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Abstract: The Discriminative Correlation Filter (DCF) has been universally recognized in visual
object tracking, thanks to its excellent accuracy and high speed. Nevertheless, these DCF-based
trackers perform poorly in long-term tracking. The reasons include the following aspects—first,
they have low adaptability to significant appearance changes in long-term tracking and are prone to
tracking failure; second, these trackers lack a practical re-detection module to find the target again
after tracking failure. In our work, we propose a new long-term tracking strategy to solve these issues.
First, we make the best of the static and dynamic information of the target by introducing the motion
features to our long-term tracker and obtain a more robust tracker. Second, we introduce a low-rank
sparse dictionary learning method for re-detection. This re-detection module can exploit a correlation
among these training samples and alleviate the impact of occlusion and noise. Third, we propose
a new reliability evaluation method to model an adaptive update, which can switch expediently
between the tracking module and the re-detection module. Massive experiments demonstrate
that our proposed approach has an obvious improvement in precision and success rate over these
state-of-the-art trackers.

Keywords: visual tracking; long-term; correlation filter; low-rank sparse; motion boundary; re-
detection; reliability evaluation

1. Introduction

Visual object tracking is one of the main tasks in computer vision and has a broad
spectrum of applications [1–6] in precision guidance, automatic driving, computer-aided
medicine, and so on. In a nutshell, the task of visual object tracking is to continuously
locate the target in a series of video frames, on the premise that we only know the target’s
bounding box in the initial frame. Actually, due to the limited training data and the in-
evitable interference of complex scenes, visual object tracking is a complex and challenging
problem in reality.

In recent years, the object tracking algorithms aimed at short-term tracking have
made significant progress in enhancing the tracking performance [7–10]. Therefore, the
Discriminative Correlation Filter (DCF) has drawn significant attention for its computation
efficiency [11–29], and has shown a state-of-the-art performance on multiple challenging
benchmark tracking datasets [30–32]. The DCF-based trackers can be formulated as a ridged
regression model, which learns from a set of object appearance and background training
samples obtained by cyclic shifts. They achieve extremely high computing efficiency by
utilizing diagonalizing expressions with circulant matrices in the frequency domain.

Actually, the video monitoring time is very long, so we expect to track the target
correctly over a long time. The DCF-based trackers are widely recognized for their excellent
overall performance in short-term tracking. However, they suffer from important issues
like target re-detection where once the tracking target is lost, these short-term trackers
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cannot relocate the target and fail consecutively in subsequent frames due to the no re-
detection module. Despite the attempts by various works to solve this issue [33–37],
it is still not completely solved. The reasons include the low adaptability to noticeable
appearance changes and low ability to re-detect the target. In this work, we mainly solve
the problems of the long-term tracker based DCF in several aspects. First, we try to make
the most of the target’s static and dynamic information by introducing the motion features
to our long-term tracker. Second, we study a low-rank sparse dictionary learning method
for re-detection to alleviate the impact of occlusion and noise. Third, we research a new
reliability evaluation method to carry out adaptive model updating or decide whether to
perform re-detection according to the evaluation results.

Massive experiments on OTB-2013 [30], OTB-2015 [30], and Temple Color-128 [15]
datasets prove that our proposed method has an obvious improvement compared to
the baseline tracker and outperforms several representative state-of-the-art methods in
success rate and precision. Besides, our proposed tracking framework can apply to other
DCF-based trackers for long-term tracking.

In conclusion, the effective contributions in this paper include the following aspects.
(1) We introduce motion features as a supplement to the appearance features. By

making full use of static and dynamic information, we can improve the adaptability to
significant changes in target appearance during long-term tracking and obtain a more
robust tracker. The extensive experiments demonstrate that this method can improve the
performance of our tracker.

(2) We introduce a low-rank sparse dictionary learning method for re-detection. This
re-detection module can exploit a correlation among these training samples and alleviate
the impact of occlusion and noise. The comparative experiments demonstrate that the
tracker’s success rate and precision have been dramatically improved by introducing a
re-detection module.

