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Abstract: Analyses of the entropy of a thermal system that consists of an inclined trapezoidal
geometry heated by a triangular fin are performed. The domain is filled by variable porosity
and permeability porous materials and the working mixture is Al2O3-Cu hybrid nanofluids. The
porosity is varied exponentially with the smallest distance to the nearest wall and the permeability
is depending on the particle diameter. Because of using the two energy equations model (LTNEM),
sources of the entropy are entropy due to the transfer of heat of the fluid phase, entropy due to the
fluid friction and entropy due to the porous phase transfer of heat. A computational domain with
new coordinates (ξ,η) is created and Finite Volume Method (FVM) in case of the non-orthogonal grids
is used to solve the resulting system. Various simulations for different values of the inclination angle,
Hartmann number and alumina-copper concentration are carried out and the outcomes are presented
in terms of streamlines, temperature, fluid friction entropy and Bejan number. It is remarkable that
the increase in the inclination angle causes a diminishing of the heat transfer rate. Additionally, the
irreversibility due to the temperature gradients is dominant near the heated fins, regardless of the
values of the Hartmann number.

Keywords: variable porosity; triangular fins; trapezoidal geometry; nanofluids; Heat transfer en-
hancement; entropy; LTNE

1. Introduction

Various industrial applications depend on the properties and nature of porous me-
dia. Thermal insulation, grain stocking and drying processes, the petroleum reservoir,
compacted beds for the chemical industry and geophysical systems are good examples of
these applications. This importance of these materials makes researchers focus on under-
standing their nature and properties [1–5]. In fact, the first category of porous medium
investigations is concerned with situations where the properties (porosity, permeability
and thermal conductivity) of the medium are constants [6–10]. Moreover, the presence
of nanoparticles inside a thermal application solvent is receiving increasing attention as
it allows one to control the performance in terms of heat transfer and entropy [11–13].
Therefore, researchers are targeting the analysis of situations where the two (porous mate-
rials and nanofluids) interact. Recent trends of such studies can be found in Ahmed [14]
who discussed nanofluids motion in an inclined geometry filled with anisotropic porous
elements. His outcomes mentioned that an increase in nanoparticles concentration by
4% results in an enhancement of the maximum temperature of the liquid by 12.27%. A
porous medium with constant properties was considered by Rashed et al. [15] as a flow
medium within a rectangular domain filled by nanofluids. The thermal dispersion impacts
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are of interest in this study. Their findings refer to a support in the values of the Nusselt
(Nu) coefficient given as the Brownian parameter is growing. The two-energy model
(LTNEM) in case of the constants porosity and permeability is used by Ahmed [16] to
survey non-Darcy flow within trapezoidal geometries. The flow is due to the presence of
a triangular fin that is located at the bottom. The domain is divided into nanofluid layer
and porous layer. The outcomes uncovered that variations of the Neild number from 1 to
1000 results in an enhancement in the Nu coefficient by 95.6% at the value of the thermal
conductivity ratio Kr = 0.1. The second category of porous media studies is focused on
the variable properties of the medium, i.e., variable porosity, variable permeability and
variable thermal conductivity. Examples of these studies are those of Al-Weheibi et al. [17],
Abelman et al. [18], Saif et al. [19], Nithiarasu et al. [20], EL-Kabeir et al. [21] and Amiri
and Vafai [22]. In all the mentioned studies, the porosity is varied exponentially with the
smallest distance to the nearest wall and the permeability depends on the particle diameter.

On the other side, the dynamical behaviors of nanofluids within irregular geometries
(trapezoidal, triangle, wavy, etc.) have been examined by various investigators in recent
years. Treatments of such domains may be made using the body-fitted method, i.e.,
converting the complex real physical model into a rectangular computational model. While
cavities with regular shapes and fins have been studied extensively in many research works,
such as [23–25], non-regular geometries have received less focus and the aforementioned
method is effective in simulations of the transfer of heat problems concerning them. The
real coordinates (x, y) are expressed as functions in new coordinates (ξ, η), and based on
these functions, all the partial derivatives of the dependent variables are transformed into
the new coordinates [26,27]. Alsabery et al. [28] used a trapezoidal geometry as a flow
domain to discuss the transfer of heat by Darcian nanofluid flow. They considered that
the domain is inclined and divided into two layers (porous layer and nanofluid layer).
They noted a remarkable enhancement in the rate of heat transfer in the case of silver–
water mixture. Alsabery et al. [29] discussed a trapezoidal domain that is divided into
nanofluid porous layer and non-Newtonian fluid layer. Visualization of the heat lines
within the system is of interest. Their results reveal that for fixed values of the power-law
index (n = 0.7), activity of the mixture flow is enhanced as the Prandtl number grows.
Nanofluids flow within triangular domains heated from inside/outside (two heating
modes) is examined by Ahmed et al. [30]. The geometry is filled by copper as nanoparticles
and includes heated/cooled fins with a variable length. The outcomes disclose that the
boost in the height of the fins augments the transfer of heat rate. Additionally, these
irregular geometries with various thermal conditions have been handled by different
scientific researchers [31–35]: particularly, magneto-convective flow of nanofluids confined
open trapezoidal enclosures by Miroshnichenko et al. [36] and Astanina et al. [37]. Finally, it
should be noted that many research articles that deal with different shapes and geometries
along with many different nanofluids and hybrid nanofluids for conventional fluids or
rarefied gases under the influence of many parameters can be found in [38–42].

