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400084 Cluj, Romania

3 Faculty of Physics, Babes-Bolyai University, Mihail Kogălniceanu 1, Cluj-Napoca, 400084 Cluj, Romania
* Correspondence: raulronaldgalea@gmail.com

Abstract: Despite the promising results obtained by deep learning methods in the field of medical
image segmentation, lack of sufficient data always hinders performance to a certain degree. In this
work, we explore the feasibility of applying deep learning methods on a pilot dataset. We present
a simple and practical approach to perform segmentation in a 2D, slice-by-slice manner, based on
region of interest (ROI) localization, applying an optimized training regime to improve segmentation
performance from regions of interest. We start from two popular segmentation networks, the
preferred model for medical segmentation, U-Net, and a general-purpose model, DeepLabV3+.
Furthermore, we show that ensembling of these two fundamentally different architectures brings
constant benefits by testing our approach on two different datasets, the publicly available ACDC
challenge, and the imATFIB dataset from our in-house conducted clinical study. Results on the
imATFIB dataset show that the proposed approach performs well with the provided training volumes,
achieving an average Dice Similarity Coefficient of the whole heart of 89.89% on the validation set.
Moreover, our algorithm achieved a mean Dice value of 91.87% on the ACDC validation, being
comparable to the second best-performing approach on the challenge. Our approach provides an
opportunity to serve as a building block of a computer-aided diagnostic system in a clinical setting.

Keywords: cardiac image segmentation; deep learning; MRI image analysis; convolutional neuronal
networks; artificial intelligence

1. Introduction

Cardiac image segmentation is a laborious manual task which requires both working
hours of the radiologist and accurate analysis. Therefore, the development of automatic
methods for cardiac image analysis is of major importance [1]. This demonstrates the high
potential of deep learning-based segmentation methods, for applications where manual or
semiautomatic contouring is still a bottleneck in the workflow [2]. While deep learning
methods have recently shown great promise for the task of cardiac image segmentation [1],
one of their most significant drawbacks is their need for a large amount of data to provide
good results. There are a number of publicly available medical image datasets [1], among
which the most popular being Multi-Modality Whole Heart Segmentation—MMWHS [3]
and the Automated Cardiac Diagnosis challenge—ACDC [4]. However, in most cases,
the data are limited in numbers (i.e., couple of hundreds at most), since medical data
acquisition, and cardiac Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI) are especially difficult to perform on a large population [5].

Several methods for handling the scarceness of labeled images have been
proposed [6,7], but they can address the problem of limited annotations only partially.
For instance, other methodologies (CT-based) to apply semi- and fully automated image

Appl. Sci. 2021, 11, 1965. https://doi.org/10.3390/app11041965 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11041965
https://doi.org/10.3390/app11041965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041965
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1965?type=check_update&version=1


Appl. Sci. 2021, 11, 1965 2 of 11

analysis are proposed in [8,9], where the importance of epicardial fat segmentation on Com-
puted Tomography are analyzed by taking into account either the classic image-processing
methods or the deep learning methods. Furthermore, image acquisition methods play an
important role in medical image segmentation. It has been shown in [1,10] that factors such
as slice thickness and large inter-slice gaps can determine 2D approaches to work better
than 3D ones.

In this paper, we study the feasibility of applying deep learning methods for the
problem of cardiac image segmentation on a pilot dataset. We attempt to make the most
out of the available data via a number of techniques, which include: data augmentation,
transfer learning, region of interest (ROI) localization, and ensembling. The pipeline we
apply processes volumes in an entirely 2D, slice-by-slice manner, obtaining promising
results for a possible clinical pipeline application.

We start from two popular segmentation networks, the preferred model for medical
segmentation, U-Net, and a general purpose model, DeepLabV3+. Novel modifications
and integrations to U-Net (like those proposed in [11–13]) will be explored in the future.
In [14] a deep learning-based segmentation method that automatically configures itself
(including preprocessing, network architecture, training, and post-processing), called
nnU-net, is proposed for a large range of segmentation tasks in the biomedical domain.
Although nnU-Net has been shown to find high-quality configurations on new datasets
robustly, task-specific empirical optimization may have the potential to further enhance
the performance of segmentation. We will show how our adapted pipeline is able to better
solve the investigated problem.

The structure of this work is as follows: Section 2 covers previous relevant research on
the topic, Section 3 presents the datasets used for the experiments, Section 4 is dedicated
to the proposed segmentation method, while Section 5 summarizes the details of the
performed experiments and results. Finally, Section 6 provides the conclusion.