(3) We propose a new reliability evaluation approach to update the model adaptively
by considering both the PSR value and the trajectory smoothness degree. Using this
method, our proposed tracker can switch timely between the tracking module and the re-
detection module. The results indicate that our approach further improve the performance
of our proposed tracker.

2. Related Work

In this section, we discuss the closely related to our algorithm—DCF-based trackers
and long-term trackers.

2.1. DCF-Based Trackers

Starting with the MOSSE algorithm [11], which adopts a correlation filter to a visual
tracking task, discriminative correlation filter (DCF) based tracking gains extensive atten-
tion for its effectiveness and efficiency. Then, several recent works have been carried out to
address the inherent limitations of the standard DCF-based tracking algorithms.

For non-linear regression, Henriques et al. [12] learn the kernelized correlation filter
(KCF) via a kernel trick. KCF achieves an extremely high tracking speed, because of the
diagonalization of the cyclic matrix in the frequency domain. Besides, Tang Ming et al. [38]
propose a multi-kernel correlation filter (MKCF), which makes use of the invariance-
discriminative power spectrums of various features and improves the performance of the
tracker further. For scale estimation, a scale pool has been introduced in DSST [13] and
SAMF [14]. They can learn online using the target appearance samples at the scale pool and
achieve accurate scale adaptive visual tracking. For boundary effects, Danelljan et al. [17]
introduce a spatial regularization component in DCF formulation to penalize the correlation
filer coefficients during tracking. CSR-DCF [39] makes use of the spatial reliability map
to adjust the spatial constraint and then guarantees that filter values are zero outside of
the object bounding box. BACF [23] extracts real negative training samples from negative
background blocks to further suppress the boundary effect. Besides, other improvements in
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DCF have also made much development in context-aware [40], temporal regularisation [21],
deformable parts [41].

2.2. Long-Term Trackers

Different from short-term trackers, long-term trackers need to address the problems
of the re-detection of the target after tracking failure and the low adaptability to significant
appearance changes. Many algorithms are proposed to acquire impressive performance in
long-term tracking.

Recently, most algorithms decompose the tracking task into multiple modules to
handle long-term tracking. For example, in [42], Zdenek et al. design a framework (TLD)
that breaks the tracking task down into multiple subtasks—tracking, learning and de-
tection. The tracker and detector can promote each other. This framework performs
favourably against these existing trackers in long-term tracking. Following the idea of
TLD, Ma et al. [33] teach a DCF-based tracker to estimate the translation and scale vari-
ation, and train a complementary detector by utilizing online random ferns to relocate
the target. In [34], LT-FLO proposes a two-module approach—the short-term module and
the long-term module. The short-term module adopts edge-based features to enhance the
ability of the tracker to light changes. The long-term module combines the online model of
appearance and the learned pose manifold to re-detect the target. In [35], MUSTer propose
a dual-component approach that combines the long-term and short-term memory. MUSTer
employs an integrated correlation filter for short-term memory and keypoint matching
based RANSAC for long-term memory. In [36], Wang et al. integrate a color-based model
into the discriminative correlation filter and adopt a simple sparse coding based method
to acquire reliable searching areas. Since most of the aforementioned re-detection mod-
ules adopt intensive sampling, the target template and background template may contain
many similar components, which may affect the performance of the long-term tracker. In
this work, we investigate the re-detection module to improve the ability to distinguish
background and target.

In addition, in long-term tracking, the visual feature representation has a great influ-
ence on tracker results. A majority of the DCF-based trackers only use the appearance
features extracted from a single frame, such as HOG [43], color histogram [15], CN [17],
convolutional neural network (CNN) features [16,18,19]. For example, Huang Bo et al. [44]
adopt the HOG features extracted from background-aware samples to train multi-channel
correlation filters. NL Baisa et al. [45] use the CNN features to provide better feature
representation for the discriminative correlation filter. However, because the appearance
target may change significantly during tracking, the target appearance model is not always
good at distinguishing the target from the background. In [46–48], some studies have
shown that motion features reflect the information between frames and are complementary
to the appearance features. Hence, we investigate the combination of appearance features
and motion features during tracking.