As stated previously, using triangular fins within the containers as controlling factors
for the nanofluids flows and the variable properties of the porous medium have not been
considered widely. Thus, the main objective of this simulation is to study the magneto-
hydrodynamic hybrid nanofluid flow in trapezoidal containers heated by triangular fins.
Unusually, the magnetic field is in a horizontal direction while the flow domain is inclined.
The properties of the porous medium, namely, the porosity and permeability, as well as
values of the Da, are considered as variables. Entropy analyses in the case of the two-energy
model (LTNEM) are examined. The real physical domain is transformed to a rectangular
computational domain, then the finite volume method based on non-orthogonal grids is
applied to solve the resulting system. The novelty significance of the current study appears
in the following points:

• Using an irregular flow domain heated by irregular fin that was not presented before.
• Properties of the porous medium are considered variables and this assumption makes

the work more attractive to readers.
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• Physically, the local thermal non-equilibrium state (two-energy equations model) is
more realistic than the local thermal equilibrium case.

• Most of the published works in this field consider the magnetic field as inclined and the
geometry as non-inclined, and hence, the formulation of the governing system when
the magnetic force is horizontal and the geometry is inclined is unusual and novel.

• Analyses of the second law of thermodynamics for such kinds of complex geometries
(triangular fin within a trapezoidal enclosure) have not been presented before.

• The numerical methodology which depends on mapping between the real–irregular
domain and regular–rectangular computational domain has received less focus.

• Finally, various practical applications for the current simulations can be found, e.g., air
conditioning systems in buildings, furnace and home heating, electronic equipment
cooling, drying foods and double pane windows.

2. Formulation of the Problem

A horizontal magnetic field with strength β0 is influencing on an inclined trape-
zoidal domain heated by a triangular fin, as illustrated in Figure 1. The inclined walls
of the containers are referred to with a low temperature Tc while the upper wall is insu-
lated. The inclination angle is γ and the gravity and magnetic vectors are, respectively,
(−g sin γ, −g cos γ), (β0 cos γ, −β0 sin γ). The trapezoidal angle is Φ and the geometry
is filled by a variable properties porous medium. The non-equilibrium thermal model
between the hybrid nanofluid and porous phases is valid. The mixture consists of alumina
and copper nanoparticles suspended in a base fluid (water). Properties of the nanoparticles
and water are given in Table 1. In addition, the porous elements are considered as a
compacted spheres bed. Therefore, the model proposed by Ergun [43] for permeability
is introduced. One of the features of this model is that the permeability depends on the
particle size (particle diameter dp) and the porosity of the medium ε. It is expressed as:

K =
d2

pε3

150(1− ε)2 (1)
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Table 1. Properties of the components of the hybrid nanofluid.

Property H2O Cu Al2O3

ρ 997.1 8933 3970
Cp 4179 385 765
k 0.613 401 40
β 21 × 10–5 1.67 × 10–5 0.85 × 10–5

σ 0.05 5.96 × 107 1 × 10–10

In addition, the variable porosity of the medium is taken as a function of the particle
size dp and the smallest distance to the nearest wall |y|. This relation is given as:

(y) = ε∞

(
1 + a1 exp

[
− a2|y|

dp

])
(2)

Values of the empirical constants a1 and a2 are introduced by Cheng and Hsu [44] as
1.4 and 5, respectively, and the value of ε∞ is considered as 0.36. Using this correlation,
the porosity near the bottom wall is equal to 0.864 and this value decreases exponentially
as the distance from the bottom wall is increased. The Da is also considered a variable in
this study.