2. Related Work

Deep learning-based methods have previously been applied successfully to a range
of medical imaging problems [15–19], including heart segmentation [1]. Two important
challenges, ACDC [4] and MMWHS [3], are good benchmarks for measuring segmentation
performance. In both cases, variations of the popular U-Net [20] is the preferred choice of
researchers.

A significant point of study was the comparison of 2D and 3D methods. It has been
shown that the performance depends highly on the acquisition methods [1,10]. Three-
dimensional models are negatively affected by large inter-slice gaps and misalignments,
whereas 2D models cope better in these situations. The results of Baumgarter et al. [10]
confirm this on the ACDC dataset, with the ACDC data having a thickness of 5–8 mm
and sometimes an inter-slice gap of 5 mm. The main drawback of using 2D models is that
they cannot learn any inter-slice dependencies since they work slice-by-slice. On the other
hand, on the MMWHS dataset, the best-performing models are 3D-based [3,21]. In [22] the
authors proposed a novel intelligent framework designed ad hoc for enhancing MR image
segmentation results of MRI data characterized by an underlying bimodal histogram.

Another significant topic is the two-step segmentation, where the region of interest
(containing the heart) is first detected via a localization procedure, which is subsequently
fed to the segmentation network. Different localization procedures were used, such as:
regressing to the center of the heart, then cropping a fixed-size 3D region around the
center, large enough to enclose all segmentation labels on every image from the training set.
This strategy was proved effective as it was used to obtain the best results of the MMWHS
challenge by Payer et al. [21].

Several other works experimented with similar ideas, for instance, by using a Faster
RCNN network [23] or constructing a bounding box using three CNNs [24] that deter-
mine the presence of the heart independently in axial, coronal, and sagittal slices of the
image volume.
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These methods operate in a 3D scenario, aiming to obtain a 3D box which encompasses
the entire heart. Other methods proposed to locate the heart by focusing on motion or heart
beats, based on the changes in pixel intensities [25,26]. A somewhat simpler approach is
proposed by Wang et al. in [27], where they use the output of a standard segmentation
model to extract the ROI for another model, using the boundaries of the initial prediction.
They used information from adjacent slices to compute the ROI for a single 2D slice.

3. Datasets
3.1. ACDC Dataset

The ACDC challenge [4] provides a total of 150 short-axis cine-MRI volumes from both
diastolic and systolic phases, of which 100 are available for training and validating, 50 being
reserved for testing. In this dataset, segmentation masks are provided for the following
heart substructures: right ventricle (RV), myocardium (Myo), and left ventricle (LV).

3.2. imATFIB Dataset

The datasets were acquired in our in-house performed clinical study, imATFIB—
IMaging-based, non-invasive diagnosis of persistent ATrial FIBrilation. The study is regis-
tered under the number NCT03584126 at clinicaltrials.gov (accessed on 22 February 2021).
The study obtained ethical approval from the local Ethics committee (No. 20117/04.10.2016)
and recruited subjects between 2017–2020. All subjects gave their written informed con-
sent to participate in the study. Patients and healthy volunteers underwent cardiological
evaluation using ECG and echocardiography, followed by cardiac MRI measurements.

All subjects were imaged with a 3T whole-body MRI system (3.0T Discovery MR750w
General Electric MRI scanner) using a dedicated body coil for signal reception. Cardiac MRI
required synchronous cardiac gating with ECG and breath-holding techniques to overcome
motion artifacts. The cardiac MRI protocol consisted of dark blood sequences (Black Blood
SSFSE), FIESTA cine sequences (ALL FIESTA CINE AST), and post-contrast sequences:
rest perfusion (FGRE Time Course), angiography imaging (Aorta CEMRA Asset) and
LGE/MDE images (2D MDE, 2D PSMDE) in three different planes: short axis, four-chamber,
and two-chamber view. The MDE/LGE sequences were acquired with a time delay of
10 min after the injection of gadolinium, showing contrast between normal myocardium
(dark) and abnormal myocardium (hyperenhancement). 3D HEART sequence was also
acquired and used to assess coronary abnormalities. The participants were constantly
monitored during the examination, and no immediate adverse effects were reported.

Ten datasets of healthy volunteers and ten datasets of patients with atrial fibrillation
were selected and the heart was manually traced by two radiologists. The results were
annotated manually by a radiologist with more than 10 years of experience and cross-
checked by another, senior radiologist, with more than 20 years of experience in the field.
The results were exported and stored in DICOM format.

