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Abstract: An accuracy of ≥98% was achieved in sepsis diagnosis using serum samples from 30 sepsis
patients and 68 healthy individuals and a high-performance two-dimensional polyacrylamide gel
electrophoresis (HP-2D-PAGE) method developed here with deep learning and transfer learning
algorithms. In this method, small-scale target domain data, which are collected to achieve our
objective, are inputted directly into a model constructed with source domain data which are collected
from a different domain from the target; target vectors are estimated with the outputted target domain
data and applied to refine the model. Recognition performance of small-scale data is improved
by reusing all layers, including the output layers of the neural network. Proteomics is generally
considered the ultimate bio-diagnostic technique and provides extremely high information density
in its two-dimensional electrophoresis images, but extracting the data has posed a basic problem.
The present study is expected to solve that problem and will be an important breakthrough for
practical utilization and future perspectives of proteomics in clinics after evaluation in clinical
settings.

Keywords: proteomics; artificial intelligence; sepsis classification; deep neural network;
transfer learning

1. Introduction

Cells are systems composed of proteins, and their conditions are essentially dependent
on amounts and states of these proteins. Genomics is one of the most powerful method-
ologies available for profiling cells, but the amounts of proteins are affected by efficiency
of translation, post-translational processing of gene products, and protein degradation
rates in the cells. Therefore, protein amounts are difficult to estimate using only genomics.
Furthermore, states of proteins, such as post-translational modification, including phos-
phorylation, cannot be investigated by genomics. On the other hand, proteomics deals
directly with proteins, and amounts and states of the components of cells can be revealed
using proteomics methods. Among techniques used in proteomics, two-dimensional gel
electrophoresis (2D-GE) is available for directly examining amounts and states of pro-
teins. However, the quality of the data depends heavily on the method, and because the
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procedures involved require skill and time, it can be difficult to obtain large amounts of
high-quality data. This is a practical reason why 2D-GE has not been used for clinical
diagnoses, even though proteomics is the most powerful method available for profiling of
organisms [1].

Recently, we developed a high-performance two-dimensional polyacrylamide gel
electrophoresis (HP-2D-PAGE) technique with high throughput, high sensitivity, and high
reproducibility [2]. In this procedure, the first dimensional and second dimensional gel
whose size is smaller than that for usual two-dimensional electrophoresis was used because
the stabilities of electric field, voltage, and temperature should be maintained. If these
stabilities are lost, the focuses of spots on the gel will be lost. Additionally, loose focus will
result in deterioration for resolutions of the spots and sensitivities of the signals. Addition-
ally, size and thickness of filter papers on electrodes of the first gel electrophoresis should
be large and thick enough to absorb all salts gathering to the electrodes. Furthermore,
the proper amounts of total proteins on the gels are different and should be optimized
for each case. As for human serum, the amount was optimized by counting spots on
the gels. Finally, although total number of the spots has not been raised compared with
the conventional methods, other performances including high throughput capacity, high
sensitivity, and high reproducibility have been raised enough for the practical applications.

For clinical applications, large amounts of data should be obtained in a short time
period from small amounts of specimens. The quality of the data must be high for inter-
comparisons. Conventional techniques could hardly be available for the purpose. On the
other hand, our technique can solve these issues and can provide a sufficient amount
of proteomics data to satisfy the necessary conditions for clinical use [3]. However, one
issue still impedes realization of clinical proteomics using HP-2D-PAGE: how to facilitate
high-throughput processing of vast numbers of 2D-PAGE images.

Here, the first success of 2D-PAGE image processing using artificial intelligence (AI)
is reported. If 2D-PAGE images can be processed automatically and quickly, large amounts
of clinical data providing vital information can be utilized clinically. Furthermore, this
breakthrough opens new avenues for data mining. Typically, 2D-PAGE spots that drastic
changes in intensity as a patient’s condition progresses are considered significant in terms of
diagnosis. However, the proteins associated with such spots are not necessarily important
for determining clinical state. In the cases of a number of diseases, multiple but slight
changes in proteins are thought to induce disease onsets. It can be difficult to manually
identify such significant spots on 2D-PAGE images. However, AI provides a principally
different way of looking at these data and can be used to identify essential, significant spots
from among large numbers of spots on 2D-PAGE images.