Da(y) =
K(y)

L2 =
d2

pε3

150(1− ε)2
1
L2 (3)

When all these assumptions are taken into account, the two-energy model governing
this physical case is given as:

∂up

∂x
+

∂vp

∂y
= 0 (4)

ρhn f
ε

∂up
∂t +

ρhn f
ε

[
up

∂
( up

ε

)
∂x + vp

∂
( up

ε

)
∂y

]
= − ∂p

∂x +
µe f f

ε

(
∂2up
∂x2 +

∂2up
∂y2

)
− µe f f

K up −
CFρhn f√

K

√
u2

p + v2
pup

+(ρβ)hn f

(
Tf p − Tc

)
g sin γ− σhn f β2

0
ε

(
vp sin γ cos γ + up sin2 γ

)
(5)

ρhn f
ε

∂vp
∂t +

ρhn f
ε

[
up

∂
( vp

ε

)
∂x + vp

∂
( vp

ε

)
∂y

]
= − ∂p

∂y +
µe f f

ε

(
∂2vp
∂x2 +

∂2vp
∂y2

)
− µe f f

K vp −
CFρhn f√

K

√
u2

p + v2
p vp

+(ρβ)hn f

(
Tf p − Tc

)
g cos γ− σhn f β2

0
ε

(
up sin γ cos γ + vp cos2 γ

)
(6)

ε
(
ρcp
)

hn f
∂Tf p

∂t +
(
ρcp
)

hn f

(
up

∂Tf p
∂x + vp

∂Tf p
∂y

)
= εkhn f

(
∂2Tf p
∂x2 +

∂2Tf p
∂y2

)
+ h
(

Tp − Tf p

) (7)

(1− ε)
(
ρcp
)

p
∂Tp

∂t
= (1− ε)kp

(
∂2Tp

∂x2 +
∂2Tp

∂y2

)
+ h
(

Tf p − Tp

)
(8)

The symbols in Equations (4)–(8) are the velocity fields up, vp, the temperature for
the hybrid nanofluid/solid phase Tf p, Tp, the porosity ε, the permeability K, the electrical
conductivity σhn f , the thermal conductivity khn f , the independent variables (Cartesian
coordinates and time) x, y, t and the gravity acceleration g. In addition, the following
dimensionless quantities are submitted:

(
Up, Vp

)
=

(
up, vp

)
L

α f
,
(

θ f p, θp

)
=

(
Tf p, Tp

)
− Tc

∆T
, ∆T =

(
Tf p, Tp

)
h
− Tc), (XL, YL) = (x, y) , P =

L2

ρn f α f
2 p, τ =

α f

L2 t (9)
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Substituting Equation (9) into Equations (4)–(8), the following combined dimensionless
system is given:

∂Up

∂X
+

∂Vp

∂Y
= 0 (10)

1
ε

∂Up
∂τ + 1

ε

[
Up

∂
(Up

ε

)
∂X + Vp

∂
(Up

ε

)
∂Y

]
= − ∂P

∂X + Pr 1
ε

µhn f
µ f

ρ f
ρhn f

[
∂2Up
∂X2 +

∂2Up
∂Y2

]
−
[

Pr
Da(Y)

µhn f
µ f

ρ f
ρhn f

+
C f√
Da(Y)

√
U2

p + V2
p

]
Up

+RaPr
(ρβ)hn f
(ρβ) f

ρ f
ρhn f

θ f p sinγ

− σhn f
σf ε

ρ f
ρhn f

Ha2Pr
(
Vp sin γ cos γ + Up sin2 γ

)
(11)

1
ε

∂Vp
∂τ + 1

ε2

[
Up

∂
( Vp

ε

)
∂X + Vp

∂
( Vp

ε

)
∂Y

]
= − ∂P

∂Y + Pr 1
ε

µhn f
µ f

ρ f
ρhn f

[
∂2Vp
∂X2 +

∂2Vp
∂Y2

]
−
[

Pr
Da(Y)

µhn f
µ f

ρ f
ρhn f

+
C f√
Da(Y)

√
U2

p + V2
p

]
Vp

+RaPr
(ρβ)hn f
(ρβ) f

ρ f
ρhn f

θ f p cos γ

− σhn f
σf ε

ρ f
ρhn f

Ha2Pr
(
Up sin γ cos γ + Vp cos2 γ

)
(12)

ε
∂θ f p

∂τ
+

(
Up

∂θ f p

∂X
+ Vp

∂θ f p

∂Y

)
= ε

[
αhn f

α f

(
∂2θ f p

∂X2 +
∂2θ f p

∂Y2

)
+

(
ρcp
)

f(
ρcp
)

hn f
H
(
θp − θ f p

)]
(13)

(1− ε)
∂θp

∂τ
− αr(1− ε)

[(
∂2θp

∂X2 +
∂2θp

∂Y2

)
+ HKr

(
θ f p − θp

)]
= 0 (14)

The subjected conditions to the boundaries of the geometry are:

τ ≥ 0 : Y = 0, 0 ≤ X ≤ 1, Up = Vp = 0,
∂θ f p

∂Y
=

∂θp

∂Y
= 0

τ ≥ 0 : Y = 1, 1− tan Φ ≤ X ≤ 1 + tan Φ, Up = Vp = 0,
∂θ f p

∂Y
=

∂θp

∂Y
= 0

τ ≥ 0 : X + Y tan Φ = 0, 0 ≤ Y ≤ 1, Up = Vp = 0, θ f p = θp = 0
τ ≥ 0 : X−Y tan Φ = 1, 0 ≤ Y ≤ 1, Up = Vp = 0, θ f p = θp = 0

On the inner fin:
θ f p = θp = 1 (15)

In Equations (10)–(15), Pr =
ν f
α f

is the Prandtl number, Ra =
β f g (Th−Tc)L3

α f ν f
is the

Raleigh number, Da = K
L2 is the Darcy number, H = h L2

ε k f
is the Nield number and

Kr =
ε k f

(1−ε)kp
is the thermal conductivity ratio.

