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Abstract: Tooth surface cracks are considered as the early stage of the development of tooth surface
spalling failure. Understanding the excitation mechanism of surface cracks has a great significance
in the early diagnosis of spalling faults. However, there are few studies on the dynamic modelling
of surface cracks, and the influence mechanism of surface cracking on the dynamic characteristics
of a gear system is also not yet clear during its propagation process. Thus, an analytical calculation
model of the meshing stiffness of gear with tooth surface crack is developed. Then, a dynamic
model of a spur gear system with six degrees of freedom (DOF) is established based on the proposed
surface crack calculation model. The effects of surface crack propagation on the meshing stiffness and
dynamic characteristics of gear system are investigated. The results show that the side frequencies
of dynamic transmission error (DTE) are more sensitive than those of the acceleration responses
during the surface crack propagation, which is more favorable to the surface crack fault diagnosis.
Compared to the traditional spalling fault model, the proposed model can accurately characterize
the dynamic characteristics of a gear system with the early spalling defect.

Keywords: fault diagnosis; dynamic response; gear meshing stiffness; surface crack; spalling

1. Introduction

Gearboxes are widely applied in the power transmission field [1-3]. However, as an
vital component of a gearbox, gears often operate in stressful conditions, such as excessive
service load, poor lubrication, or high temperature [4], and thus some faults related to
gears can be easily observed. Spalling is one of the typical gear tooth faults, which may
lead to abnormal dynamic performance of the gearbox due to the reduction in gear mesh
stiffness [5-7]. Therefore, the mesh stiffness computation models of gears with or without
a spalling fault has garnered the increased attention of researchers in the field of fault
diagnosis of gear systems [8-10].

Compared to the finite element model, many researchers preferred the analytical cal-
culation model of mesh stiffness due to its faster calculation [11,12]. Weber [13] calculated
the deformation of a spur gear under load using the theory of displacement superposition.
Cornell [14] improved the Weber’s model by considering the influence of fillet foundation
on the gear. Kasuba and Evans [15] calculated the meshing stiffness of a healthy gear
using the digital method. Yang and Lin [16] then developed the potential energy method,
which was diffusely applied in the computation of gear meshing stiffness. Tian [17] further
optimized the model in [16], considering shear stiffness. Based on the gear tooth fillet
foundation deflection correction formula put forward by Sainsot [18], Chen and Shao [19]
improved the original model by considering the deformation of tooth fillet foundation in
the calculation model of the gear’s comprehensive mesh stiffness.

Aiming to study the dynamical performance of the gear system with spalling failures,
some spalling fault modelling methods have been proposed [20,21]. For instance, Chaari
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et al. [22] proposed an analytical model for computing the meshing stiffness of a spalled
gear, and then discussed the influences of spalling parameters on the meshing stiffness.
Ma et al. [23,24] presented a dynamical model of a spalled gear pair and investigated the
effect of spalling failure on the mesh stiffness and dynamic performance of a gear system.
Based on the slicing method, Han [25] studied the influence of a spalling defect on meshing
stiffness, and Shao et al. [26] put forward a meshing stiffness calculation method for a gear
with a spalled fault. Fakhfakh et al. [27] investigated the vibration characteristics of a gear
system with a spalled defect by establishing the dynamical model of the gear system, and
then verified the accuracy of the simulation results through experiments. Ma et al. [28]
presented an improved mesh stiffness computation method for gears with a spalling fault
by considering the influence of extended tooth contact. Saxena et al. [29] proposed a
meshing stiffness calculation model of a spalling gear, and studied the influence of several
spalled shapes, positions, and sliding friction on mesh stiffness. Jiang et al. [30] investigated
the vibration performance of a helical gear system with spalled failure, considering the
influence of sliding friction. Yu et al. [21] analyzed the influence of a nonlinear elliptical
tooth surface contact pattern of a spalled gear on the dynamical response of a gear system,
and validated the accuracy of the developed model through experiments. Luo et al. [31] put
forward a new dynamical simulation model of a spur gear and verified the effectiveness of
the model through various experimental tests, and then analyzed the impact of a spalled
defect on the dynamical response of a gear system.