Sepsis was chosen as the first target for AI-aided diagnosis in this study for various
reasons. Sepsis is generally classified by severity, with severe sepsis characterized by a
state of organ dysfunction, organ perfusion loss, or hypotension; septic shock, in particular,
is characterized by persistent hypotension despite large-volume intravenous infusion [4].
Mortality is generally high in severe sepsis, with common case fatality rates of 20 to
30% [5–7]. Early stage treatment is strongly related to reduced mortality rate, but the
pathogenic mechanisms of sepsis are very wide-ranging and complex. For this reason,
sepsis treatment largely comprises symptomatic therapy. Moreover, diagnosis is often
sought at a location other than the hospital in which treatment occurs. The need for
AI-aided diagnosis is therefore particularly critical for prompt, appropriate treatment.
AI-aided diagnosis holds the promise of faster, more accurate diagnosis of this complex
pathology. It also holds promise of providing new findings that could not be obtained via
manual visual inspection of data. In this study, therefore, we evaluated a fast and accurate
AI-aided method for the diagnosis of sepsis.

Practical development of AI-aided diagnosis using 2D-GE images posed two key
problems. First, 2D-GE images generally exhibit very low quality and poor reproducibility
compared with data used in AI image diagnosis already in practical use, such as facial
authentication and computed tomography (CT) images. Images obtained with previ-
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ously developed methods exhibit clear contrast, good quality, and good reproducibility
in comparison with those obtained with existing methods but are substantially inferior
in comparison with those already practically developed. The question arises then as to
whether the 2D-GE images obtained in this study could be used in machine learning for
AI-aided diagnosis. Until now, at the research level, there have been researches on image
processing of two-dimensional electrophoresis using AI, but they have not yet been put
into their practical uses [8]. In this research, using the dramatic progress of AI in recent
years, two-dimensional electrophoresis image processing by AI for practical use has been
studied.

Another major task was to obtain sufficient training data for machine learning. In al-
ready practically developed AI image diagnosis (recognition) methods, several hundred-
thousand to several million images are used as training data. In this study, we achieved
high throughput by improving the 2D-GE method using less than one-thousand images
for training data. A further major task is to effectively achieve machine learning with a
smaller amount of training data.

In this article, sepsis classification was performed using deep neural network (DNN)
which has been widely studied in recent years [9]. DNN is known to require a large amount
of training data and has achieved high classification performance using large dataset such
as skin cancer [10]. On the other hand, it is still difficult to collect sufficient number of the
proteome data of patient due to a 2D-GE method because of the conventional technical
issues that the time to obtain data are too long and the quality of data to be compared
with each other is too low. Because of the issues mentioned above, the technique could be
used only for research settings, and the practical implementation has been difficult so far.
In fact, despite using our 2D-GE method, we could only collect 98 images which include 30
sepsis images (68 images are non-sepsis images). From this situation, we applied a transfer
learning approach for DNNs. In order to solve the problem, it is necessary not only to
improve the algorithm but also to develop more general-purpose devices to generate the
big-data, but this is another topic for other studies.

Transfer learning is a method that reuses source domain knowledge to solve a target
domain task [11]. For example, if we want to solve a task that determines whether a
patient of an input image has sepsis or not by reusing the knowledge of natural pictures
classification task (e.g., dog or cat), the natural pictures classification task corresponds
to the source domain task, and the sepsis classification task corresponds to the target
domain task. Transfer learning for DNN has been studied in various fields of AI [12,13]
and these methods can be divided into three approaches: supervised, semi-supervised,
and unsupervised. Unsupervised and semi-supervised approaches assume that the target
domain labels equal the source domain label [14]. However, in a biomedical field, it is
difficult to collect target domain data having the same label as the source domain. Therefore,
we focus on the supervised transfer learning approach, which allows the labels of the
source/target domain to be different.

Conventional supervised transfer learning methods for DNN [15] first train a DNN on
the source domain. Then, the second DNN is constructed based on target domain data by
reusing the hidden layers of the first DNN as the initial values, except for an output layer.
However, this approach has a risk of poor classification performance caused by random
initial values of the output layer because the output layer must be trained on a significantly
small amount of target domain data. To avoid this problem, we propose a reusing of all
layers, including the output layer.