2.1. Correlations of the Hybrid Nanofluids

Correlations of the hybrid nanofluids were presented recently by Ahmed [45]. Follow-
ing this investigation, the density, heat capacitance, thermal expansion, thermal diffusivity,
thermal conductivity, dynamic viscosity and electrical conductivity are, respectively:

ρhn f = φAl2O3 ρAl2O3 + φCuρCu + (1− φ)ρb f (16a)
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(ρCp)hn f = φAl2O3(ρCp)Al2O3
+ φCu(ρCp)Cu + (1− φ)(ρCp)b f (16b)

(ρβ)hn f = φAl2O3(ρβ)Al2O3
+ φCu(ρβ)Cu + (1− φ)(ρβ)b f (16c)

αhn f =
khn f

(ρCp)hn f
(16d)

khn f
kb f

=

(
(φAl2O3

kAl2O3
+φCukCu)

φ + 2kb f + 2(φAl2O3 kAl2O3 + φCukCu)− 2φkb f

)
×
(

(φAl2O3
kAl2O3

+φCukCu)

φ + 2kb f − (φAl2O3 kAl2O3 + φCukCu) + φkb f

)−1 (16e)

µhn f =
µb f

(1− (ϕAl2O3 + ϕCu))
2.5 (16f)

σhn f

σb f
= 1 +

3
(

(ϕAl2O3
σAl2O3

+ϕCuσCu)

σb f
− (ϕAl2O3 + ϕCu)

)
(

(ϕAl2O3
σAl2O3

+ϕCuσCu)

ϕσb f
+ 2
)
−
(

(ϕAl2O3
σAl2O3

+ϕCuσCu)

σb f
− (ϕAl2O3 + ϕCu)

) (16g)

2.2. Heat Transfer Coefficient

The heat transfer rate is calculated at both the left and right walls. Since these walls
are inclined, these quantities are given as:

For the fluid phase:(
Nu f

)
L
=

khn f

k f

[
∂θ f p

∂X
sin Φ +

∂θ f p

∂Y
cos Φ

]
(17)

(
Nu f

)
R
=

khn f

k f

[
−

∂θ f p

∂X
sin Φ +

∂θ f p

∂Y
cos Φ

]
(18)

For the solid phase:

(Nus)L =
∂θp

∂X
sin Φ +

∂θp

∂Y
cos Φ (19)

(Nus)R = −
∂θp

∂X
sin Φ +

∂θp

∂Y
cos Φ (20)

2.3. Entropy Generation Analysis

The entropy equations can be written in the following form:

s′′′f =
khn f

T2
0

(
∇Tf p

)2
+

µhn f

T0 K(y)
(V ·V) +

µhn f

T0

(
τij : ∇V

)
+

σhn f

T0
|V ∧ B|2 +

h
(
Tp − Tf p

)2

T2
0

(21)

s′′′p =
kp

T2
0

(
∇Tp

)2
+

h
(

Tp − Tf p

)2

T2
0

(22)

where T0 = Th+Tc
2 , using the dimensionless variables and the characteristics of entropy

S′′′0 =
k f (∆T)2

L2T2
0

), S′′′0p =
kp(∆T)2

L2T2
0

(23)
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In the above equation, Θ =
µ f T0

k0

(
α f

H∆T

)2
is the ratio of the irreversibility distribution.

In addition, the local and average Bejan number (Be) is expressed as:
Using the dimensionless quantities, the entropy generation is given as:

S′′′ f =
khn f

k f

[(
∂θ f p

∂X

)2

+

(
∂θ f p

∂Y

)2
]
+ Θ

µhn f

µ f

[
1

Da(Y)

(
U2

p + V2
p

)
+ 2
(

∂Up

∂X

)2

+ 2
(

∂Vp

∂Y

)2

+

(
∂Up

∂Y
+

∂Vp

∂X

)2
]

+Θ
σhn f

σf
Ha2(−Up sin γ−Vp cos γ

)2
+ εH

(
θp − θ f p

)2
(24)

S′′′p =

[(
∂θp

∂X

)2

+

(
∂θp

∂Y

)2
]
+ Kr(1− ε)H

(
θp − θ f p

)2
(25)

The total dimensionless entropy generation is the sum of these components
(Buonomo et al. [46]), and it is written as:

S′′′total = S′′′ f + S′′′p (26)

The entropy generation due to the entire domain can be obtained by integrating the
previous component over the entire domain as:

ST =
∫
Ω

S′′′T dΩ (27)

S f =
∫
Ω

S′′′ f dΩ (28)

STs =
∫
Ω

S′′′p dΩ (29)

Stotal =
∫
Ω

S′′′total dΩ (30)

The local Be is the ratio between the local entropy generation due to the transfer
of heat (sum of the entropy generation due to the heat transfer for the fluid phase and
for the solid phase) and the entropy generation due to the fluid friction; thus, it can be
expressed as:

Be =

khn f
k f

[(
∂θ f p
∂X

)2
+
(

∂θ f p
∂Y

)2
]
+

[(
∂θp
∂X

)2
+
(

∂θp
∂Y

)2
]
+ H

(
θp − θ f p

)2
(ε + Kr(1− ε))

Stotal
(31)

Here, it should be mentioned that the ratio of the irreversibility distribution Θ is fixed
at 10−4 for all the computations and this value is selected according to Ilis et al. [47].

3. Numerical Treatments

The numerical treatments used to solve the governing equations are the non-orthogonal
grids FVM. The real physical domain (X, Y) is converted to a rectangular domain (ξ, η)
using the following functions:

ξ =
X + Y cot Φ
1 + 2Y cot Φ

, η =
Y
A

. (32)
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Using (32), the advection terms are given as:

∂(UΩ)

∂X
+

∂(VΩ)

∂Y
=

1
J∗

[
∂

∂ξ
(ΩU∗) +

∂

∂η
(ΩV∗)

]
, (33)

where
U∗ = β11U + β21V, (34)

V∗ = β22V + β12U, (35)

β11 =
∂Y
∂η

, β12 = −∂Y
∂ξ

, (36)

β21 = −∂X
∂η

, β22 =
∂X
∂ξ

. (37)

Similar, the diffusive terms are expressed as:

∂
∂X

[
Γ∗ ∂Ω

∂X

]
+ ∂

∂Y

[
Γ∗ ∂Ω

∂Y

]
= 1

J∗
∂

∂ξ

[
Γ∗α11

∂Ω
∂ζ + Γ∗α12

∂Ω
∂η

]
+ 1

J∗
∂

∂η

[
Γ∗α22

∂Ω
∂η + Γ∗α12

∂Ω
∂ζ

] (38)

In Equation (38), α11, α22 are expressed as:

α11 =
α∗

J∗
=

X2
η + Y2

η

J∗
=

β2
21 + β2

11
J∗

, (39)

α22 =
γ∗

J∗
=

X2
ζ + Y2

ζ

J∗
=

β2
12 + β2

22
J∗

. (40)

The upwind scheme is used to discretize the transformed convective terms while the
diffusive terms are treated using the central differences scheme. The alternating direction
implicit method (ADI) is introduced to solve the obtained algebraic system. The iterative
technique is employed until the convergence criterion (10−6) is fullfiled. Additionally, after
many grid tests being made (as it is presented in Table 2), the grid size 101× 101 was found
suitable for all computations. Further, Figure 2 shows the mesh used in all computations,
which consists of 101× 101 nodes.

Table 2. Grid independency test at Ra = 105, H = 0.1, Ha = 10, φAl = φCu = 1%, Φ = π
3 , γ = 0.

Grid Size (Nuf)av (Nus)av

31× 31 1.396400 2.751032
41× 41 1.297873 2.877911
61× 61 1.935634 3.034790
81× 81 1.964531 3.125698

101× 101 1.993429 3.196916
121× 121 2.021942 3.259058
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Figure 3 illustrates a comparison between the current code results and the results
obtained by Ilis et al. [47] for the case of a square cavity in which the left wall is kept at a
hot temperature, the right wall is kept at a cold temperature while the lower and upper
walls of the cavity are considered adiabatic. The comparison is implemented for the case
where Ra = 105, Pr = 0.71, Θ = 10−4. Contours for the streamlines, isotherms, local Bejan
number and local entropy generation due to heat transfer are constructed. Comparison
shows a very good agreement between contours resulted from the current code to those
presented in Ilis et al. [47].
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4. Discussion of Results

Figure 4 elucidates the streamlines and isotherms of the liquid phase and the isotherms of
the porous phase for the cases where Ra = 106, Ha = 15, H = 0.1, φAl = φCu = 1%, Φ = π