Besides, it is essential to identify the state of the object in long-term tracking. In [11],
Bolme et al. adopt the peak-versus-noise ratio (PSR) based on the correlation response map
to update the tracking model adaptively. Moreover, LMCF [49] updates the tracker by the
Average Peak to Correlation (APCE) criterion, reflecting the fluctuation of the response
map and the confidence level of the tracking result. However, when the background is
cluttered, the adoption of PSR or APCE for reliability estimation may lead to the tracker’s
wrong prediction. Therefore, in this work, we investigate a better estimate of the reliability
of modeling an adaptive update and timely switching between the tracking module and
the re-detection module.

3. Tracking Algorithm Design

To achieve long-term stable object tracking, we put forward a long-term visual tracking
approach, consisting of a tracking module, re-detection module and reliability estimation.
Figure 1 shows the overall architecture of our proposed tracker.
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Figure 1. The framework of our proposed tracker. Our method mainly consists of tracking and re-detection modules. After
the tracking module has processed the input frames, we perform a reliability estimation for the tracking result, update the
tracking model adaptively, and decide whether re-detection is needed for the current result. If the re-detection process is
adopted, we perform a reliability estimation for the re-detection result and decide whether the re-detected result can replace
the originally detected result re-detection is needed for the current result.

3.1. Tracking Module

The DCF-based trackers have been extensively researched, thanks to their excellent
performance. The goal of these trackers is to learn a DCF to infer the location of the target
in the subsequent frames. Here, we introduce a multi-channel correlation filter h [40,50]. x
denotes the training example, which is extracted from the video sequence images. y is a 2D
Gaussian function label, representing the regression target. The filter h can be achieved by
solving a ridge regression problem.

ε(h) =
1
2

∥∥∥∥∥y−
d

∑
l=1

hl ? xl

∥∥∥∥∥
2

2

+
λ

2

d

∑
l=1
‖hl‖2, (1)

where xl ∈ RD expresses the lth channel of the vectorized image. hl ∈ RD indicates the lth
channel of the filter. y ∈ RD is the desired correlation response. ∑d

l=1 hl ? xl denotes the
actual correlation response. l represents the feature channel, l ∈ {1, 2, ..., d}. The ? symbol
refers to the circular correlation. λ is the weight of the regularization term.

The minimizer has a closed-form solution in the frequency domain by using Parseval’s
formula. It can be expressed as

ĥl =
x̂l � ŷ

∑d
i=1 x̂i � x̂∗i + λ

. (2)

Here, the hat denotes the discrete Fourier transform (DFT) of a function. ∗ symbol
indicates the complex conjugation. � symbol is element-wise multiplication.

As for scale estimation, we estimate the scale s by a single scale-space correlation filter
from the discriminative scale space tracking (DSST) algorithm [13].

During tracking, the visual feature representation has a great influence on tracker
results. Most trackers use only the appearance features extracted from a single frame,
such as HOG [43], color histogram [15], CN [17] and CNN features [16,18,19]. However,
the motion features integrate information between a pair of frames and are complementary
to the appearance features. In this work, we introduce the motion features into correla-
tion tracking.
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Motion Descriptors: Optical flow extends static image features into the temporal
domain, representing the motion information between two neighboring images. We can
obtain optical flow (u, v) using a gradient-based optical flow algorithm [51], where u, v
represent the horizontal and vertical components of optical flow respectively. Optical
flow takes both target motion and camera motion into account, but taking camera motion
into account may lead to errors in some cases. In most cases, the camera motion is
locally translational and varies smoothly across the image plane, such as zooming, tilting.
Dalal et al. [46] adopt the motion boundary histograms (MBH) descriptor to extract motion
features, which can mitigate the effects of camera motion. The results of their experiment
showed that MBH is more discriminative for target motion detection compared to optical
flow. Therefore, to keep the information about motion boundaries and remove the constant
motion information, we try to adopt the MBH descriptor to extract motion features.