However, spalling faults are usually caused by the metal shedding of the tooth surface
due to the gradual propagation of the surface crack under the action of surface stress [32,33].
As an early fault of the spalling failure, the surface crack fault is different from the spalling
fault in its influence on meshing stiffness and the dynamic characteristic of the gear system.
There exist few studies on the dynamic modelling of surface cracks, and the influence
mechanism of a surface crack fault on the dynamic characteristics of a gear system is also
not yet clear during its propagation process. Therefore, an analytical calculation model of
meshing stiffness of the gear with tooth surface crack fault is proposed in the paper. Then,
the effects of surface crack propagation on the meshing stiffness and dynamic characteristic
of gear system are investigated, which is conducive to the diagnosis and monitoring of the
early spalling failure of a gear system.

The following sections of this paper are arranged as follows. The proposed calculation
model of meshing stiffness of a gear with a tooth surface crack is introduced in Section 2.
Then, the six-DOF dynamical model of spur gear system is established in Section 3. Fur-
thermore, the influence of surface crack propagation on the meshing stiffness and vibration
characteristics of a spur gear system is analyzed and discussed in Section 4. Finally, some
conclusions are obtained in Section 5.

2. Proposed Meshing Stiffness Calculation Model with Tooth Surface Crack

As demonstrated in Figure 1, the tooth surface crack fault is usually located at the
middle of the tooth surface and is symmetrical along the center plane of gear tooth width.
The boundary of tooth surface cracks is assumed as consisting of straight lines for the
convenience of modeling and calculation. L; represents the crack length, L, stands for the
crack width, and D refers to the crack depth.

The potential energy method is diffusely adopted in the gear mesh stiffness calculation
due to its fast calculation and simple modeling [16,17], which is also applied in this
paper. The gear tooth is assumed to be a cantilever beam with a variable cross section
when establishing the meshing stiffness calculation model of a gear tooth with surface
cracking, which is displayed in Figure 2. The bending energy Uy, shear energy U, and
axial compressive energy U, deposited in a tooth can be expressed as [16,17],

d [Fy(d — x) — Fh]? F2 d12F2 F2 d F2
Aol = ~— = doe U, = ~— = d 1
/o 2EL s = o /o 2GA, M= 50 =y B4 M)

where ky, ks, and k, signify the bending stiffness, shear stiffness, and axial compressive
stiffness, respectively. F refers to the meshing force acting on the gear tooth. E and G are
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the Young’s modulus and shear modulus, respectively, and it is assumed that the material
of the gear is uniform and the Young’s modulus and shear modulus of its surface and
internal parts are the same in this paper. d denotes the distance from the meshing point
to the dedendum circle, and / is the distance from the meshing point to the center line of
the gear tooth. F, and Fj represent the horizontal and vertical components of the meshing
force F, respectively, which are expressed as,

F, = Fsinay, F, = Fcosaq 2)

Figure 1. Geometric parameters of tooth surface crack.
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Figure 2. The cantilever beam model of gear with tooth surface crack fault.

According to Equations (1) and (2), the stiffness K, Ks, and K, can be deduced as,

d1(d— — hsi 2 d
1 _/ [(d — x) cosay — hsinay] ; 1 / 1.2 cos ay? 12cosm”, / sin a2 d 3)
0 0

El, ks GAy

According to the characteristic of involute tooth profile of healthy gear tooth, the
expressions of parameters d, x, I, hy, Ay, and I, are as follows,

d = Rp[(a1 + az) sinay + cosa] — Rpcosas 4)
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h = Ry[(a1 + &) cosay — sina] (6)
h — Ry sinay 0<x<x @)

7| Rpl(a+ap)cosa —sina] x> xg
Ay =2m,W ®)

2

I, = ghiw )

where /i, is the cross-sectional height with x distance from the dedendum. R;, and Ry are
the base circle radius and dedendum circle radius, respectively. a represents the gear
rotation angle, ay and a3 refer to half of tooth angle of the base circle and dedendum
circle, respectively. Ay is the area of the effective section and I, represents the area moment
of inertia.