3
and different inclination angles. As far as the streamlines are concerned, plots show a formation
of two symmetric cells for an inclination angle of zero. The cell on the left hand side starts
to dominate the region as the inclination angle increases. This is mainly due to the buoyancy
forces. For the isotherms related to the fluid phase, plots show a formation of a hot thermal
region near the fin. Moreover, plots show that for an inclination angle of zero, isotherms are
symmetric throughout the centerline of the cavity with a maximum area covered by higher
values of isotherms. As the angle increases, distortion of the isotherms happens as they shift
counter clockwise. Additionally, it is obvious that as the inclination angle increases, less area of
the domain is covered by higher values of the isotherms. Finally, the graph shows that for the
porous phase, symmetric isotherms are observed for all inclination angles. Furthermore, as the
inclination angle increases, the impact on the temperature distribution is very minimal as the
porous temperature is not coupled with the velocity fields.
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2 ) at Ra = 106, Ha = 15, H = 0.1, φAl = φCu = 1%, Φ = π
3 .
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Figure 5 illustrates features of the local entropy generation due to the fluid friction and local
Be for the variation of the inclination angle γ (γ = 0, π

6 , π
3 , π

2 ) at Ra = 106, Ha = 15, H = 0.1,
φAl = φCu = 1%, Φ = π

3 . The graph shows that the Sf decreases as the γ increases. The local
entropy generation for γ equals zero appears to have the maximum values near the side walls.
As the γ increases, this maximum value takes place at the upper wall of the cavity. Moreover,
the graph shows that for γ, Be less than 0.5 contours occupies most of the domain of the cavity;
this is mainly due to the friction. Additionally, Be contours greater than 0.5 are observed at or
near the sidewalls of the cavity as well as the fin walls. For these cases where Be is greater than
0.5, the entropy generation is mainly due to the transfer of heat.
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2 ) at Ra = 106, Ha = 15, H = 0.1, φAl = φCu = 1%, Φ = π
3 .

Figure 6 represents features of the streamlines and temperature distribution for the
fluid phase and porous phase for the variation of the Hartmann number Ha (Ha = 0, 15, 25,
50, 100) at Ra = 105, H = 0.1, φAl = φCu = 1%, Φ = π

3 , γ = 0. The graph shows a forma-
tion of two symmetric cells inside the cavity as far as the streamlines are concerned. The
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intensity of the streamlines decreases as Ha increases. The magnetic field will suppress
the flow and consequently lower values of the streamlines are observed by increasing
Ha. Moreover, the hot thermal regions are observed near the fin walls for both the fluid
and porous temperature distributions. Finally, the graph shows a slight change in the
temperature distributions with Ha.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20 

press the flow and consequently lower values of the streamlines are observed by increas-
ing 𝐻𝑎. Moreover, the hot thermal regions are observed near the fin walls for both the 
fluid and porous temperature distributions. Finally, the graph shows a slight change in 
the temperature distributions with 𝐻𝑎. 

Streamlines  Fluid Phase Temperature  Solid Phase Temperature  

   

   

 
  

 
  

 
  

Figure 6. Features of the streamlines and temperature distribution for the fluid phase and porous phase for the variation of the 
Hartmann number 𝐻𝑎 (𝐻𝑎 = 0,15,25,50,100) at 𝑅𝑎 = 10ହ, 𝐻 = 0.1, 𝜙஺௟ = 𝜙஼௨ = 1%, Φ = గଷ , 𝛾 = 0. 

Figure 7 represents features of the local entropy generation due to the fluid friction 
and local Be for the variation of the Hartmann number 𝐻𝑎  (𝐻𝑎 = 0,15,25,50,100) at 𝑅𝑎 = 10ହ, 𝐻 = 0.1, 𝜙஺௟ = 𝜙஼௨ = 1%, Φ = గଷ , 𝛾 = 0. The graph shows that Sf decreases as 𝐻𝑎 
increases. Moreover, it is noted from 𝐵𝑒 contours and for all cases of 𝐻𝑎 that the local 
entropy generation is dominated by the thermal component near the fin walls and at the 

Figure 6. Features of the streamlines and temperature distribution for the fluid phase and porous phase for the variation of
the Hartmann number Ha (Ha = 0, 15, 25, 50, 100) at Ra = 105, H = 0.1, φAl = φCu = 1%, Φ = π

3 , γ = 0.

Figure 7 represents features of the local entropy generation due to the fluid friction
and local Be for the variation of the Hartmann number Ha (Ha = 0, 15, 25, 50, 100) at
Ra = 105, H = 0.1, φAl = φCu = 1%, Φ = π

3 , γ = 0. The graph shows that Sf decreases as
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Ha increases. Moreover, it is noted from Be contours and for all cases of Ha that the local
entropy generation is dominated by the thermal component near the fin walls and at the
corners of the cavity; while it is dominated by the friction at a small portion of the top wall
of the cavity.
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Variations of the local Nu for the cases where nanoparticle volume fraction φAl =
φCu = 1% at Ha = 15, H = 0.1, γ = π

6 , Φ = π
3 and different Ra are plotted in Figure 8.

The graph shows that as the γ decreases, Nu decreases. This is because as the angle
increases, the thermal boundary layers near the inclined walls decrease. This will result in
a reduction in the transfer of heat rate, and consequently, lower Nu is achieved.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 

the thermal boundary layers near the inclined walls decrease. This will result in a reduc-
tion in the transfer of heat rate, and consequently, lower Nu is achieved. 