Let ux, uy, vx, vy denote the corresponding horizontal and vertical gradients of optical
flow (u, v), respectively. The gradient magnitude and orientation for each pixel are defined
as follows:

Horizontal motion boundaries:

magx =
√
(ux)2 + (uy)2, θx = arctan(

uy

ux
). (3)

Vertical motion boundaries:

magy =
√
(vx)2 + (vy)2, θy = arctan(

vy

vx
). (4)

Then, we obtain the motion boundary histograms fMBHx , fMBHy (see Figure 2), voting
with mag and σ, similar to extracting the HOG features. Finally, we adopt a feature fusion
scheme that concatenates the appearance features and motion features into an augmented
feature vector f = [ f T

appearance, f T
MBHx

, f T
MBHy

]T , which fappearance refers to the appearance
features. In this paper, we extract the HOG [43] and color histogram [15] as the appearance
features fappearance.

Figure 2. Illustration of the MBH. (a,b) Reference images at time t − 1 and t. (c) Horizontal motion
boundary histograms. (d) Vertical motion boundary histograms.

3.2. Re-Detection Module

The DCF-based tracker may lose the target, due to the impact of occlusion, out of
view, and so on. Therefore, in this section, we propose a re-detection module that can mine
more candidates in the extensive background if the DCF-based tracker is unreliable. The
reliability estimation method is described in Section 3.3.

In the initial frame, we densely sample a predefined number of target and background
templates around the current target’s location as the positive and negative training samples,
respectively. Due to the dense sampling, the target and background templates may contain
many similar ingredients. In addition, to alleviate the impact of occlusion and noise, we
should exploit a correlation among these training samples. Here, our method utilizes
sparse and low-rank representation [52–54] in a particle filter.

Suppose that the template set A = [A1, A2, ..., AN ] ∈ RD×N , where D is the fea-
ture dimension of training sample, N refers to the total number of training samples. Let
X = [X1, X2, ..., XM] ∈ RD×M be the data matrix of all test samples. Thus, X = AZ + E,
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where Z = [Z1, Z2, ..., ZM] ∈ RN×M is the representation matrix of X. Then, we can seek a
representation of Z among all the candidates by solving the following
optimization problem:

minZ,E rank(Z) + λ1‖Z‖0 + λ2l(E),

s.t. X = AZ + E, Z ≥ 0,
(5)

where E = [E1, E2, ..., EM] ∈ RD×M is a noise term, and l(E) = ‖E‖2,1 = ∑M
j=1

√
∑D

i=1(|E|ij)2

[55], so minimizing ‖E‖2,1 encourages the columns of E to be zero. Since solving problem
Equation (5) is NP-hard, we can relax rank function to nuclear norm as follows, and relax
the l0-norm to the l1-norm. Therefore, Equation (5) can be rewritten as follows:

minZ,E ‖Z‖∗ + λ1‖Z‖1 + λ2‖E‖2,1,

s.t. X = AZ + E, Z ≥ 0.
(6)

Here, ‖·‖∗ indicates the nuclear norm, that is, the sum of the singular values of the
matrix. The parameter λ1 > 0 and λ2 > 0 are scalar parameters. We introduce an auxiliary
variable W and convert the Equation (6) into an equivalent optimization problem:

minZ,E ‖Z‖∗ + λ1‖W‖1 + λ2‖E‖2,1,

s.t. X = AZ + E, Z = W, Z ≥ 0.
(7)

We can solve the optimization problem and obtain the low-rank sparse dictionary Ẑ
and the noise matrix Ê by the linearized alternating direction method with the adaptive
penalty (LADMAP) [52].

The augmented Lagrangian function of Equation (7) is

L(Z, E, W, Y1, Y2, µ) =‖Z‖∗ + λ1‖W‖1 + λ2‖E‖2,1

+〈Y1, X− AZ− E〉+ 〈Y2, Z−W〉

+
µ

2
(‖X− AZ− E‖2

F + ‖Z−W‖2
F),

(8)

where µ is the corresponding penalty factor. Y1 and Y2 denote the Lagrangian multiplier.
〈., .〉 is the inner product. Adopting LADMAP [52], we minimize the function L with other
two variables fixed to update the variables Z, E, W alternately.

When the target needs to be re-detected, we should first obtain a certain amount of the
region of interest (ROI) candidates. Unlike random sampling or exhaustive sliding window
search to obtain the candidates, we use EdgeBox algorithm [56] to produce a group of
candidate bounding boxes and their proposal scores, and select the top M proposals as our
candidate sample set x = {x1, x2, ..., xM}.

