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Abstract: Language model pretraining is an effective method for improving the performance of
downstream natural language processing tasks. Even though language modeling is unsupervised
and thus collecting data for it is relatively less expensive, it is still a challenging process for languages
with limited resources. This results in great technological disparity between high- and low-resource
languages for numerous downstream natural language processing tasks. In this paper, we aim to
make this technology more accessible by enabling data efficient training of pretrained language
models. It is achieved by formulating language modeling of low-resource languages as a domain
adaptation task using transformer-based language models pretrained on corpora of high-resource
languages. Our novel cross-lingual post-training approach selectively reuses parameters of the
language model trained on a high-resource language and post-trains them while learning language-
specific parameters in the low-resource language. We also propose implicit translation layers that
can learn linguistic differences between languages at a sequence level. To evaluate our method, we
post-train a RoBERTa model pretrained in English and conduct a case study for the Korean language.
Quantitative results from intrinsic and extrinsic evaluations show that our method outperforms
several massively multilingual and monolingual pretrained language models in most settings and
improves the data efficiency by a factor of up to 32 compared to monolingual training.

Keywords: cross-lingual; pretraining; language model; transfer learning; deep learning; RoBERTa

1. Introduction

Bidirectional Encoder Representations from Transformers (BERT) [1] is a Transformer
network [2] pretrained with a language modeling objective and a vast amount of raw
text. BERT was able to obtain state-of-the-art performance in many challenging natural
language understanding tasks by a sizable margin. Thus, BERTology has become one of
the most influential and active research areas in Natural Language Processing (NLP). This
led to the development of many improved architectures and training methodologies for
Pretrained Language Models (PLMs), such as RoBERTa [3], ALBERT [4], BART [5], ELEC-
TRA [6], and GPT [7,8], improving various NLP systems and even achieving superhuman
performance [1,9,10].

The language modeling objective can be optimized via unsupervised training, requir-
ing only a raw corpus without costly annotation. However, even among over 7000 lan-
guages spoken worldwide [11] , only a handful provide such raw corpora large enough
for training. As Wikipedia is actively updated and uses mostly formal language, it serves
as a reasonable resource for obtaining a raw corpus and is thus useful for measuring
language resource availability. Figure 1 shows the number of documents per language in
Wikipedia as of September 2020. These data were collected from 303 languages with at
least 100 documents, which is only a fraction of all existing languages. Still, as can be seen
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in Figure 1a, the number of documents generally follows the power law distribution where
the majority of documents are from a handful of languages. Additionally, while there are
more than 6 million documents in the most used language, 154 of the 303 languages have
less than 10,000 documents. In Figure 1b, the percentage of the top 10 languages based on
the number of documents is visualized. Here, more than the half of all documents are from
these 10 languages, which also indicates that language resource availability remains highly
imbalanced.

(a)

(b)
Figure 1. Multilingual statistics of Wikipedia. (a) Number of documents per language. The y-axis is
in log scale and the x-axis includes 303 languages, sorted by the number of documents. (b) Top 10
languages with most documents and their respective percentages.

To tackle this problem, transfer learning via multilingual PLMs has been
proposed [1,12,13]. In the multilingual PLM literature, transfer learning mostly focuses
on zero-shot transfer, which assumes that there is no labeled data available in the target
language. This is, however, unrealistic, as in real-world scenarios there are in fact labeled
data available in many cases [14,15]. Furthermore, zero-shot scenarios force the model to
maintain its performance in the source language, which might prevent the model from
fully adapting to the target language. Multilingual PLMs are also much more costly to train
due to increased data and model size [13]. The most practical solution would be to use a
PLM trained in the source language and fully adapt it to the target language to perform
supervised fine-tuning in that language. However, this approach is largely unexplored.

To overcome such limitations we propose cross-lingual post-training (XPT), which
formulates language modeling as a pretraining and post-training problem. Starting from a
monolingual PLM trained in a high-resource language, we fully adapt it to a low-resource
language via unsupervised post-training, which is then fine-tuned in the target language.
To aid in adaptation, we introduce Implicit Translation Layers (ITLs) which aim to learn
linguistic differences between the two languages. To evaluate our proposed method, we
conduct a case study for Korean, using English as the source language. We limit the target
language to Korean for two reasons. First, Korean is a language isolate [16–18] that was
shown to be challenging to transfer from English [19]. Second, by evaluating on a single
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language we utilize linguistic characteristics as a control variable. This let us focus on data
efficiency, the primary metric that we aim to measure.