The meshing positions of the gear with tooth surface cracking are presented in Figure 3.
Point G represents the position of dedendum, point P denotes the position at the beginning
of the crack, point S refers to the position at the end of the crack, and point T stands for
the position of the addendum. As displayed in Figure 3a, the parameters A, and I, remain
unchanged when the contact line is located between G and S. Thus, the mesh stiffness
of gear tooth pair in this area is the same as that of healthy gear teeth. As illustrated in
Figure 3b, the crack part can still bear shear, axial compressive, and bending force when
the contact line is located between S and P, and the mesh stiffness of gear teeth in this area
is also the same as that of normal gear. When the contact line passes through the end point
P of the crack, the crack turns to an open state due to the presence of meshing force, and
the parameters A, and I, of the cracked tooth zone will decrease, which is presented in
Figure 3c.

(a) The contact line (b) The contact line (©) The contact line
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Figure 3. Meshing positions of gear tooth with surface crack fault: (a) left of the fault zone, (b) above the fault zone, (c) right

of the fault zone.

Through the above analysis, the cross section area A," and the moment of inertia I,” of
the gear with tooth surface crack are calculated as follows,
A — 2h W — LD’
X 2h, W else

x1<x<xi+xandd>x; + L (10)
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21,3 1 /3 / h D’ 2 <y < d
shiW — | 3D L2+DL2(x—7) x1<x<xi+xand d>x; + L
%th else

I, (11)

where D’ represents the reduced height of the cross section due to the tooth surface crack,
it can be denoted as,
D' = hy — (hy, — D) (12)

where, h1y1 is the cross-sectional height with x; distance from the dedendum.
According to the research conclusions of Yang and Sun, the magnitude of the Hertz
contact stiffness kj, of healthy meshing tooth pairs is a constant throughout the meshing
line. For the meshing gear teeth with surface crack, the crack will not affect the effective
contact width of the gear teeth during the whole meshing process. Therefore, the Hertz
contact stiffness of surface cracked teeth is consistent with the healthy case. Its expression
is [34],
TEW
4(1-v2)

where W and v represent tooth width and Poisson’s ratio, respectively.

Under the action of meshing force, deformations of the tooth fillet-foundation also
affect the gear meshing stiffness. The formula widely adopted to compute the fillet-
foundation deformation of gear tooth was developed by Sainsot et al. in Ref. [18]. It is
indicated as,

kn = (13)

2
1 cos’w us us 9
5 WE L(Sf> +M<Sf +P(1+Qtan ocl) (14)

where kr denotes the tooth fillet-foundation stiffness. The parameters yirand Syare displayed
in Figure 2 in [18], and the parameters L, Q, M, and P are functions of 6f and hy, which can
be presented as [18],

&@ﬂ@):AM@%HMﬁ+Cﬂﬂ@+DM@+a@+E (15)

where the meaning of symbols ki, 6, A;, B, C;, D;, E;, and F; can be observed in [18].
Finally, the comprehensive meshing stiffness of one tooth pair can be calculated as,

1
ki = (16)
1 1 1 1 1 1 1 1 1
B TR TR T R TR TR TR TR TR

where the subscripts 1 and 2 mean the pinion (driving gear) and gear (driven gear),
respectively.
The comprehensive meshing stiffness of double tooth pairs is deduced as,

1
k=Y a7
1 1 1 1 1 1 1 1 1
i=1 ky; - kp,i + ks1,i + ka1,i + kg,i - ky,i + kso,i + ka,i + kga,i

where, i = 1, 2 denotes the first and second tooth pair, respectively.