Further, we need to evaluate the reliability of these M candidate samples. For the
candidate sample set x of the current frame, its coding coefficients

〈
Ẑ, Ê

〉
can be obtained

by Equation (7), where Ẑ = [Ẑ+, Ẑ−] and Ê = [Ê+, Ê−]. The template set A consists of
the target templates A+ and background templates A−, that is, A = [A+, A−]. So, for the
i-th candidate sample xi, the reconstruction error between it and target templates can be
expressed as εp =

∥∥xi − A+Ẑi
+ − Êi

+

∥∥2
2, and the reconstruction error between it and the

background template is expressed as εn =
∥∥xi − A−Ẑi

− − Êi
−
∥∥2

2.
Then, the likelihood score of the candidate sample xi can be measured as follows:

score = exp
{
−

εp

σ(εn + γ)

}
. (9)

Here, σ and γ are set to 0.2 and 10−32 respectively. Obviously, the higher the score,
the more reliable the candidate. Then, we obtain the position of the candidate which has
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the highest likelihood score and adopt the correlation filter obtained in Section 3.1 to get
a new response map. After that, we re-estimate the reliability of the response map by
adopting the reliability estimation method described in Section 3.3. If the result is reliable,
we replace it with the original tracking result. If not, we take the original tracking result.

3.3. Reliability Estimation

In the overall tracking framework, reliability estimation of tracking results is crucial for
adaptive model updating and target re-detection. Here, we have two schemes to estimate
the tracking reliability. The first is the peak sidelobe ratio (PSR) defined by the response
map, and the second is the trajectory smoothness degree of the tracker.

First, the PSR of the correlation filter response map is defined as

PSRt =
(Rt

max)− µi
σt

, (10)

where Rt
max indicates the maximum value of the response map in the t-th frame, µi and σi

denote the mean and standard deviation of the response map, respectively. The higher the
PSR value is, the more reliable the response result will be. Figure 3 reflects the relationship
between the PSR value and reliability.

Figure 3. Peak sidelobe ratio (PSR) values significantly decrease when tracking results become less
reliable (the green box represents the ground-truth target location, and the red color denotes the
tracker outputs).

Second, the trajectory smoothness degree of the tracker can indicate the reliability of
our tracking results as well. It can be defined as follow:

Smootht = exp(− 1
2σ2 D2

t ), (11)

where Dt =
∥∥c(Bt)− c(Bt−1)

∥∥, c(Bt) and c(Bt−1) denote the center of the bounding box in
the current frame and the center of the bounding box in the previous frame, respectively.
σ = 1

2 [w(Bt) + h(Bt)] is the average length of the width w(Bt) and the height h(Bt) of
the bounding box. The closer the value of Smootht is to 1, the better reliability of the
tracking result. Figure 4 reflects the relationship between the trajectory smoothness degree
and reliability.

Figure 4. The values of Smootht significantly decrease when tracking results become less reliable (the
green box represents the ground-truth target location, and the red color denotes the tracker outputs).
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Thereinto, derived from the response of the current frame, the PSR value reflects the
reliability of the result spatially. Unlike the PSR value, the trajectory smoothness degree
of the tracker considers the reliability temporally. In this paper, we consider both the PSR
value and the trajectory smoothness degree.

For the switch strategy between the tracking and re-detection module, when the PSR
value is lower than the threshold, or the trajectory smoothness degree is lower than the
threshold, re-detection is performed. This strategy can increase the robustness of the algo-
rithm effectively in long-term tracking. As for template updates, we update the tracking
model adaptively using the reliability estimation criterion. In the current frame t, if the PSR
value and the trajectory smoothness degree are higher than the thresholds, we update the
template of the correlation filter ĥt

template = ĥt−1
template + ĥt, in which η denotes the learning

rate. Otherwise, we do not update the model to avoid learning unreliable information. For
the re-detection module, when the PSR value and the trajectory smoothness degree are
higher than the thresholds, the positive and negative templates are updated.

Our proposed tracking approach is summarized in Algorithm 1.