Evaluating our method on four challenging Korean natural language understanding
tasks, we find that cross-lingual post-training is extremely effective at increasing data effi-
ciency. Compared to training a language model from scratch, data efficiency improvement
of up to 32 times was observed. Further, XPT outperformed or matched the performance
of publicly available massively multilingual and monolingual PLMs while utilizing only a
fraction of the data used to train those models.

2. Related Work

Pretraining a neural network with some variant of the language modeling objective has
become a popular trend in NLP due to its effectiveness. While not being the first, BERT [1]
has arguably become the most successful in generating contextualized representations,
leading to a new research field termed BERTology with hundreds of publications [20].
However, the success is largely centered around English and few other high-resource
languages [21], limiting the use of this technology in most of the world’s languages [14].

To overcome this limit, there has been focus on bringing these advancements to more
languages by learning multilingual representations. In the case of token-level represen-
tations such as word2vec [22,23], this was achieved by aligning monolingual represen-
tations [24–26] or jointly training on multilingual data [27,28]. Aligning monolingual
embeddings was also attempted in contextualized representations [29,30], but the most suc-
cessful results were obtained from joint training. Initially, these joint models were trained
using explicit supervision from sentence aligned data [31], but later it was discovered that
merely training with a language modeling objective on a concatenation of raw corpora
from multiple languages can yield multilingual representations [12,32]. This approach
was later extended by incorporating more pretraining tasks [33,34] and even learning a
hundred languages using a single model [13]. While these massively multilingual language
models are effective at increasing the sample efficiency in low-resource languages, they are
prohibitively expensive to train since the training cost increases linearly with the size of
the data in use. Further, learning from many languages requires the model to have higher
capacity [13]. This leads to difficulties when trying to adapt this method to more efficient
and capable architectures or deploy to devices with limited computing resources.

The fact that mBERT [35] and XLM-R [13] learn multilingual representations without
any explicit supervision has led to more research investigating their zero- and few-shot
performance on various tasks. In [36], the authors concluded that the overlap in subword
vocabulary between different languages plays an important role in acquiring multilingual-
ity. On the other hand, it has also been reported that they even generalize to languages
written in different scripts, thus having no such overlap [37], and when the overlap is
intentionally removed [38]. Lauscher et al. [19] demonstrated that the performance of these
models can be improved in a few-shot scenario with as low as 10 annotated sentences.
UDapter [39] and MAD-X [40] improve data efficiency even further by limiting the param-
eter update to a small set of Adapter modules [41–43]. However, despite their strong zero-
and few-shot performance, all approaches in this category inherit the same limitations of
massively multilingual language models.

Training a bilingual language model by transferring from a monolingual one is a much
cheaper alternative to multilingual pretraining, as most publications regarding pretrained
Transformers publish a trained model checkpoint as well. Despite this advantage, it is a
less explored approach. In [29], monolingual ELMo embeddings are aligned to a common
space to perform zero-shot dependency parsing. MonoTrans [44] transfers English BERT
to other languages by learning a new token embedding from scratch for each target
language. Transformer encoder layers are frozen while learning the embeddings to prevent
catastrophic forgetting. RAMEN [45] takes a similar approach, but initializes each target
language embedding as a linear combination of English embeddings. These approaches
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are the ones most close to ours, but limited in a sense that the model is forced to maintain
its ability in the source language, restricting its adaptation to the target language.

3. Proposed Method

In this section, we describe our proposed XPT in detail. The overall process is illus-
trated in Figure 2a, alongside with the illustration of the multilingual pre-training and
monolingual transfer learning approaches.

𝐿 pre-training XPT phase 1 XPT phase 2 𝐿 prediction

“cooked”

“[CLS]   The   chef   [MASK]   ⋯”

“야구”

“[CLS]   그는 [MASK]  별로 ⋯”

Encoder Layer (frozen)

Encoder Layer (frozen)

Encoder Layer (frozen)

…

𝐶

Embedding 𝐿

Input ITL

Output 𝐿

Output ITL

“산책”

“[CLS]   강아지를 [MASK] ⋯”

Embedding 𝐿

Output 𝐿

Encoder Layer

Encoder Layer

Encoder Layer

…

𝐶

Encoder Layer

Encoder Layer

Encoder Layer

…

Embedding 𝐿

Input ITL

Output 𝐿

Output ITL

𝐶

Embedding 𝐿

Input ITL

Classifier 𝐿

Output ITL

𝐶

“[CLS]   소통을 위해 그는 ⋯”

