensities [23]. The brighter the color intensity, the farther away are the
vocal folds from the glottal axis. Figure 1 shows PVGs of the GAWs shown in Figure 2,
i.e., of the amplitude modulated vocal fry and euphonic types of vocal fold vibration. A
negligible anterior–posterior asymmetry of vocal folds is observed in the PVG belonging
to CAMP = 4 in Figure 1a. Here, each modulator cycle contains four pulses where the
borders of one of the modulator cycles is marked by two vertical green lines. The vibration
pattern is described as an increase in the amplitude of the vocal fold vibration for four
consecutive glottal pulses followed by a sudden decrease in amplitude. In contrast, the
anterior–posterior phase difference is observed in PVGs of CAMP = 2, AAMP, and the
euphonic type. In Figure 1b, the anterior–posterior phase difference in every second pulse
of the vocal folds results in a period-doubled GAW, as shown in Figure 2b.
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Figure 2: (a) CAMP = 4, (b) CAMP = 2, (c) AAMP and (d) euphonic type. 

 

Figure 2 Glottal area waveforms (GAWs) extracted by segmentation of the high-speed videos 

(HSVs): (a–c) vocal fry and (d) euphonic voice. (a) illustrates an example of a CAMP = 4 type 

GAW, having four pulses in a modulator cycle; (b) illustrates an example of CAMP = 2 type, 

where each modulator cycle contains two pulses; and (c) belongs to an example of the Acyclically 

Amplitude Modulated Pulse train (AAMP) type, which is acyclically modulated. The euphonic 

GAW has smaller amplitude modulations than the vocal fry GAWs. 

Figure 3 shows an overview of the analysis and synthesis combined with parameter 

distribution fitting. First, the analyzer models the natural GAW 𝑦(t) (input) using an 

analysis-by-synthesis approach, which is described in Section 2.2. A Fourier synthesizer 

is used to obtain the modelled GAWs �̂�(𝑡). The modelling error 𝐸 is obtained from the 

root mean square error between the input GAW and the modelled GAW �̂�(𝑡) . The 

Figure 1. Phonovibrogram (PVG) representation of vocal fold kinematics of the GAWs shown in
Figure 2: (a) CAMP = 4, (b) CAMP = 2, (c) AAMP and (d) euphonic type.
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Figure 2. Glottal area waveforms (GAWs) extracted by segmentation of the high-speed videos (HSVs): (a–c) vocal fry
and (d) euphonic voice. (a) illustrates an example of a CAMP = 4 type GAW, having four pulses in a modulator cycle;
(b) illustrates an example of CAMP = 2 type, where each modulator cycle contains two pulses; and (c) belongs to an example
of the Acyclically Amplitude Modulated Pulse train (AAMP) type, which is acyclically modulated. The euphonic GAW has
smaller amplitude modulations than the vocal fry GAWs.

Figure 3 shows an overview of the analysis and synthesis combined with parameter
distribution fitting. First, the analyzer models the natural GAW y(t) (input) using an
analysis-by-synthesis approach, which is described in Section 2.2. A Fourier synthesizer is
used to obtain the modelled GAWs ŷ(t). The modelling error E is obtained from the root
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mean square error between the input GAW and the modelled GAW ŷ(t). The modelled
GAW is refined iteratively to obtain a minimum modelling error. Parameters of the input
GAW ψi are also estimated during the modelling process. Distributions of estimated
parameters of the input GAW are fitted as described in Section 2.3 for the purpose of
generating the synthetic corpus, which is larger than the corpus of the natural GAWs.
Section 2.4 explains the Fourier synthesizer in detail. The synthetic GAWs ys(t) are again
input into the analyzer. The modelling errors obtained for the natural and synthetic GAWs
are used for the classification of the positive and the negative group. In Section 2.5, the
features and classification are explained.
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Figure 3. Overview of the analyzer and the synthesizer used for modelling and synthesizing GAWs.
The analyzer models and estimates parameters of input GAWs, which is described in Section 2.2. The
synthesizer described in Section 2.4 generates synthetic GAWs ys(t) is based on the distributions of
the estimated parameters ψi that are fitted as described in Section 2.3.