Algorithm 1: Our proposed tracking approach
Input: Image frame I0, initial target bounding box x0.
Output: Position pt, scale st.

1 for t = 2 to n do
2 Extract the appearance and the motion features in frame t; Compute the

correlation response map with Equation (2) and estimate new target position
pt and scale st; Compute the PSR value and the trajectory smoothness degree
with Equation (10) and Equation (11);

3 if PSRt < τ1 ·MPSR or Smootht < σ1 then
4 .
5 end
6 Generate re-detection candidates using the EdgeBox algorithm;
7 Compute candidates’ confidence using low-rank sparse dictionary with

Equation (9) and obtain new target position p
′
t;

8 Compute the correlation response map with Equation (2) at the position p
′
t and

compute PSR
′
t and Smooth

′
t with Equation (10) and Equation (11);

9 if PSR
′
t > τ2 ·MPSR and Smooth

′
t > σ2 then

10 pt = p
′
t; st = s

′
t;

11 end
12 if PSRt > τ3 ·MPSR and Smootht > σ3 then
13 .
14 end
15 Update the correlation tracker and the model;
16 Update positive and negative templates;
17 end

4. Experiment
4.1. Experimental Setup

In this section, our proposed approach is compared to 11 state-of-the-art trackers on
three challenging datasets: OTB-2013 [30], OTB-2015 [30] and Temple Color-128 [31]. These
state-of-the-art trackers include the DCF-based trackers (i.e., SRDCF [17], ECOhc [18],
Staple [15], DSST [13], KCF [12], CSR-DCF [39], SAMF [14], SAMF_CA [40]) and the
trackers for long-term tracking (i.e., TLD [42], LCT [33]).

The comparison experiments are performed in MATLAB 2018a on a PC with an Intel
i5-8400 CPU at 2.80GHz×6. In addition, to compare the performance of these trackers, we
employ precision and success rate as evaluation metrics.
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Parameters: In our experiments, the regularization parameter lambda is set to 10−3

in Equation (2), the regularization parameters lambda1 and lambda2 are set to 0.1 and 4 in
Equation (7). In Equation (9), σ and γ are set to 0.2 and 10−32 respectively. For the reliability
estimation, in Algorithm 1, {τ1, σ1} is set to {0.6, 0.8}, {τ2, σ2} is set to {0.7, 0.7}, {τ3, σ3} is
set to {0.7, 0.9}.

4.2. Results and Analysis
4.2.1. OTB-2013 Benchmark

(1) Comparison with the baseline
In this work, we estimate the OTB-2013 dataset, which includes 51 challenging video

sequences. Here, we choose Staple [15] as the baseline, which extracts HOG and color
histogram as the appearance feature model and enables greater accuracy. To address the
issues of the target detection again after tracking failure and the interference from complex
scenes, we improve this algorithm and obtain good performance for long-term tracking.
Our primary contribution is introducing the motion features into correlation tracking as
a complement to appearance features. The secondary contribution is introducing a re-
detection module based on sparse and low-rank representation for long-term tracking. The
third contribution is proposing a reliability estimation method, which takes into account
the reliability of the result spatially and temporally.

In Figure 5, we analyze these contributions in detail.

Figure 5. Precision plots (left) and Success plots (right) of OPE on OTB-2013 dataset. The values in
the legend indicate the quantitative comparisons of distance precision at the threshold of 20 pixels
and overlap success rate at the conventional thresholds of 0.5 (IOU > 0.5).

In Figure 5, on the whole, our proposed method provides an obvious performance
improvement over the baseline tracker (Staple) by a success rate gain of 11.8% and a
precision gain of 12.4%. More specifically, after introducing the motion features, our tracker
provides a performance improvement by a success rate gain of 2.2% and a precision gain
of 2.7%. On this basis, it can boost the success rate of 8.8% and the precision of 8.8% in by
introducing a re-detection module based on sparse and low-rank representation for long-
term tracking. Besides, our tracker can further improve the performance by a success rate of
0.8% and a precision of 0.9%. In conclusion, all of our contributions can effectively improve
the tracker’s performance, but the second one has the most significant improvement.