Paraphrase

Encoder Layer

Encoder Layer

Encoder Layer

…

(a)

Embedding 𝐿 𝐿

Output 𝐿 𝐿

Encoder Layer

Encoder Layer

Encoder Layer

…

𝐶

Embedding 𝐿 𝐿

Encoder Layer

Encoder Layer

Encoder Layer

…

𝐶

Classifier 𝐿

𝐿 𝐿 pre-training 𝐿 prediction

(b)

Embedding 𝐿

Output 𝐿

Encoder Layer

Encoder Layer

Encoder Layer

…

𝐶

Embedding 𝐿

Encoder Layer

Encoder Layer

Encoder Layer

…

𝐶

Classifier 𝐿

𝐿 pre-training 𝐿 prediction

(c)
Figure 2. Illustration of the proposed approach and previous approaches. (a) Cross-lingual post-training (ours). (b) Multilingual
language model pretraining. (c) Monolingual transfer learning.

3.1. Transfer Learning as Post-Training

Our proposed method aims at transferring the knowledge from a high-resource
language LS to a low-resource language LT . Transfer learning in the context of multilingual
PLM has mostly revolved around zero-shot learning, and the small number of existing
few-shot and supervised learning approaches limit the performance in LT by forcing the
model to maintain its ability in LS. This is based on the assumption that there are none
or few labeled examples in LT while unlabeled data is abundant. However, it has been
suggested that this assumption is neither realistic nor practical [14,15].

Instead of this limited transfer learning approach, we assume that both unlabeled
and labeled data are available in LT and formulate this as a pretraining and post-training
problem. Post-training refers to the process of performing additional unsupervised training
to a PLM such as BERT using unlabeled domain-specific data, prior to fine-tuning. It has
been shown that this leads to improved performance by helping the PLM to adapt to the
target domain [46–49]. We start with a monolingual PLM in LS and completely adapt it
to LT .
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Another key advantage of this approach is that this makes it possible to completely
skip the training in LS. This is because most recent publications in PLM literature make
the trained model checkpoint publicly available, and the model architecture and training
objectives in LS are inherited to LT when post-training. Beside the cost saving, this also
enables the use of this method when the pretraining data in LS is not available in certain
scenarios (e.g., privacy concerns, licensing, etc.).

3.2. Selecting Parameters to Transfer

A language model consumes a word sequence and emits a contextualized vector
representation of it. Then these vectors can be used to assign some probability to a word or
to perform some tasks such as sequence classification.

More formally, assume we have an input as a sequence of tokens T = [t1, t2, · · · , tn],
1 ≤ ti ≤ V ∈ N, where V is the vocabulary size. Then, the output of a language model
LM is given by

ELS = [eS
1 ; eS

2 ; · · · ; eS
V ], eS

i ∈ Rd (1)

H0 = Embedding(T , E) = [eS
t1

, eS
t2

, · · · , eS
tn ] (2)

Hl = Encoderl(Hl−1, θl) = [hl
1, hl

2, · · · , hl
n] (3)

LM(T , Θ) = HC = [hC
1 , hC

2 , · · · , hC
n ], (4)

where E is the embedding matrix, Embedding(·) is a lookup function, θl is the parameters
of the lth encoder layer, Θ = [ELS , θ1, θ2, · · · , θC], and C is the number of encoder layers in
LM. Then, the probability of a token is computed as

P(ti = tj|T ) =
exp (hC

ti
· eS

tj
)

∑n
k=1 exp (hC

tk
· eS

tj
)

, ti = [MASK] (5)

for the masked language modeling task, and

P(tn+1 = tj|T ) =
exp (hC

tn
· eS

tj
)

∑n
k=1 exp (hC

tk
· eS

tj
)

(6)

for the next word prediction task.
Among the parameters in Θ, some could be helpful in modeling LT while some could

be harmful. The most important part of the modeling process is the contextualization of
embedding vectors, performed by the encoder layers. We reuse them in post-training as
these layers are known to acquire mostly language-independent knowledge [34,36–38]. On
the other hand, embedding vectors project the tokens in a language into the semantic space
and thus cannot be directly transferred to another language. It is possible to indirectly use
them using bilingual word embedding techniques [26,45], but we randomly initialize the
word vectors of LT for simplicity.

Modern transformer-based architectures have some additional parameters such as
positional embeddings and language modeling head [1,3]. We also reuse them in LT as they
are not language-dependent and have shown to improve performance in the preliminary
experiments.