Within the frame of our in-house performed clinical study, imATFIB, we obtained 20
cardiac MRI volumes with segmentation masks for the whole heart. The reason why the
ACDC dataset was deemed a good benchmark is the similarity with the imATFIB dataset
in characteristics such as resolution (256 × 256 for imATFIB), inter-slice gaps and slice
thickness.

4. Method

This section describes the main parts composing the proposed method: architectures,
data preprocessing, and ROI localization. We apply CNNs for the task of segmentation,
namely, the U-Net [20] and DeepLab [28] architectures. Following several preprocessing
steps, the input images are fed to the networks which, in turn, are trained to predict the
semantic label associated with each image voxel. In case ROI extraction is used, the models
are applied only on the selected part of the image.

clinicaltrials.gov
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4.1. Architectures

Most semantic segmentation CNN architectures follow the same general pattern:
using a contracting component which gradually shrinks the height and width of the image,
obtaining a coarse representation which has strong semantic value. This is subsequently
followed by an upsampling component that rebuilds the original size of the image with
the help of higher resolution features previously computed in the contracting part.

The U-Net we use differs from the standard version presented in [20] via the use of
simple bilinear interpolation instead of transposed convolutions, the use of batch normal-
ization [29] and the use of padding after each 3× 3 convolution. Thus, the network outputs
the same resolution as the input. The motivation behind opting to use plain interpolation
is lowering complexity and memory restrictions, as no additional parameters are required
for upsampling.

The DeepLabV3+ [28] model also follows this general pattern, usually applying
a standard classification CNN as a backbone, followed by a simple upsampling path
consisting of consecutive convolutional layers and bilinear upsampling. The backbone
used in this work is ResNeXt50 [30], a variation of the standard ResNet50 [30] that makes
use of grouped convolutions to boost performance, while maintaining model complexity
and parameter numbers. The ASPP [31] module is replaced by a single convolution to save
memory and computation, as well as to reduce the chance of overfitting.

Based on the ideas from [32], variations of these models were also tried, mainly reducing
the width of the model in a bid to avoid overfitting, as well as trying multiple input
resolutions in an attempt to find an optimal setup. Similar to [33], we use an extra parameter,
the width multiplier, to control the width of the models. The number of filters in each layer
is multiplied by the value of this parameter.

4.2. Data Preprocessing

Training volumes are split into slices and processed in a 2D manner, in batches, in a
random order. The motivation behind using a 2D approach is given by previous research
finding the performance of 2D vs. 3D approaches highly depends on the data characteristics.
Specifically, large inter-slice gaps and misalignments (which is the case for the imATFIB
dataset) negatively impact 3D models, resulting in slice-by-slice approaches, which are
basically oblivious to inter-slice relations, to perform better. Data normalization is done
by computing the mean value and standard deviation of each particular slice and using
those values to normalize. All slices are resampled bilinearly to a specific height and width
before being fed to the models. It is worth mentioning that per-slice normalization seems to
be the best-performing method when it comes to MRI images [21,34], and it is the general
conclusion from our experiments as well. However, there are also exceptions to this rule,
where the best-performing DeepLab model on the ACDC validation set was trained using
the mean and standard deviation of the training set to normalize slices.

With little data, augmentation is especially important, but there should also be a
limit when applying augmentation, as too much of it can affect performance. We found
that simple augmentations, such as horizontal mirroring and rotations, generally help
improve segmentation, whereas elastic deformations, Gaussian noise and blurring can
occasionally further boost performance. However, tuning the parameters regarding the
intensity/strength of applying these augmentation proved difficult, resulting in inconsis-
tent results (sometimes badly hurting performance). Notably, a popular augmentation
technique, random crop, considerably hurts performance. A possible reason could be that
heart structures always appear contiguously on MRI images, so a patch comprising only
parts of it is not realistic. To be consistent, results presented in this work only use mirroring
and rotations.

4.3. ROI Localization

The region of interest (ROI) is defined as the labelled area of an image slice, which in
most cases is practically a small part of the image. Naturally, the question arises whether
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models would benefit by focusing only on this region. To explore this idea, we denoted two
types of segmentation models: Standard and ROI models. The first one expects a regular
image as input, while the second one needs an ROI as input.