(2) Integration into Different DCF Trackers
Here, we combine multiple classical correlation filter based tracking algorithms with

our proposed improvement method. In Figure 6, we compare these different DCF trackers
with their improved algorithms.
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Figure 6. Precision plots (left) and Success plots (right) of OPE on OTB-2013 dataset. The values in
the legend indicate the quantitative comparisons of distance precision at the threshold of 20 pixels
and overlap success rate at the conventional thresholds of 0.5 (IOU > 0.5).

After introducing our proposed improvement method, the basic DCF based track-
ers (KCF [12], DSST [13], Staple [15]) all gain significant improvements. For example,
the improved KCF algorithm has a success rate gain of 5.0% and a precision gain of 6.4%.
The improved DSST algorithm boosts the success rate by 8.4% and the precision by 4.1%.
Besides, the Staple tracker still obtains an obvious improvement by a success rate gain of
11.8% and a precision gain of 12.4%. The results show that it is feasible to improve the
performance of a DCF-based tracker by introducing our proposed improvement methods.

(3) Comparison with the state-of-the-art trackers
We have done plenty of comparative experiments with these representative state-

of-the-art trackers. These trackers include the DCF-based trackers (i.e., SRDCF [17],
ECOhc [18], Staple [15], DSST [13], KCF [12], CSR-DCF [39], SAMF [14], SAMF_CA [40])
and the trackers for long-term tracking (i.e., TLD [42], LCT [33]).

In Figure 7, our method outperforms these state-of-the-art methods in the success rate
of 83.2% and the precision of 89.2%.

Figure 7. Precision plots (left) and Success plots (right) of OPE on OTB-2013 dataset. The values in
the legend indicate the quantitative comparisons of distance precision at the threshold of 20 pixels
and overlap success rate at the conventional thresholds of 0.5 (IOU > 0.5).

(4) Qualitative Analysis
For a further detailed analysis of these trackers, we provide the tracking results param-

eterized by different attributes in Figure 8, including background clutter (BC), deformation
(DEF), fast motion (FM), in-plane rotation (IPR), illumination variation (IV), low reso-
lution (LR), motion blur (MB), deformation (DEF), occlusion (OCC), out of view (OV),
out-of-plane rotation (OPR) and scale variation (SV). Table 1 shows that our proposed
tracker is superior to the baseline tracker in different attributes on the success rate and
precision intuitively.
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Table 1. The success rate (at the conventional thresholds of 0.5) of 11 attributes occurred on the OTB-2013 dataset.

BC MB DEF IV IPR LR OCC OPR OV SV FM

Ours 0.796 0.732 0.871 0.766 0.761 0.628 0.848 0.815 0.865 0.775 0.723
Baseline
(Staple) 0.739 0.512 0.693 0.643 0.667 0.508 0.701 0.685 0.659 0.658 0.576

Besides, our proposed approach outperforms other trackers in five attributes in
Figure 9. To show the superiority of our tracker more intuitively, we conduct a quali-
tative analysis of these five challenging situations.

Figure 8. Success plots over 11 challenging attributes on OTB-2013 dataset. The values in the legend indicate the overlap
success rate at the conventional thresholds of 0.5 (IOU > 0.5).

(a) Out of view
Figure 9a visualizes the tracking results on the box video sequence. We can observe

that most trackers fail after the box in the video sequence moves out of view. Nevertheless,
in Frame #495, our proposed tracker can re-detect the target accurately.

(b) Occlusion
Figure 9b shows that the freeman video sequence encounters occlusion over Frames

#40 to #270. It is evident that occlusion may cause drift of the appearance model and lead
to failure eventually. Among these trackers, our proposed tracker can achieve accurate
tracking and outperforms the baseline (Staple) and most trackers.

(c) Scale variation
In practical applications, the relative movement between target and camera causes

the change of the target scale. Figure 9c shows that KCF, SAMF, SAMF_CA, LCT and TLD
cannot adapt to the change of the target scale well. However, our proposed approach can
track the singer precisely.