2.2. Analyzer

Figure 4 shows the block diagram of the analysis-by-synthesis approach used in the
analyzer to model input GAWs. A similar approach was proposed in the past to model
diplophonic GAWs [20] where two simultaneous fundamental frequency ( fo) tracks were
used. In this study, instead of two fo tracks, only one fo track is estimated. First, the fo
track of the input GAW is extracted by a hidden Markov model (HMM) combined with
repetitive execution of a Viterbi algorithm. An unmodulated quasi unit pulse train ut is
generated by an oscillator driven by the extracted fo track. The pulse locations of this pulse
train approximate the time instants of the maxima of the input GAW. An additional pulse
train for indicating the locations of the minima of the input GAW is obtained by phase
shifting the train’s phase by 180◦. The instantaneous phase and amplitude of the maxima
and minima are extracted from the quasi unit pulse train, which is explained in detail in
Section 2.5.
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Figure 4. The modified version of the analyzer used for modelling GAWs, modified from [20].

A Fourier synthesizer (FS) uses the extracted instantaneous phase Θ(t) and the Fourier
coefficients Rk obtained from pulse shapes rl to model the input GAW. The pulse shapes
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are obtained by cross-correlating the quasi unit pulse with each block of the input GAW of
length 32 ms obtained using a Hanning window with a 50% overlap. These single-peak
pulse shapes are then modelled using Chen’s model [24]. Chen’s model estimates the
pulse parameters which are used for generating synthetic GAWs. The pulse shapes are
transformed to the Fourier coefficient Rk using the discrete Fourier transform (DFT). The
synthesized GAW yF(t) is obtained by the Fourier synthesizer using the Fourier coefficients
of the pulse shapes and the extracted instantaneous phase. The synthesized GAW yF(t) is
multiplied with an amplitude modulator m(t) to obtain a modelled GAW,

ŷ(t) = yF(t)· m(t) (1)

The modelling error E is the level of the root mean squared difference between the
input GAW y(t) and the modelled GAW ŷ(t) i.e.,

E(t) = 20 · log10


√
(y(t)− ŷ(t))2√

y2(t)

 [dB] (2)

ŷ(t) obtained using the unmodulated quasi unit pulse train ut is the output of a
nonmodulating model where the frequency and amplitude modulation present in the
original GAWs are not modelled. Random modulations of the individual pulses of the
input GAW are modelled by minimizing the error E via modulating the quasi unit pulse
trains, which approximates a nonlinear system in a linear way. Pulse heights and time
instants of the unit pulse trains are modulated on a pulse-to-pulse time scale. Additionally,
the modelled GAWs are clipped at the baseline to minimize the modelling error E. The
amplitude modulation vector h(ρ) and the pulse time modulation vector ∆(ρ) of the quasi
unit pulse train are estimated iteratively by minimizing the time domain modelling error
E(t). ρ is the pulse index.

2.3. Distribution Fitting

The parameters of the pulse shape of the estimated input GAW are used for generating
synthetic GAWs. These parameters are fitted to Gaussian distributions independently
of each other and random numbers are drawn from the distribution to obtain original
synthesis parameters. A is a parameter matrix containing N rows and P columns. N is the
number of rows of a single GAW type, and P is the number of frames in each GAW, which
may be different for each GAW. First, the mean µA and the standard deviation σA of the
matrix is taken over all frames for each GAW, i.e.,

µA =
∑P

i=1 Ai

P
(3)

σA =

√
∑P

i=1(Ai − µA)
2

P
(4)

These two measures describe the distribution of a parameters observed in a GAW. To
reflect inter-GAW variation of the parameter distribution, means and standard deviations
of µA and σA are also obtained.

µµA =
∑N

i=1 µA,i

N
(5)

σµA =

√
∑N

i=1
(
µA,i − µµA

)2

N
(6)

µσA =
∑N

i=1 σA,i

N
(7)
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σσA =

√
∑N

i=1(σA,i − µσA)
2

N
(8)

In particular, two Gaussian distributions are estimated indicating the variation of the
means and standard deviations of a GAW type’s parameter over time. From each of these
two Gaussian distributions N (µ, σ) with mean µ and standard deviation σ, M random
numbers are drawn.

µAs ,M ∼ N
(
µµA , σµA

)
(9)

σAs, M ∼ N (µσA , σσA) (10)

These M random pairs of µAs and σAs indicate the means and standard deviations
of the parameters for synthesizing M GAWs. {\displaystyle {\mathcal {N}}(\mu,\sigma
ˆ{2})}Using each pair of µAs and σAs , a Gaussian distribution is obtained. From this distri-
bution, R numbers are drawn which indicate the values of a parameter for R frames.

As,M ∼ N (µAs , σAs) (11)

All parameters of the pulse shape are generated using the same process, but differ-
ent distribution parameters. The parameters are input to the synthesizer for generating
synthetic GAWs.