3.3. Implicit Translation Layer

Reusing the encoder layer trained in the source language and only learning the word
embeddings in the target language can be seen as finding a token-level mapping between
the two languages. However, this is suboptimal for two reasons. First, such mapping is
most likely to be impossible due to ambiguity such as homographs. Second, linguistic
differences beyond token-level, such as word order, cannot be learned with this method.
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To overcome these shortcomings, we propose the Implicit Translation Layer (ITL) to
find this mapping at a sequence level. The ITL takes a sequence of vectors as input and
outputs contextualized vectors of equal length. To maximize compatibility, we utilize the
same architecture used as the encoder layer. Two ITLs are added to the language model,
one before the first encoder layer (input-to-encoder) and another one after the last encoder
layer (encoder-to-output). These ITLs can be seen as implicitly translating from LT to
LS and LS to LT , respectively. With the addition of ITLs, the computation by a LM in
LT becomes

ELT = [eT
1 ; eT

2 ; · · · ; eT
V ], eT

i ∈ Rd (7)

HLT = Embedding(T , ELT ) (8)

H0 = ITLin(HLT , θITLin) (9)

LM(T , Θ′) = ITLout(HC, θITLout), (10)

where Θ′ = [ELT , θITLin , θITLout , θ1, θ2, · · · , θC]. HC is computed using Equation (3), and
the token vectors in Equations (5) and (6) are also replaced with respective vectors from
ELT . This configuration allows a more flexible mapping compared to modules that operate
on a token level such as Adapters. It is a great advantage as multilingual contextualized
representations are known to be highly sensitive to word order [37].

3.4. Two-Phase Post-Training

The parameters ELT , θITLin , and θITLout are randomly initialized and learned during
the post-training phase. The noise introduced by this randomness can negatively impact
the tuned parameters from LS. To prevent this, we split the post-training into two phases,
similar to gradual unfreezing [50,51]. In the first phase, the parameters copied from the
LS model are frozen, and only the LT embeddings and ITLs are learned using the training
examples in LT . This is analogous of the method used for zero-shot transfer learning in
the multilingual PLM literature, where only the parameters responsible in learning LT
are updated.

Phase two of our proposed method proceeds further and completely adapts the
language model to LT . This is achieved by unfreezing the parameters from LS and fine-
tuning the entire model using data in LT . Here, it is assumed that the randomness and the
resulting noise is minimized in the first phase. Each phase inherits the training objective
from LS training, and the model is optimized until convergence using the unlabeled data
in LT .

4. Experimental Setup
4.1. Overview

We conduct a case study for Korean, transferring from English RoBERTa [3] as the
PLM in LS. This model has almost the same structure as BERT, but incorporates improved
training techniques such as dynamic masking, longer training, and larger batch size. The
BASE configuration is used, which has 768-dimensional word embedding and 12 encoder
layers. Applying our proposed XPT results in 14 encoder layers in total. To understand the
effect of two-phase training, we also train a variation of XPT, termed XPT-SP, where the
entire model is post-trained in a single phase without freezing any parameters. We skip
the pretraining in LS and use the model checkpoint released by the authors instead [52].

4.2. Baselines

For intrinsic evaluations, we compare our proposed method to the following two
baseline models.

Scratch—This model does not utilize the knowledge from L1 and is trained from
scratch using data from L2. To match the number of parameters with our proposed method,
two additional encoder layers are added to this model.
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Adapters—Instead of using ITL, Adapter modules are added as in [43] in the encoder
layers. This setting is similar to MonoTrans [44], except that the entire model is post-trained
without freezing to maximize the performance in L2.

In addition to the aforementioned baselines, we consider the following models as
baselines for the extrinsic evaluations.

mBERT—The massively multilingual version of BERT, trained on the Wikipedia dump
for the top 100 languages with the largest number of documents.

XLM-R—Another massively multilingual language model, which is based on RoBERTa
and trained on the cleaned Common Crawl dataset [53] with 295 billion tokens covering
100 languages.

KoBERT—Publicly available monolingual BERT trained from scratch using Korean
corpora [54]. The training corpora consists of Korean Wikipedia dump with 54 million
tokens and Korean news dataset with 270 million tokens.

4.3. Dataset

We use Korean Wikipedia (Wiki-ko) for post-training in L2. The Wikipedia dump from
September 2020 was downloaded and extracted using the WikiExtractor [55] tool. This
raw text is split into sentences and tokenized using SentencePiece [56] with a vocabulary
size of 50 K tokens. This resulted in 4.19 M sentences with 61 M words before tokeniza-
tion. The dataset is split into 4 M/100 K/88 K sentences to be used as train/valid/test
splits, respectively.