An outline of our learning method is shown in Figure 1. First, we train a DNN (source
DNN) to solve the source domain task (Figure 1A). In this study, we pre-trained hidden
layers based on a de-noising autoencoder [4] and minimized a mean squared error between
target vector and output vector using a stochastic gradient descent algorithm. Second,
we reuse all parameters of the source DNN for solving the target domain task (Figure 1B).
Finally, we fine-tuned all parameters using the target domain data and obtained a target
DNN (Figure 1C). It should be noted that target vectors of each target domain label for



Appl. Sci. 2021, 11, 1967 4 of 12

executing the last step are indeterminate. For example, if the source domain task is the
natural pictures classification and the target domain task is the sepsis classification, the
target domain label does not match the source domain label. Therefore, we cannot fine-tune
parameters of the target DNN. To tackle this problem, we estimate target vectors based
on the output vector by feeding the target domain data to the source DNN. We call these
target vectors as relation vectors.
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Figure 1. Outline of our proposed method. (A): Training the deep neural network (DNN) using the
source domain data, (B): estimating the relation vectors of each target domain label, (C): tuning all
parameters using pairs of target domain data and relation vectors.

2. Materials and Methods

Patient serum. Serum samples were collected from 20 patients at Nihon University
Hospital in accordance with the regulations of the ethics committee, and written informed
consent was obtained from each patient before inclusion in the study. The patient group
included both males and females, and the distribution of ages was 35 to 79 years of age.
Sixty microliters of serum were used in the experiments.

Removal of major proteins contained in serum. An Aurum Serum Protein Mini Kit
(Bio-Rad, Tokyo, Japan) was used to remove the albumin and IgG contained in large
amounts in serum. A Seppro® IgY14 protein kit (Sigma-Aldrich, Tokyo, Japan) was used to
remove 14 other proteins that are contained in large amounts.

2D-PAGE. For accurate quantification necessary for high-precision analyses, the
amount of protein in each sample was determined using a 2-D Quant Kit (GE Health-
care Japan, Tokyo, Japan). Removal of impurities and desalination of the samples were
carried out using a 2-D Clean-Up Kit (GE Healthcare).

Treated samples were dissolved in Destreak rehydration solution (GE Healthcare)
and applied for swelling of Immobiline dry strips (GE Healthcare). Isoelectric focusing
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as the first dimension was carried out using the swelled strips on a Multiphor II system
(GE Healthcare).

Second dimension separation was carried out on a discontinuous SDS gel system as
first described by Laemmli [16] using a NuPAGE 4–12% Bis-Tris Z00m Gel (Thermo Fisher
Scientific, Tokyo, Japan). The resulting gels were stained with a fluorescent dye, SYPRO
Ruby Protein Gel Stain (Thermo Fisher Scientific).

Fluorescent images were acquired from the stained gels using a Typhoon FLA 9500
apparatus with Ettan DIGE imager software (GE Healthcare), and the images were analyzed
using Image Master 2D Platinum 7.0 software (GE Healthcare).

Conventional Transfer Learning for DNN and Our Proposed Approach. To estimate
relation vectors, we consider the distance between hyperplane and the relation vectors.
The last step of our method converges the target domain data around the corresponding
relation vectors. Namely, the above distance strongly relates to the margin between
the hyperplane and the target domain data. Figure 2 shows the relationship between
the relation vectors and the hyperplane. We assume that a large margin provides high
classification performance similar to that of a support vector machine. However, if we
maximize the margin without any constraints, the relation vectors obviously diverge, and
the final fine-tuning process fails. From these considerations, we estimate relation vectors
as follows:

γl = ml + εl

where γl represents relation vectors, and ml represents the average vector. This is computed
by the vectors and achieved by feeding the target domain data having the l-th target domain
label (sepsis or not) to the source DNN. εl represent a vector which increases a distance
between relation vectors. We call this vector as a repulsive force vector. To maximize
the margin while preventing divergence, we add constraints to the repulsive force vector.
In this article, the length of this vector is set so that the Mahalanobis distance with ml is 1.0,
and the direction is set so that the distance between other relation vectors is maximized.
By using this setting, without the risk of divergence, our method can provide a large margin
compared to εl = 0 which is the simplest approach of relation vectors estimation [17] shown
in Figure 2. Table 1 lists the confusion matrix when εl = 0 Compared to Table 2, using our
method we can improve the classification performance.
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Table 1. Confusion matrix which we set the relation vector as the average vector. Classification
accuracy achieved 94.9% (93/98).