2.4. Fourier Synthesizer

This subsection explains the Fourier synthesizer. The Fourier synthesizer generates
yF(t) using the estimated locations and amplitudes of the extrema of the input GAW and
the Fourier coefficients obtained by transforming the pulse model. The location of two
quasi unit pulse trains approximate the maxima and minima of the individual pulses of the
input GAW. They are the supporting points at which the instantaneous phase is equal to
odd and even integer multiples of π, i.e., (π, 3 π, 5 π... and 2 π, 4 π, 6 π . . . ), respectively.
These supporting points are sorted and interpolated to obtain Θ(t). Instantaneous phase
Θ(t) and the Fourier coefficients Rk obtained by transforming prototype pulses are provided
to the Fourier synthesizer to synthesize the GAWs.

The amplitude of the modelled GAW is modulated by multiplying the carrier yF(t)
by an estimated modulator m(t). The modulator is obtained as a superposition of the
estimated upper envelope mu(t) and the lower envelope ml (t), i.e.,

m(t) =
(

1 + yF(t)
2

)
·mu(t)−

(
−1 + yF(t)

2

)
·ml (t) (12)

The envelopes are estimated by interpolating the pulse heights of the modulated
unit pulse trains using shape preserving piecewise cubic interpolation. The carrier yF(t)
is obtained as the negative cosine of the estimated instantaneous phase Θ(t). Hence, at
times when yF(t) is +1 and −1, the modulator is set equal to the upper and lower envelope
respectively. At times in between, (12) enables smooth transition.

To obtain the signals yF(t) used in the generation of the synthesized corpus, the same
synthesizer is used, but instead of using as input the parameters estimated from an input
GAW, parameters drawn from the distributions explained in Section 2.3 are used.

2.5. Features and Classification

Modelling errors are used as features to distinguish between the positive and the
negative group. Eunmod is the modelling error obtained using an unmodulated quasi unit
pulse u(t) train and Emod is the improved modelling error obtained using a modulated
pulse train ũ(t). An SVM classifier with a linear kernel is used for classifying the positive
(vocal fry GAWs) and the negative (euphonic GAWs) groups with the two modelling errors
as predictors.
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The subtypes of AMS-type vocal fry GAWs are further distinguished based on the
cyclicity of their modulators. The modulators for CAMP = 2 and CAMP = 4 are cyclic,
whereas the modulators are acyclic in AAMP type GAWs. As a result, the magnitude
spectra of the acyclic modulators are more homogeneous across frequencies than the
magnitude spectra of the cyclic modulators. The homogeneity of a magnitude spectrum is
reflected by Shannon’s Entropy

H = −
∑N

f=1 S( f ) log2S( f )

log2N f
(13)

where S( f ) = G( f )
∑ f G( f ) , is the probability distribution of the modulators’ power spectrum

G( f ) = |X( f )|2, X( f ) is the discrete Fourier transform of the modulator and N f is the total
number of discrete frequencies f . To distinguish between CAMP = 2 and CAMP = 4 GAWs,
the modulator-to-carrier frequency ratio r f = fm/ fc, where the modulator frequency fm is
the frequency corresponding to the maximal magnitude of the modulator’s spectrum and
fc is the carrier frequency estimated using the time instances of the quasi unit pulse train.
A pairwise statistical comparison is conducted to check the variability of the two features,
i.e., the entropy of the modulator spectrum and the r f ratio, in terms of p-values between
the different subtypes of vocal fry GAWs.

3. Results

Figure 5 shows waveforms involved in the modelling of an example of an amplitude
modulated natural vocal fry GAW using the nonmodulating model (top plot) and the
modulating model (bottom plot). The input GAW is an amplitude modulated signal with
four pulses within a modulator cycle (CAMP = 4). The modulating model has a modelling
error of −11.55 dB for the example GAW, which is larger than the modelling error obtained
using the nonmodulating model (−2.15 dB). A smaller modelling error indicates a better
fit to the input GAW.
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Figure 5. Modelling of an example of an amplitude modulated vocal fry GAW using the nonmodu-
lating model (top plot) and the modulating model (bottom plot).

The modulating model is observed to fit the input GAW better than the nonmodulating
model. In particular, the nonmodulating model fails to track the jitter and shimmer
(instantaneous frequency and amplitude modulations) of the individual pulses of the input
GAW. As a result, the individual extrema of the estimated unit pulse trains (not shown
here) are equally high, which results in constant upper and lower envelopes. Hence, the
modulator estimated using these constant envelopes has negligible fluctuation. On the
other hand, in the modulating model, the quasi unit pulse trains track the instantaneous
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frequency and amplitude modulation of the individual pulses of the input GAW. The
modulator estimated using these quasi unit pulse trains fluctuates in accordance with the
input GAW, which results in a modelling error smaller than the error achieved when using
the nonmodulating model.