3. Dynamic Modeling of Spur Gear System with Tooth Surface Crack

As presented in Figure 4, the lumped parameter dynamical model of the gear system
with six DOF is developed to study the effects of surface crack propagation on the dynamic
characteristics of a gear system. In Figure 4, C;, represents the mesh damping, e stands for
the comprehensive meshing error, m; refers to the mass, J; is the mass moment of inertia, T;
indicates the load torque, w; represents the speed of rotation, and K;, and Kjy are the radial
stiffness of the bearing in the x and y direction, respectively. C,x and Cp, signify the radial
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damping of the bearing in the x and y direction, respectively. The subscript i = p, g refers to
the pinion and gear, respectively.

Figure 4. Dynamical model of spur gear system with six DOF.

The displacements of the pinion and gear are projected onto the meshing line, then
the relative displacement 6§ between the pinion and gear can be obtained,

0= (xp —xg)cosa+ (yp — yg)sina + 6pry + Org +e.

where 6, and 0, denote the angular displacement of the pinion and gear, respectively. x,
and x, represent the lateral displacement of the pinion and gear along the x direction,
respectively. y, and y, refer to the lateral displacement of the pinion and gear along the y
direction, respectively.

The motion equation of the pinion can be obtained as follows,

mpXp + kiud cos a + Cmd COS & + kpxxp + cpxxp =0
myY, + kmd sina + cmdsina + kpyyp + cpyy, =0 (18)
]pép +kmdrp + cméry, =Ty

The motion equation of the driven gear is indicated as follows,

MgXg — kmd cosa — cmécos &+ kgxXg + coxXg =0
mgyg —kmdsina — cpdsina 4 kgyyg + cgy_{/g =0 (19)
DTE denotes the error between the actual position and theoretical position of the gear
under the action of dynamic mesh force. The characteristics of DTE have a direct impact

on the vibration, noise and working stability of gear system. The calculation formula of
DTE is expressed as,

DTE = (xp — xg) cosa + (yp — yg) sina + 0,1, + Ogrg (20)

4. Results and Discussions

According to the parameters of a spur gear system shown in Table 1, the meshing stiff-
ness and dynamic responses of the gear system with surface crack is calculated. Then, the
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effects of surface crack propagation on the meshing stiffness and vibration characteristics
are studied and discussed.

Table 1. Spur gear system parameters.

Parameter Pinion Gear
Teeth number 23 39
Module (mm) 3 3
Teeth width (mm) 50 50
Pressure angle (°) 20 20
Poisson’s ratio 0.3 0.3
Addendum coefficient 1 1
Dedendum coefficient 0.25 0.25
Hub radius (mm) 25 25
Young’s modulus E (MPa) 2.06 x 10° 2.06 x 103
Mass (kg) 1.32 3.16
Mass moment of inertia (kg~m2) 9.8 x 1074 68 x 1074

Bearing radial stiffness (N/m)
Bearing radial damping (N-s/m)

— — 8
Kpx = Kpy = 5.8 x 10

_ _ 8
0 Kox =Koy =58 x 10
Cpx=Cpy=5x10

Cgx =Cgy =5 x 103

4.1. Effects of Single Tooth Surface Crack Parameter on Mesh Stiffness and
Vibration Characteristics

4.1.1. Effects of a Single Crack Parameter on Mesh Stiffness

As displayed in Figure 5, taking the surface crack parameters as L; = 1, 2, 3 mm,
Ly =40 mm, D = 3 mm, and x; = 2 mm, the influence of the crack length (L;) on the
meshing stiffness of single-tooth pair and double-tooth pairs is studied. It can be obtained
that the total meshing stiffness of the cracked gear is smaller than that of the healthy gear at
the beginning of the meshing process. The stiffness drop zone is enlarged with the increase
in the crack length, while the decrease in the magnitude of the meshing stiffness under
different crack lengths remains the same. The maximum ratios of the stiffness reduction of
single and double tooth pairs are 8.2% and 7.0%, respectively.

b
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o Lo —~ o
g TN - i el
yd / \‘\ E12p " o
\ Z
) %
yd \Y g 1
— L1=0mm aé
w
........ L] =1 mm ﬁ
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Li=3mm
L 1 0.6 1
1 1.5 0.5 1 1.5
Mesh cycle Mesh cycle

Figure 5. Effects of surface crack length on meshing stiffness: (a) single-tooth pair, (b) double-tooth pairs.