For extrinsic evaluations, we use the following four tasks to quantitatively compare
different models. Detailed statistics of each dataset is summarized in Table 1.

Table 1. Statistics of the datasets used in the downstream evaluations.

Task
Train Validation Test

# Examples # Tokens # Examples # Tokens # Examples # Tokens

PAWS-X 49,401 1,413,443 2000 50,292 2000 50,599
KorSTS 5749 86,253 1499 26,022 1378 21,066

KQP 6136 46,007 682 5067 758 5589
KHS 7896 129,422 471 7755 N/A N/A

PAWS-X—We use the Korean portion of the PAWS-X [57] dataset. The goal is to
identify whether the given sentence pairs are a paraphrasing of each other or not. We
report the classification accuracy (%) for this dataset.

KorSTS—The Semantic Textual Similarity (STS) [58] dataset aims at assessing the
semantic similarity between a pair of sentences. Each pair is assigned with a score ranging
from 0 to 5, and the model’s performance is measured using Spearman’s rank correlation
coefficient against the gold labels. The KorSTS [59] dataset provides the machine-translated
train examples as well as the human-translated development and test examples of the
STS dataset.

KQP—The Korean Question Pairs (KQP) [60] is a dataset analogous to the Quora
Question Pairs (QQP) [61] dataset, in which the model needs to identify if the given two
questions convey the same meaning. KQP consists of 7.6 K human-annotated question
pairs. Accuracy (%) is used as the evaluation metric.

KHS—The Korean Hate Speech (KHS) [62] dataset is a collection of 8367 news com-
ments, labeled as one of “hate”, “offensive”, or “none” by human annotators. As gold
labels for the test split are unavailable, we report the best f1-score on the validation split
for this task.
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4.4. Implementation Details

We implement our proposed method and the baselines using PyTorch [63], Fairseq [64],
and Hugging Face Transformers [65]. All models are trained until convergence with early
stopping. We mostly use the suggested hyperparameters from [3] with a few exceptions,
which are summarized in Tables A1 and A2.

5. Results and Discussion

In this section, we summarize the key findings from quantitative evaluations, both
intrinsic and extrinsic. For the intrinsic evaluations and the experiments testing the data
efficiency (i.e., Figures 3 and 4, and Table 2), the results for mBERT, XLM-R, and KoBERT
are not available as these are not trained from scratch and instead the publicly available
model checkpoints are used.

5.1. Intrinsic Evaluation

To quantitatively measure the learning process of each model, we first perform intrinsic
evaluations. While performing better on intrinsic tests does not guarantee the model to be
better at downstream tasks as well, they are good estimates and relatively cheap to evaluate.
In this study, perplexity, hits@k, mean rank, and mean reciprocal rank are calculated on the
masked tokens and used as intrinsic metrics.

The intrinsic performance of each model after using all available 4M training exam-
ples is summarized in Table 2. It can be seen that XPT performs the best, followed by
Adapters and Scratch. Further, the improvement from Scratch to Adapters is as large as the
improvement from Adapters to XPT, indicating that our proposed XPT performs much
favorably to Adapters.

Table 2. Intrinsic evaluation results after using all available 4 million training examples in L2. Best
values are highlighted in bold. PPL = perplexity. MRR = mean reciprocal rank. MR = mean rank.

Model PPL Hits@1 Hits@3 Hits@5 Hits@10 MRR MR

Scratch 5.88 63.91 76.18 80.41 85.18 0.7145 58.87
Adapters 5.46 65.05 77.28 81.40 86.04 0.7253 53.93

XPT-SP (Ours) 5.41 65.28 77.49 81.60 86.18 0.7273 54.03
XPT (Ours) 5.07 66.13 78.31 82.38 86.90 0.7354 50.41

To understand the data efficiency during the post-training process, we exponentially
vary the number of training examples from 100 K to 3200 K. The result for each metric
is plotted in Figure 3. As can be seen, the performance increases linearly as the dataset
size increases exponentially. This shows how data-hungry these language models are,
demonstrating the importance of increasing the data efficiency. Adapters and XPT perform
comparably, with XPT performing slightly better when there are more than 400 K training
examples and slightly worse with less than 400 K examples.