Figure 6 shows waveforms involved in the modelling of an example of a euphonic GAW
using the nonmodulating model (top plot) and the modulating model (bottom plot). The
modulation is negligible as compared to what is observed in vocal fry GAW in Figure 5. Thus,
the GAWs modelled by the two models are similar which makes the difference between
the modelling errors smaller compared to the difference between the modelling errors
obtained for the GAW shown in Figure 5.
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Figure 6. Modelling of an example of a natural euphonic GAW using the nonmodulating model (top plot) and the
modulating model (bottom plot).

Emod vs. Eunmod are the two features used for classifying amplitude modulated vocal
fry GAWs (positive group) and euphonic (negative group). Figure 7 shows the scatter plots
of the two modelling errors plotted against each other for natural (a) and synthetic (b) data.
For vocal fry GAWs, the use of the modulating model results in modelling errors smaller
than the modelling errors achieved when using the nonmodulating model. The line of
equality (LoE) is dashed. Modelling errors of the euphonic GAWs are well separated from
the modelling errors of vocal fry GAWs in the feature space. An SVM classifier with a
linear kernel acheives a 5-fold cross validated accuracy of 100% for natural and synthetic
GAWs. The performance of the classification is reported using sentivities, specificities and
accuracies with 95% confidence intervals (CI) in Table 1. For both natural and synthetic
GAWs, no false positives or false negatives are observed.

Table 1. Sensitivities, specificities and accuracies of classification between vocal fry and euphonic GAWs with 95% confidence
interval (CI).

GAW
Sensitivity Specificity Accuracy

Value 95% CI Value 95% CI Value 95% CI

Natural 100% 59.04% to 100.00% 100% 63.06% to 100.00% 100% 78.20% to 100.00%

Synthetic 100% 99.59% to 100.00% 100% 98.78% to 100.00% 100% 99.69% to 100.00%
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Figure 7. Scatter plots of the modelling errrors vocal fry GAWs and other types of GAWs: (a) natural and (b) synthetic GAWs.

The subtypes of amplitude modulated vocal fry GAWs are distinguished using the
entropy of the modulator’s power spectral density (PSD) and the modulator-to-carrier
frequency ratio r f . Figure 8 shows box plots of the entropy and r f values of natural and
synthetic vocal fry GAW subtypes. The entropy of the modulator’s PSD is used to dis-
tinguish between cyclically and acyclically modulated vocal fry GAWs. The entropy of
the modulators’ PSD is larger for modulator with a homogeneous spectrum than for a
modulator with inhomogeneous spectrum. This results in larger modulator spectrum
entropies for AAMP than for CAMP. An Anova test is performed to check the variance of
entropy between the subtypes of vocal fry GAWs. The p-values obtained between CAMP
(CAMP = 2 and CAMP = 4) and AAMP are less than 0.01, which indicates significant
differences between the group means of CAMP and AAMP. For the two cyclically modu-
lated groups, the obtained p-value is 0.2526. Therefore, a distinction is possible between
CAMP and AAMP type GAWs based on the entropies of the modulator spectrum. To make
a distinction between the two subtypes of cyclically modulated vocal fry GAWs, the r f
ratio is used. The r f ratio for double pulsing (CAMP = 2) is approximately 0.5 and for
quadruple pulsing (CAMP = 4) is approximately 0.25. In double pulsing, a modulator cycle
contains two pulses, whereas in quadruple pulsing, a modulator cycle contains four pulses.
The Anova test for the r f ratio resulted in a p-value of less than 0.05, which indicates a
significant difference between the cyclically modulated vocal fry GAWs.
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frequency ratio r f to distinguish CAMP = 2 and CAMP = 4 type vocal fry GAWs. The features of natural GAWs are
represented using”x” encircled in green.
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4. Discussion

In this study, the detection of vocal fry based on characterizing the variation observed
in the vibration patterns of the vocal folds is proposed. The results of the classification
accuracies suggest that the proposed model enables the distinction of normal and vocal fry
GAWs. The obtained classification accuracies of detection were found to be competitive
with the accuracies reported for past detection techniques proposed in [3,12–14]. In these
past techniques, the detection rates of vocal fry were less than 90% and the models were
based mainly on audio signals, whereas in our study, the high-speed videos of vocal
folds enable a more detailed study of voice production. This may help in studying the
cause–effect relationship between voice production and perception, and aid the diagnosis
of voice disorders.