4.3.1. Perfect ROI

During training of the ROI models, the ground truth is used to extract the (perfect)
ROI (the perfect ROI box is the rectangle that encompasses the ground truth segmentation
mask). During inference, we do not have access to the ground truth. The localization step
aims to compute the ROI by using the prediction of a Standard segmentation model (the
process is similar, but this time the rectangle is computed around the mask resulting from
the model prediction, instead of the ground truth mask).

We have first explored the theoretical benefit of a perfectly selected ROI. In this context,
image slices are first upsampled bilinearly to 512 × 512, a bounding box of the labelled area
is computed using the ground truth mask and the area delimited by this box is cropped,
resized to 224 × 224, and then fed to the model. At the time of evaluation, the ROI was
reinserted into the original image slice, resized to its original dimensions. Thus, the 3D
volume is processed slice by slice, with the model itself processing only the ROI of each
slice. The procedure is depicted in Figure 1.

Figure 1. The flow-diagram that supports our approach. Before the training process starts, two scaling steps and a cropping
step are performed: each original image slice is resized to 512 × 512 and, from this enlarged image, a ROI is cropped (by
using the corresponding ground-truth) and resized to 224 × 224. The segmentation model is trained on these processed
images and a set of masks are predicted for each input. Finally, the masks are re-scaled to the original dimensions and
re-inserted in the original image.

4.3.2. ROI Extraction Mechanism

The ROI extraction mechanism we used is very similar to the one presented in [27],
but in this work we simplified it to operate in an entirely 2D manner and further optimize
training for prediction from dynamically computed ROIs. We concatenate two segmenta-
tion models (Standard and ROI) to perform segmentation, with the prediction of the former
being used to compute the ROI for the latter.

Essentially, the steps are exactly the same as depicted in Figure 1, but instead of
using the ground truth mask to compute the ROI box coordinates, the segmentation mask
predicted by the Standard model is used.

The training setup is the same for all models: The models are optimized using
Adam [35], with a learning rate of 0.001 which is divided by 10 after 60% of the epochs are
complete, and again at 90%, batch size of 12 for the U-Net (16 for DeepLab) and a weight de-
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cay of 0.0001. The training duration is 300 epochs (there was no extensive hyper-parameter
search done).

4.3.3. Standard Model Training

Since cardiac image segmentation is perhaps less complex than other segmentation
tasks [36], we found that dividing the number of filters in the DeepLab model by a factor of
3.2, coupled with increasing input resolution to 480× 480 generally improved performance,
which is in line with the original purpose of the model’s design (multiple-class, high
resolution image segmentation). On the other hand, U-Net did best on the imATFIB
dataset with a standard number of channels and 224 × 224 input resolution, while on the
ACDC dataset it did benefit from a higher input resolution, 320 × 320, paired with a width
multiplication factor of 0.5. Experiments presented in section 5 were performed with the
settings mentioned above.

4.3.4. ROI Model Training

Training an ROI model was done by computing the target ROIs using the boxes from
the ground truth masks. Empirical observations show that the ROI boxes obtained by the
Standard model are larger and usually do not respect the ratio of the true ROI box. In an
attempt to account for the mistakes of the Standard model, we trained the ROI models to
successfully perform segmentation from larger than perfect ROIs.

To achieve this, we specifically optimize the training of the ROI model, by perturbing
the ground truth ROI boxes randomly to reflect the shapes and sizes of dynamically
computed ROI boxes. Perturbation was performed both on width and height starting
from a minimum value up to a certain threshold (usually a fifth of the size of the box).
Moreover, we also imposed a minimum size of the ROI box, to avoid artifacts produced by
aggressive bilinear upsampling afterwards. In order to avoid randomness in validation,
the perturbation was set to a fixed size at time of evaluation (half the value of the max
threshold). All ROI models had the same input resolution, namely 224 × 224.

Accordingly, the perturbation during training is done as follows: we sampled an indi-
vidual perturbation value pi within the range (minp, maxp), for each of the four coordinates
of the bounding box: (x1, y1) top left and (x2, y2) bottom right, respectively. Then, the
perturbation operations are:

x1 = x1 − p1; y1 = y1 − p2

x2 = x2 + p3; y2 = y2 + p4.

4.3.5. Ensembling

Given the variety of methods to perform segmentation, we also use ensembling
techniques in an effort to further boost performance. Softmax predictions from a number
of models are summed and then averaged to obtain the final ensemble prediction.