Conventional
Classification Result

Sepsis Non-Sepsis

Label
Sepsis 27 3

Non-sepsis 2 66

Table 2. Confusion matrix of our method. Classification accuracy achieved about 98.0% (96/98).

Proposed Classification Result

Sepsis Non-Sepsis

Label
Sepsis 28 2

Non-sepsis 0 68

Setting of DNN. We used one CPU (core i7 5930K) and one GPU (GeForceGTX TITAN
X), and training time took less than 2 h in total. When the test image is inputted, our method
can output answer less than 1 s.

We selected the best hyperparameters as follows. The number of hidden layers
was selected from {1, 2, 3}, the learning rate was selected from {1.0 × 10−3, 5.0 × 10−3,
1.0 × 10−2, 5.0 × 10−2}, and the momentum was gradually increased from 0.5 to {0.7, 0.99}.
The size of minibatches set as 10.

We used open source library pylearn2 [18] and set the total iteration of fine-tuning of
all methods to be 200. We confirmed that all first DNNs which are trained by the source
domain were not overfitted by using the ten-fold cross-validation of the source domain in
advance.

The 2D-GE image first cuts the area, not including the spots, and is then downsized
to 53 × 44 = 2332 gray-scale pixels due to the limited source and target domain data.
This input size was determined to preserve the information of large spots under the
supervision of biologists. All images of Caltech-101 were resized to 53 × 44 to ensure that
they were aligned with the 2D-GE images. In addition, due to limited source domain data,
we used a compact model, of which the dimension of all hidden layers is 188 (cumulative
contribution is over 99.5% based on PCA). When we used Caltech-101 as the source domain,
we selected the dimension from {188, 500, 1000} because Caltech-101 is larger than 2D-GE
source domain. Note that when we use 2D-GE source domain, the first DNN was overfit.

3. Results
3.1. 2D-PAGE Using Sepsis Patients’ Serum

For sepsis data classification, which is our main task, we collected the following numbers:
sepsis data 30, and non-sepsis data 68. Also, images obtained from serum with different
experimental parameters were also used for machine learning (Table 3). The diagnosis was
made by a doctor’s comprehensive diagnosis and sample (blood) culture.

3.2. Machine Learning

We evaluated the performance by ten-fold cross-validation. As the source domain
which differs from target domain (sepsis diagnosis), we used 2D-GE images with different
labels from the target domain sepsis or non-sepsis data. These images were generated
from patients diagnosed as normal. The source domain task comprised the classification
of the differences between protein extraction and refining protocols, as shown in Table 3.
Figure 3 shows examples of sepsis, non-sepsis, and source domain images. Since these
source domain data included many spots and minute spot changes, we expected that they
would also include the information for classifying sepsis. Additionally, data obtained
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during the process of optimization for the procedure (Table 3) are supposed to include all
of variations of the 2D-GE images.

Table 3. List of source 2D-GE images. The total number of source images is 180, and the number of
source domain labels is 9.

Number of Source Domain Data Type of Protocol

25 Change amount of protein
4 Change concentration protocol

30 Unprocessed
49 Removal of only top 2 abundant proteins
11 Focus on top 2 abundant proteins
15 Focus on 14 abundant proteins
12 Plasma sample instead of serum
19 Removal of Sugar chain
15 Other protocols
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Figure 3. Examples of two-dimensional gel electrophoresis (2D-GE) images. X and Y-axes represent
isoelectric points (pI) and molecular weights (Da), and black regions represent protein spots. Upper
left: sepsis. Upper right: non-sepsis. Lower: source domain 2D-GE images. The position of the
same protein is approximately the same for each patient because each axis represents an absolute
physical quantity. Our previously developing technology has incremented the accuracy1. However,
as shown in this figure, it is difficult for even an expert to detect valid spots for classifying sepsis.
Thus, we directly inputted 2D-GE images in the DNN.

In this study, we inputted the 2D-GE images directly into the DNN because valid
spots for detecting sepsis have not been fully clarified to date.

Table 2 lists our confusion matrix, Table 4 lists the matrix of full scratch model which
trains only target domain, and Table 5 list the matrices of conventional transfer learning
method [15]. Our method clearly made the diagnoses of sepsis by an absolutely different
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concept from the conventional ones as shown in these tables, and the evidence is revealed
in the progress of this research as the partial ones have been shown in this paper.

Table 4. Confusion matrix of full scratch model which trains only target domain. Classification
accuracy achieved 93.9% (92/98).