As displayed in Figure 6, the influence of the crack width (L,) on the meshing stiffness
of single-tooth pair and double-tooth pair is investigated when the surface crack parameters
are setas L1 =2 mm, L, = 15, 30, 45 mm, D = 3 mm, and x; = 2 mm. It can be observed from
the calculation results that the reduction in the magnitude of the meshing stiffness gradually
goes up with the increase in the crack width, but the mesh period where the meshing
stiffness decreases remain unchanged. The maximum ratios of the stiffness reduction of
single and double tooth pairs are 13.0% and 8.7%, respectively.
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Figure 6. Effects of surface crack width on meshing stiffness: (a) single-tooth pair, (b) double-tooth pairs.

The effects of the crack depth (D) on the meshing stiffness of the single-tooth pair and
double-tooth pair are analyzed when setting the surface crack parameters as L; = 2 mm,
Ly =40 mm, D =1, 2,3 mm and x; = 2 mm. We can find in Figure 7 that the reduction in the
magnitude of the meshing stiffness is gradually enlarged when the crack depth increases,
while the areas where the mesh stiffness decreases remain the same. The maximum ratios
of the stiffness reduction of single and double tooth pairs are 10.8% and 7.2%, respectively.

(a) s (b) ’
10
g 10 140
) : N ] Eq,F > |
z N z
2 N 2
¢ NG &
@ 6 Y a—‘ 1 b
= — D=0mm < | —D=0mm]
§ st LS e D: ] mm ] é) 0.8 e D: 1 mm . ]
V4 --=- D=2mm -==- D=2 mm ke
D=3 mm D=3 mm
4 : : : 0.6 : : :
0 0.5 1 1.5 0 0.5 1 1.5
Mesh cycle Mesh cycle

Figure 7. Effects of surface crack depth on meshing stiffness: (a) single-tooth pair, (b) double-tooth pairs.

4.1.2. Effects of a Single Crack Parameter on DTE

The influence of a single crack parameter on the DTE is investigated and presented
in Figure 8. The variable parameters of surface cracks used in this study are the same as
those in Section 4.1.1. The input parameters wy, and T, are set to a fixed value equal to
900 rpm and 100 Nm, respectively. As shown in Figure 8a, the occurrence of cracks will
increase the amplitude of DTE responses. The greater the crack length, the earlier the DTE
value returns to the healthy tooth level. It can be discovered from Figure 8b that in the area
affected by the surface crack failure, the value of DTE goes up with the increase in the crack
width, and the DTE value is highest when L, = 45 mm. It can also be seen in Figure 8c that
the value of DTE goes up with the crack propagation in the direction of crack depth, and
the DTE value reaches the maximum when D = 3 mm.
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Figure 8. Effects of crack parameters on the DTE: (a) length, (b) width, (c) depth.

4.1.3. Effects of a Single Crack Parameter on Acceleration Response

As revealed in Figure 9, the influence of a single crack parameter on the time domain
response of acceleration is investigated. It can be observed that the maximum acceleration
response decreases gradually with the increase in crack length, while the acceleration
response is positively correlated with the length and depth of the surface crack. In an
overall view, the influence of the single crack parameter on the time-domain responses of
acceleration are not as obvious as the time-domain responses of DTE.
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Figure 9. Effects of crack parameters on the acceleration responses: (a) length, (b) width, (c) depth.