 
Figure 8. Profiles of the Nuf for the variation of the inclination angle 𝛾 (𝛾 = 0, గ଺ , గଷ , గଶ) at 𝑅𝑎 = 10଺, 𝐻𝑎 = 15, 𝐻 = 0.1, 𝜙஺௟ = 𝜙஼௨ = 1%, Φ = గଷ. 

Figure 9 presents profiles of the local Nu for the variation of the Ra and nanoparticle 
volume fraction 𝜙஺௟ = 𝜙஼௨ at 𝐻𝑎 = 15, 𝐻 = 0.1, 𝛾 = 𝜋/6, Φ = గଷ. The graph shows that as 𝑅𝑎 increases, the Nu increases. This is mainly due to the fact that as 𝑅𝑎 increases, the 
dominant mode of transfer of heat becomes convection, and consequently, higher Nu is 
given. Moreover, the graph shows that as the s 𝜙 increases for the case of 𝑅𝑎 = 10ସ and 𝑅𝑎 = 10ହ, better Nu is achieved. As 𝜙 increases, better effective conductivity is achieved 
and consequently better transfer of heat. At 𝑅𝑎 = 10଺, the activity of the hybrid nanoflu-
ids flow is much affected by the increase in 𝜙஺௟, 𝜙஼௨. In this case, the overall viscosity is 
augmented, and thus, the convective process and likewise the Nu are decreased. 

 
Figure 9. Profiles of the Nuf for the variation of the Rayleigh number and nanoparticle volume 
fraction 𝜙஺௟ = 𝜙஼௨ at 𝐻𝑎 = 15, 𝐻 = 0.1, 𝛾 = 𝜋/6, Φ = గଷ. 

In Figure 10, profiles of the entropy generation due to the transfer of heat of the hy-
brid nanofluid phase in the entire domain for the variation of the Ra and nanoparticle 
volume fraction 𝜙஺௟ = 𝜙஼௨ at 𝐻𝑎 = 15, 𝐻 = 0.1, 𝛾 = గ଺ , Φ = గଷ are constructed. The graph 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18
N

u f

η

 γ=0
 γ=π/6
 γ=π/3
 γ=π/2

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

N
u f

η

 Ra=104,φAl=1%
 Ra=104,φAl=3%
 Ra=104,φAl=5%
 Ra=105,φAl=1%
 Ra=105,φAl=3%
 Ra=105,φAl=5%
 Ra=106,φAl=1%
 Ra=106,φAl=3%
 Ra=106,φAl=5%

Figure 8. Profiles of the Nuf for the variation of the inclination angle γ (γ = 0, π
6 , π

3 , π
2 ) at

Ra = 106, Ha = 15, H = 0.1, φAl = φCu = 1%, Φ = π
3 .

Figure 9 presents profiles of the local Nu for the variation of the Ra and nanoparticle
volume fraction φAl = φCu at Ha = 15, H = 0.1, γ = π/6, Φ = π

3 . The graph shows that
as Ra increases, the Nu increases. This is mainly due to the fact that as Ra increases, the
dominant mode of transfer of heat becomes convection, and consequently, higher Nu is
given. Moreover, the graph shows that as the s φ increases for the case of Ra = 104 and
Ra = 105, better Nu is achieved. As φ increases, better effective conductivity is achieved
and consequently better transfer of heat. At Ra = 106, the activity of the hybrid nanofluids
flow is much affected by the increase in φAl , φCu. In this case, the overall viscosity is
augmented, and thus, the convective process and likewise the Nu are decreased.
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In Figure 10, profiles of the entropy generation due to the transfer of heat of the hybrid
nanofluid phase in the entire domain for the variation of the Ra and nanoparticle volume
fraction φAl = φCu at Ha = 15, H = 0.1, γ = π

6 , Φ = π
3 are constructed. The graph shows

that as Ra increases, the ST increases. Moreover, the graph shows that as the φ increases, ST
increases as well. Higher volume fraction is associated with better conductivity and hence
a higher entropy generation due to heat is achieved.
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Figure 10. Profiles of the ST of the nanofluid phase in the entire domain for
the variation of the Rayleigh number and nanoparticle volume fraction φAl = φCu

atHa = 15, H = 0.1, γ = π/6, Φ = π
3 .