Bailly et al. investigated the ventricular fold dynamics in human phonation [25,26].
A correlation between the vibration of the ventricular and vocal folds was demonstrated
using time derivative of EGG signals (DEEG) [25]. A periodic contact between the ventric-
ular folds was observed for every second glottal cycle which resulted in a period-doubling
pattern. In [26], ventricular motion was studied using synchronized high-speed cine-
matographic and audio recordings. The recorded audio sequences consist of glides with
transition between different voice qualities. In most of vocal fry sequences, the ventricular
folds were observed to follow a slow nonoscillatory motion with a partial ventricular
contact, or a total contact. However, in our study, no significant ventricular motion was
observed in the high-speed videos. The audio sequences were also recorded for sustained
phonation of vowels without any glides. The cyclic modulation of the vibration patterns of
vocal fry which we observed using high-speed videos were only due to distinct vocal fold
vibration behavior. For CAMP = 2 and CAMP = 4 type GAWs, in each modulator cycle, the
peak area of the glottis increased after every subsequent opening of the vocal folds. It is
suggested that the myoelastic aerodynamic cause of this phenomenon is to be studied in
the future.

A central aspect of our study is the analysis of noise contained in the GAWs. The
GAWs extracted from the videos contain modulation noise (i.e., jitter and shimmer) and
quantization noise. We modelled the modulation noise on a pulse-to-pulse time scale
by modulating the quasi unit pulse train that the model uses. The additive quantization
noise arises from the finite pixel resolution of the videos and is part of the modelling error
levels E. In particular, depending on the relative size of the glottis in the video, a GAW
is quantized to only a few hundred available values, i.e., a discrete number of pixels. We
focused in this study on modelling modulation noise instead of additive quantization noise,
because (i) the modulations and their properties were used to directly describe the voice
types that we report, and (ii) the amount of modulation noise in voices labeled as vocal fry
exceeded the amount of additive quantization noise by an order of a magnitude.

Added values of the presented approach include the following. First, analysis-by-
synthesis combined with parameter distribution fitting provides a means of data augmen-
tation. That is particularly relevant because not much natural data is available yet. The
selection of the synthesis parameter distributions that we fitted to create the synthetic, i.e.,
augmented corpus appears to be reasonable since the scatter plots of modelling errors
as well as the boxplots of the entropy of the modulator’s spectrum and the modulator-
to-carrier frequency ratio reflect comparable distributions for natural and synthetic data.
Second, we opted for a detailed signal modelling based approach for classification instead
of using a black box approach. This has the advantages that the classification appears to be
better explainable, and that qualitative knowledge regarding voice production kinematics
is obtained.

The limitations of our proposal and suggestions for future work include the following.
First, all of the vocal fold vibrations patterns that we found in the voices which were
labelled as vocal fry are auditorily perceived as pulsatile, i.e., individual glottal cycles
appear to be audible due to temporal segregation. However, it is not yet clear whether
listeners may reliably distinguish the subtypes that we found, or whether they may be
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trained to do so. Second, although our model gives a classification with no true negatives
or false negatives, it only distinguishes between vocal fry and euphonic GAWs. For future
studies, we suggest the addition other types of dysphonic voices as negative data, and
the combination of analyses with audio waveforms. Third, to further test and improve
our waveform model, more positive natural data will be needed. With more natural
data, the performance estimation of the classification could be made more confident. In
particular, the lower limit of the 95% CI of classification accuracy for the natural data
could be improved. Finally, instead of modelling the temporal transitions between the
voice qualities, intervals of homogeneous voice qualities were preselected. Thus, models
of the temporal transitions of the voice qualities related to vocal fry may be proposed in
the future.

5. Conclusions

This paper investigated different types of amplitude modulated vocal fry GAWs. They
were modelled using an analysis-by-synthesis approach and distinguished automatically
from euphonic GAWs based on their modelling errors. Traditionally, vocal fry GAWs are
characterized by a long closed phase. However, we also observed amplitude modulated
vocal fry GAWs without a long closed phase, and analyzed them in a detailed way. These
GAWs have been termed as AAMP, CAMP = 2 and CAMP = 4 based on their cyclicity and
the number of pulses in a single modulator cycle. Modulated and unmodulated GAWs were
modelled for vocal fry and euphonic GAWs. The rational for using a nonmodulating model
is to obtain larger modelling errors for amplitude modulated GAWs than for nonmodulated
GAWs. Modelling errors of the natural and synthetic vocal fry GAWs are observed to
be well separated from the euphonic GAWs in the feature space. These modelling errors
are used as predictors for classifying the vocal fry and euphonic GAWs. For the natural
and synthetic GAWs, no false positives or false negatives were obtained for classification
between vocal fry and euphonic GAWs.
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