4.2. Effects of Surface Crack Propagation on Meshing Stiffness and Vibration Characteristics

The influence of a single crack parameter on meshing stiffness and vibration charac-
teristics of the gear system is discussed in Section 4.1. In actuality, the depth, width, and
length of the surface crack will change during the crack propagation process. Therefore, the
influence of the surface crack propagation on meshing stiffness and dynamic characteristics
of a gear system is also studied and discussed in the following chapters. In our study, it is
assumed that the width of the surface crack remains unchanged when the crack grows, and
the crack propagates only in the length and depth direction. As presented in Figure 10, the
red dotted line means the surface crack propagation path, point P is the crack propagation
initial position, and point S; (i = 1, 2, 3) denotes the crack vertex position in the process of
crack propagation. In this study, the spalling failure is assumed to occur when the surface
crack propagates to the position S3. Specific parameters of the surface crack propagation
case are displayed in Table 2.
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Figure 10. Schematic of surface crack propagation.

Table 2. Parameters of surface crack propagation case.

Crack Parameters

Case Failure Degree Crack Position
Ll Lz D X1
Case #0 Healthy P 0 0 0 5
Case #1 33.3% crack Sq 1 30 0.73 4
Case #2 66.7% crack Sy 2 30 1.39 3
Case #3 100% crack S3 3 30 2 2
Case #4 Spalling S3 3 30 2 2

4.2.1. Effects of Surface Crack Propagation Progress on Meshing Stiffness

The effects of surface crack propagation on the mesh stiffness are shown in Figure 11.
It can be found that the meshing stiffness of the gear system reduces gradually with the
propagation of the surface crack, and the decrease in mesh stiffness is greater when the
crack evolves into a spalling fault. It can be concluded that the spalling fault has a larger
affect area and amplitude on the meshing stiffness compared with the surface crack fault.

Mesh cycle

Mesh cycle

8
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1 1.5 0 0.5 1 1.5

Figure 11. Effects of surface crack propagation on meshing stiffness: (a) single-tooth pair, (b) double-tooth pairs.

4.2.2. Effects of the Surface Crack Propagation Progress on DTE

As presented in Figure 12, the DTE value of the spalling fault is obviously greater than
that of the crack fault, which is due to the meshing stiffness of the spalling fault on the gear
tooth being smaller than that of the crack fault. Meanwhile, the effects of crack fault cases
on the time domain of DTE are not obvious before the crack evolves into a spalling fault.
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Figure 12. Effects of surface crack propagation on time domain of DTE.

The effects of surface crack propagation on DTE spectra are also studied and presented
in Figure 13. It is observed that the side frequency components appear near the mesh

frequency f; and its harmonic frequencies (2, 3fm, -

.. ) in the spectrum diagrams of four

fault cases, and the amplitudes of side frequency go up gradually with the surface crack
propagation. In addition, the interval of the two adjacent side frequency components equals
to the rotation frequency f; of the driving gear. It can be concluded that the surface crack
propagation has a small influence on the time domain of DTE, but an obvious influence
on the sideband components of the DTE spectrum, which is an important feature for the
diagnosis of early spalling failure.
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Figure 13. DTE spectra of different fault cases: (a) case #1, (b) case #2, (c) case #3, (d) case #4.

4.2.3. Effects of the Surface Crack Propagation Progress on Acceleration Response

The effects of surface crack propagation on the time domain of acceleration response
are displayed in Figure 14. We can see that the spalling fault has an obvious impact
compared with the crack fault, which results from the larger changes in meshing stiffness
when the spalling gear just enters and exits the spalling area. It can also be seen that the
influence of the tooth surface crack fault on the time domain of acceleration responses is
also not obvious before the crack evolves into a spalling fault.
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Figure 14. Effects of surface crack propagation on time domain of acceleration response.

Figure 15 shows the influence of surface crack propagation on acceleration spectra. It
can be found that the side frequency components also appear near the mesh frequency and
its harmonic frequencies in the acceleration spectra of four fault cases. The side frequency
bands change significantly when the crack developed into a spalling fault. Meanwhile,
compared with the DTE spectra, the increased amplitudes of the side frequencies are not
obvious before the surface crack propagates into the spalling fault.
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Figure 15. Acceleration spectra of different fault cases: (a) case #1, (b) case #2, (c) case #3, (d) case #4.