Conventional
Classification Result

Sepsis Non-Sepsis

Label
Sepsis 25 4

Non-sepsis 2 66

Table 5. Confusion matrix of conventional transfer learning method [4]. Classification accuracy
achieved 94.9% (93/98).

Conventional
Classification Result

Sepsis Non-Sepsis

Label
Sepsis 25 5

Non-sepsis 0 68

The above result used 2D-GE images as the source domain data. To investigate the
relationship between the source and target domain, we changed the source domain data,
which were obtained from Caltech-101 [19]. Caltech-101 is a famous natural picture dataset
including 101 labels (e.g., airplanes, camera, panda). The number of images of Caltech-101
is 9146.

Table 6 list the confusion matrix of Caltech-101. Compared to Table 2, the classification
performance of using 2D-GE images as the source domain was higher than the performance
of using Caltech-101, although the number of 2D-GE images was smaller. These results
show that information regarding the differences between protein extraction and refining
protocols is useful for classifying sepsis.

Table 6. Confusion matrix of Caltech-101. Classification accuracy achieved 91.8% (90/98).

Conventional
Classification Result

Sepsis Non-Sepsis

Label
Sepsis 24 6

Non-sepsis 2 66

As described above, in 2D-GE images, the position of a protein not related to the
phenomena of interest is theoretically equal for each patient. Thus, by visualizing the
weight of the target DNN such as “google cat [20]”, we can confirm the effectiveness of
spots in sepsis classification.

Figure 4 shows the average of the absolute weights of the first layer when the source
domain data are 2D-GE images. By using this visualization, doctors can confirm the
effective spots at a glance. As shown in this figure, our method uses the minute changes
of many spots to classify sepsis. In addition, the red circles show examples of currently
known valid spots for sepsis classification. The circled 1 represents Transthyretin [21],
2 represents Ceruloplasmin [22], and 3 represents Prothrombin [23]. These have been
validated by mass spectrometry [3]. Transthyretin is an amyloidogenic protein that can
lead to a heterogeneous group of disorders characterized by accumulation of polypeptide
amyloid fibrils. Ceruloplasmin is an enzyme which in its structure contains six atoms of
copper and is responsible for catalyzing the oxidation of iron. Prothrombin is a vitamin K-
dependent plasma protein synthesized in the liver. Some significant spots, including theses
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ones, are supposed to be closely related to the progression mechanism of the sepsis [3].
This result indicates that the DNN can automatically detect biologically meaningful spots.
Valid spots for classifying sepsis have not been fully clarified to date. Thus, the weight
visualization may help to elucidate new spots related to sepsis.
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4. Discussion

Proteins are configuration factors that drive biological systems, and proteomics repre-
sents the ultimate method for profiling living organisms by exhaustive and comprehensive
assessment of the types and amounts of proteins. Although the information density of
the image data generated by 2D-GE is extremely high compared with other methods, the
problem has been how to extract the data. It was generally thought, moreover, that 2D-GE
image data should be amenable to analysis by AI, which is generally highly favorable
as a means of image analysis, but the technical difficulty of obtaining high-quality data
in a large volume has effectively prevented the application of machine learning. In the
present study, we approached this problem by developing a 2D-GE method with high
throughput and high reproducibility, obtaining a fairly high amount of high-quality data.
We also developed deep-learning and transfer-learning algorithms, and thanks to increases
in computer capacity, employed these algorithms for disease diagnosis aided by machine
learning of 2D-GE images for the first time. This success is the result of these technical
advances and was facilitated by the choice of sepsis as a fulminant target disease easily
distinguished from normal health.

The severity of the sepsis varies significantly depending on the inflammatory response
and organ dysfunction. Severe sepsis during which hypotension continues even after
adequate fluid resuscitation is classified as septic shock [4]. Mortality of severe sepsis is as
high as 20 to 30% [5–7], and the early initiation of the proper treatment greatly improves
the mortality rate. Some molecules including c-reactive protein (CRP), IL-6, procalcitonin
(PCT), and other substances are currently used as clinical biomarkers for sepsis, but none
of these biomarkers has adequate performance in terms of the outcome prediction [16,24].
CRP is most popularly used as an indicator of infection, but it is also elevated in conditions
other than the infection. IL-6 is a representative of the inflammatory cytokines, but the
usefulness in diagnosing sepsis is still controversial [25,26]. Recently, monitoring of PCT
has been proposed as clinically useful. However, because the levels are elevated even
during non-infectious inflammation, such as after surgery or from trauma, the diagnostic
accuracy is still a matter for debate [27]. Therefore, a new method enabling diagnosis in a
shorter time and with greater accuracy is required with the clear evidence.