(d) Out-of-plane rotation
The out-of-plane rotation may cause the appearance of the target to change greatly. In

Figure 9d, only the tracker proposed by us can successfully track the ironman.
(e) Low resolution
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Low resolution may make it impossible to obtain detailed information about the target,
which is a challenge for accurate tracking. In Figure 9e, our tracker runs in low resolution.
Our proposed tracker, TLD and ECOhc can track the panda precisely.

Figure 9. Qualitative comparison of our proposed tracker with state-of-the-art trackers on the box, freeman, singer, ironman
and panda videos, under out of view, occlusion, scale variation, out-of-plane rotation and low resolution, respectively.

4.2.2. OTB-2015 Benchmark

In Figure 10, we present results on the OTB-2015 dataset. It is observed that our
tracker achieves a prominent improvement over the baseline (Staple) with a success rate
gain of 12.9% and a precision gain of 12.4%. Our proposed approach provides the best
performance with a success rate of 80.3% and a precision of 87.1%.

Figure 10. Precision plots (left) and Success plots (right) of OPE on OTB-2015 dataset. The values in
the legend indicate the quantitative comparisons of distance precision at the threshold of 20 pixels
and overlap success rate at the conventional thresholds of 0.5 (IOU > 0.5).

4.2.3. Temple Color-128 Benchmark

The Temple Color-128 dataset contains 128 color video sequences. In Figure 11, our
proposed method obtains a substantial improvement over the baseline (Staple), with a
success rate gain of 7.1% and a precision gain of 9.1%. Besides, our tracker outperforms all
of the others in success rate and precision.
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Figure 11. Precision plots (left) and success plots (right) of OPE on Temple color-128 dataset. The
values in the legend indicate the quantitative comparisons of distance precision at the threshold of
20 pixels and overlap success rate at the conventional thresholds of 0.5 (IOU > 0.5).

4.2.4. Speed Analysis

For a full comparison, Table 2 lists the average tracking speed of these trackers on the
OTB-2015 dataset. Our proposed tracker has an average speed of 19.1 FPS, which maintains
a sufficient balance between speed and accuracy.

Table 2. The speeds of different trackers on OTB-2015 dataset.

Ours ECOhc STAPLE SRDCF BACF SAMF
_CA

CRS
_DCF KCF SAMF DSST TLD LCT

Avg.FPS
(CPU) 19.1 37.6 67.7 12.8 41.6 27.7 17.8 315.1 29.4 63.9 60.6 33.5

5. Conclusions

A novel long-term tracking method is proposed to achieve more robust long-term
tracking in this paper. By introducing motion features as a supplement to the appearance
features, our tracker can effectively improve the discrimination ability of the tracker. In our
re-detection module, we introduce a low-rank sparse dictionary learning to re-detect targets.
For reliability evaluation, our tracker can update the model adaptively, considering both
the PSR value and the trajectory smoothness degree. Numerous experiments demonstrate
that our proposed tracker overmatches other state-of-the-art trackers, and our proposed
framework can apply to other DCF-based trackers in long-term tracking.
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A.; et al. The sixth Visual Object Tracking VOT2018 Challenge Results. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018. [CrossRef]

33. Ma, C.; Yang, X.; Zhang, C.; Yang, M.H. Long-term Correlation Tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 5388–5396.

34. Lebeda, K.; Hadfield, S.; Matas, J.; Bowden, R. Long-term Tracking through Failure Cases. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, Sydney, Australia, 1–8 December 2013; pp. 153–160.

35. Hong, Z.; Chen, Z.; Wang, C.; Mei, X.; Prokhorov, D.; Tao, D. Multi-store Tracker (muster): A Cognitive Psychology Inspired
Approach to Object Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,
USA, 8–10 June 2015; pp. 749–758.

36. Wang, N.; Zhou, W.; Li, H. Reliable Re-detection for Long-term Tracking. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 730–743.
[CrossRef]

37. Chen, Z.; Liu, P.; Du, Y.; Luo, Y.; Guo, J. Long-term Correlation Tracking via Spatial-temporal Context. Vis. Comput. 2020, 36,
425–442. [CrossRef]

38. Tang, M.; Feng, J. Multi-kernel Correlation Filter for Visual Tracking. In Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 3038–3046.
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