From the above results, we can find that sidebands of the spectra resulting from the

crack propagation are more sensitive than the time domain responses. Thus, the sideband
amplitude ratio (BAR) is introduced to further quantitatively analyze the effects of the
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tooth surface crack propagation on the spectra of DTE and acceleration. The calculation
formula of the BAR is as follows [35],

(21)

where A represents the amplitude of the ith side frequency on either side of the harmonic
frequency f;. k denotes the number of side frequency.

From Equation (21) we can learn that the higher the BAR is, the richer the sideband
frequency components are. The BAR values of DTE and acceleration under different fault
cases are computed and displayed in Table 3. It can be observed that the average BARs
of DTE and acceleration tend to increase with the surface crack propagation, and reaches
maximum after the spalling failure occurs. From Table 3, it can be calculated that the
growth rates of the average DTE BARs under case #2, case #3, and case #4 are 1.00, 2.98,
and 500.19, respectively, when compared to case #1, while the average BARs of acceleration
are 0.26, 1.00, and 30.62, respectively. It can be concluded that the BAR of DTE increases
faster and changes more obviously than that of the acceleration during the surface crack
propagation, which is more conducive to the surface crack fault diagnosis.

Table 3. Sideband amplitude ratio (BAR) values of different fault cases.

BAR (dB)
Response .

Tgpe Fault Case Harmonic Order Average

fin 2 3fm  m 5w fm  fm  Sfm  m  10f,  11fy Value

Case #1 —44 —-43 -33 —-45 —41 -30 -41 -38 -31 -43 -35 -39

DTE Case #2 —41 —-40 -28 —42 -38 -27 -39 -36 -31 —41 -33 -3.6

Case #3 -38 -36 -24 -39 -35 -23 -36 -33 -27 -37 =30 -33

Case #4 -13 -15 -08 -17 -13 -05 -13 -12 -12 -16 -1.1 -1.2

Case #1 04 -13 —-09 -28 -27 -25 -37 -35 -34 -34 -24 24

Accelerati Case #2 04 -13 —-09 -27 -25 -23 -36 -34 -33 -33 -24 -23

ceeleraion Case #3 05 —-12 -08 -26 -24 -22 -33 -31 -30 -30 -24 -21

Case #4 07 -10 -01 -10 -10 -06 -12 -13 -16 -14 —09 -0.9

Figure 16 shows the BAR changes of DTE and acceleration under different harmonic
orders and fault cases. It can be found that BARs of DTE and acceleration tend to increase
with the surface crack propagation at each harmonic frequency. The BAR value of DTE
increases obviously at each harmonic frequency, while the BAR value of acceleration
increases significantly only at the harmonic frequency of order 5-10. Therefore, compared
with the acceleration response, the side band variations of DTE during the surface crack
propagation are more propitious to the fault detection of a tooth surface crack.
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Figure 16. BAR of different fault cases: (a) DTE, (b) acceleration.

5. Conclusions

The surface crack of a gear tooth is considered as an early fault that causes the spalled
defect. However, there has been few discussions on the dynamic modelling of surface
cracking. Thus, an analytical calculation model of the mesh stiffness of gear with tooth
surface crack is developed. Then, based on the presented model, the effects of the surface
crack propagation on the meshing stiffness and dynamic characteristics of gear system are
investigated and discussed. Several conclusions are obtained:

(1) The mesh stiffness of gear system will decrease gradually with the surface crack
propagation, and it decreases significantly when the crack propagation evolves into a
spalling fault.

(2) Compared with the time domain responses of DTE and acceleration, the side-
band frequencies in the frequency domain responses are more sensitive to the surface
crack propagation.

(3) The side frequencies of DTE increase faster and change more obviously than those
of the acceleration during the surface crack propagation, which is more conducive to the
surface crack fault diagnosis.

It is worth mentioning that the calculation accuracy of the proposed model has not
been verified in this paper. Therefore, the authors hope to use the finite element method,
experimental method, or other effective methods to verify its computational accuracy in
future research work, and finally apply it to the field of early spalling fault diagnosis.
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