AI-aided diagnosis with machine learning using 2D-GE images of biological samples
has also been shown to be possible for diseases other than sepsis. Currently, diseases are
investigated separately using distinctive samples, but presumably simultaneous diagnosis
of different diseases could be performed by applying the present method to a single
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processing of an image as a sample for multiple diseases. This may well help slow the rise
in medical costs associated with increasing numbers of tests and test parameters. For that
purpose, it will be necessary to obtain learning data on each disease and perform the
related machine learning. With sepsis, a fulminant disease, successful disease diagnosis
with machine learning was achieved using a volume of training data smaller than usual
(by an order of magnitude). The volume of required training data will increase with the
complexity of the pathology and the mildness of the symptoms (i.e., less change), but by
increasing the volume of training data for any disease that has been described, it will
then be logically possible to achieve diagnosis not only after the outbreak of illness but in
its early, non-pathologic, and pre-symptomatic stages. Early discovery and consequent
avoidance of the need for treatment in a critical stage can also lead to lower medical
costs. Nevertheless, further clinical validations are needed to evaluate the actual efficacy.
Especially for different tests, it is considered that they will be meaningful. Samples from the
other groups of sepsis patients who comprise different generations, onset reason/results,
and regions will be useful.

Apart from diagnosis of disease, application of this method by an “AI doctor” for “di-
agnosis” (assessment and guidance) relating to biological conditions such as normal fatigue
and voluntary bodily functions, including intelligence, muscular strength, metabolism,
and emotions, might also be possible. Advice from the AI doctor could help individuals
achieve maximum performance, such as a student in the next day’s test, an athlete in a
coming sports match, or an employee in an approaching work period. The possibilities
of AI-aided diagnosis may also extend beyond human health to other organisms (such as
cattle and livestock (meat quality control, animal health control)), agriculture (e.g., produce
quality control), pet health, and other plant and animal sectors.

The AI-aided diagnosis process holds the promise of faster, highly accurate diagnosis
and the high probability of discovering biomarkers based on the identification of specific
2D-GE spots using AI that simply cannot be detected by the human eye. Extracting
AI-specific spots as relevant criteria and identifying them as new biomarkers will then
comprise major tasks.

The diseases/conditions that can be diagnosed via AI-aided diagnosis will increase
over a wide range with increases in learning data, and integration of large amounts of data
will be necessary for that purpose. However, the possibility is strong for (1) development
of a 2D-GE device/system that is small and general-purpose in principle and facilitates
obtaining large-amount/volume of wide-ranging data, and (2) the achievement of trans-
mission to an image data analysis center of relatively small size compared with the very
high information density relative to that generated using other methods. This diagnosis
method will increase in applications and accuracy with rising data integration. It is an
organism diagnosis system that will continue to expand, and data providers will contribute
to the development of new diagnosis methods and enjoy their benefits. One of the most
important aspects of the success achieved in this study is the demonstration that the au-
tomation of data processing (diagnosis) using AI can be achieved. The AI-aided method
described here can be applied to the discovery of new findings by cooperating participants
seeking to build mutual win–win relationships with the goal of realizing a future-oriented
healthy society.

Sepsis is caused by multiple factors: bacterial, fungal, viral, etc. Although proteome
data include comprehensive knowledge to differentiate the type of the sepsis, this could
hardly be extracted manually so far. However, it is expected that the DNN technique can
differentiate the type of vector for sepsis for the future. Furthermore, in a clinical setting,
evaluating the stage of sepsis is critical. However, this study was the first challenge so we
used only extreme samples that could be clearly defined. The classifier, when properly
trained to output the stage of sepsis for, e.g., early stage, late stage, septic shock, etc., is the
next significant goal of this technique.

The aim of this study was to obtain proof of the concept that proteome image data
can be treated by AI, so we chose a clear target (diagnoses of clearly judged states in the



Appl. Sci. 2021, 11, 1967 11 of 12

medical setting). One of the important next issues will be to improve the current diagnoses
through this technique. In addition, for future practical use it is necessary to unify the
procedure for acquiring data. This is also an issue for the future.
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