5. Experiments and Results

Both the imATFIB and ACDC datasets are split 80/20 into a training and validation
set. Evaluation is done at the original resolution of the images. The mean Dice is computed
by averaging over the Dice of each volume. For the imATFIB dataset, we measure the Dice
on two classes only: heart vs background. An example set of images from the imATFIB
dataset is presented in Figure 2. Evaluation scripts provided by the ACDC challenge were
used to compute metrics.
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Figure 2. Sample results from the imATFIB validation set (Red—ground truth, Yellow—model
prediction). (A) Input image, (B) Label mask, (C) All Ensemble model (M9), (D) U-net model (M4).

Table 1 presents reference results for ROI models validated using the ROI computed
from the ground truth masks. These results should set a theoretical upper limit to segmen-
tation performance when using ROIs with the models applied, as well as target values
to achieve with dynamically computed ROIs. These are the same ROI models that will
be used for validation and testing in the following steps. Therefore, any performance
drop is certain to be caused by imperfections in computing the ROI boxes. Although no
statistically significant differences were observed in terms of the mean Dice value, the
U-net is consistently more robust, especially on the ACDC dataset, having a much better
result even on the most difficult validation volumes.

Table 1. Perfect ROI results on the ACDC and imATFIB validation sets. The imATFIB dataset
“mean” refers to the average Dice of all volumes (whole-heart vs background), whereas the ACDC
dataset “mean” refers to averaging the dices on the three segmented heart substructures as well
(StDev—Standard deviation, Min–Max—range determined by the minimum, respective maximum
dice values obtained on the volumes).

Model Dataset Mean Dice StDev Min–Max

DeepLab ACDC 92.6 5.4 67.4– 97.5
Unet ACDC 92.9 3.6 83.8–97.5

DeepLab imATFIB 89.7 1.0 88.4–90.8
Unet imATFIB 90 1.4 88.5–92.3

Tables 2 and 3 show the results obtained on the imATFIB and ACDC validation sets,
respectively. On both datasets, the U-net consistently maintains a lower standard deviation
and a higher dice value on its worst volumes, which indicates better generalization and
more stable performance than the DeepLab model. Furthermore, in Table 2 the last model
has the best mean dice value, but also the narrowest Min-Max interval and the second the
smallest StdDev.
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Table 2. Results on the imATFIB validation set (Standard Ensemble: Ensemble of best standard Unet
and DeepLab, ROI Ensemble: Ensemble of ROI pipelines (M5 and M6), All Ensemble: Ensemble
of the previous two ensembles (M7 and M8), Ensembling is done by averaging over the predicted
softmax values of the models).

Model Pretraining Mean Dice StDev Min–Max

M1: DeepLab No 85.5 2.0 82.5–88.1
M2: DeepLab Yes 86.6 1.9 83.4–88.6

M3: Unet No 88.2 1.2 85.8–88.9
M4: Unet Yes 88.2 1.2 85.8–88.9

M5: Unet & Unet - 89.34 1.1 87.8–90.4
M6: Unet & DeepLab - 88.70 0.9 87.5–90.0

M7: Standard Ensemble - 89.25 0.8 87.9–90.2
M8: ROI Ensemble - 89.41 1.2 88.0–91.3
M9 : All Ensemble - 89.89 0.9 88.8–91.2

Table 3. Results on the ACDC validation set (RV—right ventricle, LV—left ventricle, Myo—myocardium).

Model Dice RV Dice LV Dice Myo Mean Dice StDev Min–Max

M1: DeepLab 90.50 94.50 89.10 91.37 3.2 80.6–95.2
M3: Unet 89.32 95.07 89.47 91.29 3.0 83.1–95.5

M10: DeepLab & DeepLab 90.58 94.72 89.53 91.61 3.4 77.5–95.9
M11: DeepLab & Unet 90.65 95.02 89.94 91.87 3.0 81.7–95.7

M12: Standard Ensemble (M1 and M3) 90.48 95.12 89.89 91.83 3.0 82.5–95.9
M13: ROI Ensemble (M10 and M11) 90.88 94.98 90.11 91.99 3.2 80.0–95.9
M14: All Ensemble (M12 and M13) 91.26 95.39 90.49 92.38 2.9 81.7–96.2

Related to the first four scenarios presented in Table 2, two of them involve a transfer
learning approach: starting from a pretrained set of weights obtained by first training on
the ACDC dataset, all layers are initially frozen, except the final multi label classification
layer (in this case only two labels, heart and background). Layers are then progressively
unfrozen up until the 50% of the number of epochs are complete. The training setup is the
same as before.