On the other hand, we find that transferring from English (i.e., Adapters and XPT) is
roughly as effective as doubling the number of training examples in the Scratch setting. Fur-
ther, the difference between transferred and non-transferred settings are most pronounced
when the amount of data is minimal, suggesting that low-resource languages are likely
to benefit the most from XPT. The common underlying hypothesis in the multilingual
language modeling literature is that simultaneously learning from multiple languages is
the key to improving performance in low-resource languages by learning polyglot repre-
sentation [12,13,36–38]. However, our results suggests that some part of the knowledge
acquired by monolingual models is language-agnostic and thus can be effectively trans-
ferred to other languages. Based on this, we argue that more emphasis should be put
on transferring monolingual representation [44,45] as these are more sustainable than
multilingual training.
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(a) Perplexity (b) Hits@1

(c) Hits@3 (d) Hits@5

(e) Hits@10 (f) Mean rank
Figure 3. Intrinsic evaluation results as a function of the number of training examples.

5.2. Extrinsic Evaluation

The results after using all 4 M post-training examples are summarized in Table 3,
alongside the results from fine-tuning publicly available models. All models are trained
10 times with different random seeds, and we report the mean and standard deviation. It
can be seen that the proposed XPT outperforms Adapters and Scratch by a large margin
across all tasks, demonstrating its effectiveness given the same amount of training data.
Further, it also outperforms mBERT in all tasks and XLM-R in three out of four tasks. The
fact that XPT is post-trained with only a fraction of the data used to train these massively
multilingual language models makes this result more encouraging. When compared to
KoBERT, a monolingual model trained from scratch with approximately 5.3 times more
training examples, XPT still performs better in all tasks except KQP, with a 22.30% relative
error reduction in KorSTS. Interestingly, the Scratch model outperforms all models in the
KHS dataset. We believe that this is caused by a domain mismatch between the pre/post-
training data and the fine-tuning data, as the KHS dataset is collected from social media.
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Table 3. Downstream evaluation results. Best values in each block are highlighted in bold, and the overall bests are
highlighted with underline. * Estimated value by extrapolation.

Model
Pre/Post-Train Data Task

Domain # Tokens PAWS-X KorSTS KQP KHS

mBERT Wiki-100 6 B∗ 81.37 ± 0.63 77.48 ± 0.73 92.30 ± 0.70 61.66 ± 1.56
XLM-R CC-100 295 B 81.54 ± 0.34 78.63 ± 0.63 93.21 ± 0.48 63.45 ± 1.09

KoBERT Wiki/news-ko 324 M 79.68 ± 0.75 77.67 ± 2.86 93.54 ± 0.75 64.68 ± 0.64

Scratch Wiki-ko 61 M 73.40 ± 0.42 74.38 ± 0.73 91.65 ± 0.55 65.55 ± 1.12
Adapters Wiki-ko 61 M 79.69 ± 0.87 79.78 ± 0.85 91.94 ± 0.34 62.90 ± 1.79

XPT-SP (Ours) Wiki-ko 61 M 80.46 ± 0.50 80.98 ± 0.40 92.22 ± 0.46 64.22 ± 1.24
XPT (Ours) Wiki-ko 61 M 81.62 ± 0.38 82.65 ± 0.39 92.88 ± 0.29 64.85 ± 0.53

Similar to the intrinsic evaluations, we also experiment with varying the number of
post-training sentences in the downstream evaluations and plot the results in Figure 4.
From Figure 4a,b, it can be seen that the Scratch setting shows minimal gains by increasing
the data size from 100 K sentences to 800 K sentences. On the other hand, the models
transferred from English show consistent improvements with more data. This shows that
without any prior knowledge, these tasks cannot benefit from pretraining until a certain
amount of data is available. We find a similar yet less pronounced trend in the KQP task as
well. However, the results from the KHS task is different from the other three tasks, with
all models performing comparably across all dataset sizes. Again, this is likely caused by
the domain shift.

(a) PAWS-X (b) KorSTS

(c) Korean Question Pairs (d) Korean Hate Speech
Figure 4. Downstream evaluation results as a function of the number of pre/post-training examples.



Appl. Sci. 2021, 11, 1974 11 of 15

Investigating the change in data efficiency, it can be seen that to reach the perfor-
mance of transferred models post-trained with 100 K examples, the Scratch model requires
approximately 32, 16, and 16 times more pre-training data in the PAWS-X, KorSTS, and
KQP tasks, respectively. Between the transferred models, XPT consistently outperforms
Adapters in PAWS-X, KorSTS, and KHS, while performing on par in KQP. This indicates
that regardless of the amount of available post-training data, XPT can be expected to
perform better than Adapters.