Notably, consistent improvements are made via ROI localization and ensembling on
both datasets. For ROI extraction, all combinations of model ordering were tested, but only
the best-performing ones were written in the tables. The rule for applying ROI extraction
is simple, the prediction of the best-performing standard model is used for extraction.
This rule determines the Standard Model whose prediction is used for ROI extraction, and
then both ROI models are validated with it. Consistent with Table 1, the best results as
an ROI model are obtained by the U-Net. Transfer learning did not have a major impact.
While bringing an improvement to the performance of the DeepLab, it failed to lead to
better convergence for the U-Net.

In the case of both datasets, the performance of the ROI segmentation (from computed
boxes) worsened minimally compared to the perfect ROI results, which was expected.
It should be mentioned that the ROI models were trained specifically to account for
imperfect ROIs, so it is most likely possible to obtain better perfect ROI performance with
optimizations in this sense.

Promisingly, the performance gained through ensembling is almost as much as
through ROI localization, which proves that ensembling fundamentally different architec-
tures is highly beneficial. Specifically, DeepLab differs from U-Net principally in depth,
as well as the stride of the contracting path (the value by which the input image dimensions
get divided to obtain the smallest feature map: 16 by default for DeepLab, 32 for U-Net).

Finally, to officially benchmark our proposed approach, we made two submissions to
the ACDC challenge. The first one is the best-performing DeepLab model on the ACDC
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validation set, which is then compared to the All Ensemble. Results are presented in
Tables 4 and 5. The Hausdorff metric is a measure of distance between sets (the smaller
the better), especially sensitive to outliers, and it is one of the two main metrics of the
ACDC challenge (along with the Dice coefficient). Improvements remain consistent with
the validation set, and the end result of a mean Dice of 91.87% is decent, being comparable
to the second best-performing approach on the challenge [4].

Table 4. Results on the ACDC validation set (RV—right ventricle, LV—left ventricle, Myo—myocardium).

Model Dice RV Dice LV Dice Myo Mean Dice StDev Min–Max

M1: DeepLab 90.50 94.50 89.10 91.37 3.2 80.6–95.2
M3: Unet 89.32 95.07 89.47 91.29 3.0 83.1–95.5

M10: DeepLab & DeepLab 90.58 94.72 89.53 91.61 3.4 77.5–95.9
M11: DeepLab & Unet 90.65 95.02 89.94 91.87 3.0 81.7–95.7

M12: Standard Ensemble (M1 and M3) 90.48 95.12 89.89 91.83 3.0 82.5–95.9
M13: ROI Ensemble (M10 and M11) 90.88 94.98 90.11 91.99 3.2 80.0–95.9
M14: All Ensemble (M12 and M13) 91.26 95.39 90.49 92.38 2.9 81.7–96.2

Table 5. Results on the ACDC test set—Hausdorff Distance (RV—right ventricle, LV—left ventricle, Myo—myocardium).

Model Hausdorff RV (mm) Hausdorff LV (mm) Hausdorff Myo (mm)

M1: DeepLab 24.27 11.93 14.46
M14: All Ensemble 13.21 10.99 12.08

6. Conclusions

In this paper, we presented data on training and testing fundamentally different model
architectures, one of which not being explicitly designed for medical image segmentation,
DeepLab, and showed that ensembling of such models is beneficial. Starting from an
existing idea [27], we optimized training for ROI segmentation in an entirely 2D slice-by-
slice manner, obtaining close results to theoretical bests. We are aware that our study has
limitations—the size of our acquired pilot dataset is very small. However, we also tested
our method on a publicly available, significantly larger dataset, on which we obtain good
results, also. Thus, we provide stronger validation for our method.

In conclusion, we presented a simple, practical approach to cardiac image segmen-
tation from MRI images, demonstrating that both ensembling of different architectures
and using ROI localization improved performance. Moreover, this approach should be
applicable to any segmentation problem where an ROI might be present. Our approach
provides an opportunity to serve as a building block of a computer-aided diagnostic system
in a clinical setting.

As future work, we plan to investigate a similar approach in the 3D context and a
semi-supervised approach (when in the training set there are some labeled images and
some unlabeled images). Furthermore, we plan to integrate the proposed approach in a real
system (in this case, some quantisation methods could be required in order to reduce/scale
down the learned model).
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