Existing cross-lingual language model pretraining approaches force the model to
maintain its multi-linguality [13,40,44,45]. However, in a realistic and practical scenario,
the goal is often maximizing the performance on a single language at interest. Our results
demonstrates that under this scenario, XPT and completely adapting the model to a single
language in general are superior to polyglot models.

5.3. Effect of Two-Phase Training

To understand the effect of two-phase training, we trained XPT-SP, where the entire
model is post-trained without freezing any parameters. The intrinsic results and down-
stream results are shown in Tables 2 and 3, respectively. Overall, XPT-SP outperforms
Adapters in all cases, but performs suboptimally compared to two-phase training. This
demonstrates that ITL is better than Adapter modules at learning linguistic differences.
Incorporating two-phase training to Adapters could bring some improvements. However,
based on the fact that XPT-SP performs better than Adapters, we expect this variant to be
less effective than XPT.

6. Conclusions and Future Directions

While being highly effective across a wide range of NLP tasks, pretrained Transformers
are extremely data-hungry. For the majority of the over 7000 languages spoken worldwide,
it is difficult to secure sufficient data for training such models. In this paper, we tackled
this problem by proposing an approach for data-efficient training of pretrained language
models in a low-resource language. Our approach, termed XPT, achieves this goal by
post-training a PLM from another high-resource language. Language-agnostic parameters
of a model trained in the high-resource language are selectively reused and tuned while
learning the language-specific parameters in the target language. We also proposed ITL,
which is designed to learn linguistic differences between the two languages at a sequence
level instead of a token level.

To evaluate our method in a challenging and controlled scenario, we conducted a
case study for Korean by post-training English RoBERTa with a varying amount of post-
training examples. Intrinsic results have shown that post-training an English model in LT
is roughly as effective as using twice as much data in LT and training from scratch. Further,
downstream evaluations on four natural language understanding tasks demonstrated that
our approach can improve the data efficiency by a factor of up to 32. When compared to
monolingual and massively multilingual PLMs trained with several orders of magnitude
more data, XPT still outperformed or matched the performance. This suggests that com-
pletely adapting a model to a single language of interest is more effective and efficient, and
more focus should be put on this direction of research.

As for future directions, experimenting with other target languages with different
resource availability and linguistic characteristics is an important step. Building a system-
atic approach for selecting the source language depending on the target language is also a
promising research direction.
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Appendix A. Hyperparameters

Table A1. Hyperparameters used for post-training.

Hyperparameters
Training Data Size

100 K to 400 K 800 K to 1.6 M 3.2 M to 4 M

Batch size 256 2048 2048
Learning rate 1× 10−4 3× 10−4 3× 10−4

Total steps 60 K 60 K 100 K
Warmup steps 1 K 1 K 1 K

Table A2. Hyperparameters used for downstream evaluations.

Hyperparameters
Task

PAWS-X KorSTS KQP KHS

Batch size 32 32 32 32
Learning rate 1× 10−5 5× 10−5 1× 10−5 5× 10−5

Training epochs 15 10 10 10
Warpup proportion 0.06 0.06 0.06 0.06
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40. Pfeiffer, J.; Vulić, I.; Gurevych, I.; Ruder, S. MAD-X: An Adapter-based Framework for Multi-task Cross-lingual Transfer.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational
Linguistics: Minneapolis, MN, USA, 2020; pp. 7654–7673.

41. Rebuffi, S.A.; Bilen, H.; Vedaldi, A. Learning multiple visual domains with residual adapters. In Advances in Neural Information
Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA; 2017; Volume 30, pp. 506–516.

42. Rebuffi, S.A.; Bilen, H.; Vedaldi, A. Efficient parametrization of multi-domain deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8119–8127.

43. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-
efficient transfer learning for NLP. arXiv 2019, arXiv:1902.00751.

44. Artetxe, M.; Ruder, S.; Yogatama, D. On the Cross-lingual Transferability of Monolingual Representations. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics: Minneapolis, MN,
USA, 2020; pp. 4623–4637.

45. Tran, K. From english to foreign languages: Transferring pre-trained language models. arXiv 2020, arXiv:2002.07306.
46. Jwa, H.; Oh, D.; Park, K.; Kang, J.M.; Lim, H. exBAKE: Automatic fake news detection model based on bidirectional encoder

representations from transformers (bert). Appl. Sci. 2019, 9, 4062. [CrossRef]
47. Whang, T.; Lee, D.; Lee, C.; Yang, K.; Oh, D.; Lim, H. An Effective Domain Adaptive Post-Training Method for BERT in Response

Selection. arXiv 2020, arXiv:1908.04812.
48. Gururangan, S.; Marasović, A.; Swayamdipta, S.; Lo, K.; Beltagy, I.; Downey, D.; Smith, N.A. Don’t Stop Pretraining: Adapt

Language Models to Domains and Tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics;
Association for Computational Linguistics: Minneapolis, MN, USA, 2020; pp. 8342–8360.

49. Luo, H.; Ji, L.; Li, T.; Jiang, D.; Duan, N. GRACE: Gradient Harmonized and Cascaded Labeling for Aspect-based Sentiment
Analysis. In Findings of the Association for Computational Linguistics: EMNLP 2020; Association for Computational Linguistics:
Minneapolis, MN, USA, 2020, pp. 54–64.

50. Felbo, B.; Mislove, A.; Søgaard, A.; Rahwan, I.; Lehmann, S. Using millions of emoji occurrences to learn any-domain representa-
tions for detecting sentiment, emotion and sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing; Association for Computational Linguistics: Copenhagen, Denmark, 2017; pp. 1615–1625.

51. Howard, J.; Ruder, S. Universal Language Model Fine-tuning for Text Classification. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics: Melbourne,
Australia, 2018; pp. 328–339.

52. Published English RoBERTa model. Available online: https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
(accessed on 22 February 2021).

53. Wenzek, G.; Lachaux, M.A.; Conneau, A.; Chaudhary, V.; Guzmán, F.; Joulin, A.; Grave, É. CCNet: Extracting High Quality
Monolingual Datasets from Web Crawl Data. arXiv 2019, arXiv:1911.00359.

54. KoBERT: Korean BERT pretrained cased. Available online: https://github.com/SKTBrain/KoBERT (accessed on 22 February 2021).
55. Attardi, G. WikiExtractor. 2015. Available online: https://github.com/attardi/wikiextractor (accessed on 22 February 2021).
56. Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural

Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations;
Association for Computational Linguistics: Brussels, Belgium; 2018; pp. 66–71.

57. Yang, Y.; Zhang, Y.; Tar, C.; Baldridge, J. PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification. In Proceed-
ings of the Empirical Methods in Natural Language Processing (EMNLP), Hong Kong, China, 3–7 November 2019.

58. Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; Specia, L. SemEval-2017 Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017);
Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 1–14.

59. Ham, J.; Choe, Y.J.; Park, K.; Choi, I.; Soh, H. KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language
Understanding. arXiv 2020, arXiv:2004.03289.

60. Korean Question Pairs Dataset. Available online: https://github.com/songys/Question_pair (accessed on 22 February 2021).

https://www.aclweb.org/anthology/2020.acl-main.0
http://dx.doi.org/10.3390/app9194062
https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
https://github.com/SKTBrain/KoBERT
https://github.com/attardi/wikiextractor
https://github.com/songys/Question_pair


Appl. Sci. 2021, 11, 1974 15 of 15

61. First Quora Dataset Release: Question Pairs. Available online: https://www.quora.com/q/quoradata/First-Quora-Dataset-
Release-Question-Pairs (accessed on 22 February 2021).

62. Moon, J.; Cho, W.I.; Lee, J. BEEP! Korean Corpus of Online News Comments for Toxic Speech Detection. In Proceedings of
the Eighth International Workshop on Natural Language Processing for Social Media; Association for Computational Linguistics:
Minneapolis, MN, USA, 2020; pp. 25–31.

63. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

64. Ott, M.; Edunov, S.; Baevski, A.; Fan, A.; Gross, S.; Ng, N.; Grangier, D.; Auli, M. fairseq: A Fast, Extensible Toolkit for Sequence
Modeling. In Proceedings of the NAACL-HLT 2019: Demonstrations, Minneapolis, MN, USA, 2–7 June 2019.

65. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations; Association for Computational Linguistics: Minneapolis, MN, USA, 2020; pp. 38–45.

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

	Introduction
	Related Work
	Proposed Method
	Transfer Learning as Post-Training
	Selecting Parameters to Transfer
	Implicit Translation Layer
	Two-Phase Post-Training

	Experimental Setup
	Overview
	Baselines
	Dataset
	Implementation Details

	Results and Discussion
	Intrinsic Evaluation
	Extrinsic Evaluation
	Effect of Two-Phase Training

	Conclusions and Future Directions
	Hyperparameters
	References