Figure 11 shows profiles of the total entropy generation in the entire domain for the variation
of the Ra and nanoparticle volume fraction φAl = φCu at Ha = 15, H = 0.1, γ = π/6, Φ = π

3 .
The graph shows that the Stotal increases as Ra increases. Furthermore, the graph shows for the
cases of Ra = 104 and Ra = 105, as φ increases, the Stotal increases. Finally, the graph shows
that for the case where Ra = 106, as the φ increases, the Stotal increases. This is mainly because
the entropy generation due to the heat increases with the volume fraction while the entropy
generation due to friction decreases.
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Figure 12 illustrates profiles of the entropy generation due to the transfer of heat of
the solid phase in the entire domain for the variation of the Ra and nanoparticle volume
fraction φAl = φCu at Ha = 15, H = 0.1, γ = π/6, Φ = π

3 . The graph shows that the
STS increases as Ra increases. Additionally, the graph shows that as the φ increases, the
STS decreases. Physically, the increase in the concentration of the nanoparticles (φAl , φCu)



Appl. Sci. 2021, 11, 1951 16 of 20

enhances the temperature gradients for the fluid phase which results in a diminishing in
the temperature gradients of the solid phase, and hence STs is reduced.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 20 
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The magnetic force is taken in the horizontal direction while the geometry is inclined. The 
LTNEM occurs between the porous medium and the worked fluid. The hybrid nanofluid 
that consists of water, copper and alumina is assumed to be a worked fluid. The FVM in 
the case of the non-orthogonal grids is used to solve the governing equations. The main 
findings of this simulation are: 
1 The irreversibility due to the transfer of heat is dominant along the fin boundary in 

the case of a horizontal domain, while in the case of a vertical geometry, it is domi-
nant near the boundaries of the trapezoidal.  
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Figure 12. Profiles of the STS of the solid phase in the entire domain for the variation of the Rayleigh
number and nanoparticle volume fraction φAl = φCu at Ha = 15, H = 0.1, γ = π/6, Φ = π
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Figure 13 demonstrates profiles of the Sf in the entire domain for the variation of the Ra
and nanoparticle volume fraction φAl = φCu at Ha = 15, H = 0.1, γ = π/6, Φ = π

3 . The
graph shows that as Ra increases, t Sf increases. Moreover, for low Ra values, the entropy
generation is almost constant with the φ; while this value decreases as the φ increases at
Ra= 106. In fact, high values of Ra (Ra = 106) make the velocity fields more affected by
variations of φ. In addition, an increase in φ augments the overall viscosity which in turn
decreases the gradients of the velocity, and hence, the total entropy is reduced.
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5. Conclusions

Magneto convection within the trapezoidal enclosures heated by triangular fins and
filled by variable properties porous media has been carried out. The Darcy number is
varied from a point to another in the flow domain based on a variable porosity of the
medium. The magnetic force is taken in the horizontal direction while the geometry is
inclined. The LTNEM occurs between the porous medium and the worked fluid. The
hybrid nanofluid that consists of water, copper and alumina is assumed to be a worked
fluid. The FVM in the case of the non-orthogonal grids is used to solve the governing
equations. The main findings of this simulation are:
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1 The irreversibility due to the transfer of heat is dominant along the fin boundary in
the case of a horizontal domain, while in the case of a vertical geometry, it is dominant
near the boundaries of the trapezoidal.

2 Activity of the hybrid nanofluid as well as the fluid friction entropy are diminished
as the Ha grows.

3 The transfer of heat entropy is augmented as the concentration of the nanoparticles is
boosted. The increase in the γ reduces the Nusselt number while it increases as the
Rayleigh number or the volume fraction parameter are growing.

4 From the obtained results, it is recommended to use a non-inclined irregular domain
to enhance the heat transfer rate. Additionally, the variable-properties porous medium
is more realistic than the porous medium with constant properties.

5 It is recommended to use hybrid nanofluids for enhancement of the heat transfer
instead of mono nanofluids.
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Abbreviations

Nomenclature
A Aspect ratio
Be Bejan number

cp Specific heat capacity
(

J kg−1 K−1
)

C f Inertial coefficient
Da Darcy number
dp Solid particles diameter (m)
g Gravity acceleration

(
m s−2)

h Heat-transfer coefficient [W m−3 K−1]
Ha Hartmann number

k Thermal conductivity
(

W m−1 K−1
)

K Porous medium permeability
(
m2)

Kr Thermal conductivity ratio
L Bottom wall length (m)
Nu Nusselt number

P Pressure
(

N m−2
)

Pr Prandtl number
Ra Rayleigh number
ST Entropy generation due to the heat transfer
S f Entropy generation due to the fluid friction
Stotal Total entropy
t Time (s)
T Temperature (K)(
up, vp

)
Dimensional velocity component (ms−1)(

Up, Vp
)

Dimensionless velocity component
(x, y) Cartesian coordinates (m)
(X, Y) Dimensionless Cartesian coordinates
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Greek Symbols
α Thermal diffusivity

(
m2 s−1)

β Coefficient of thermal expansion
(

K−1
)

γ Inclination angle of the cavity vector
τ Dimensionless time
θ Dimensionless temperature

µ Dynamic viscosity
(

kg m−1 s−1
)

ν Kinematic viscosity
(
m2 s−1)

ρ Density
(

kg m−3
)

φ Solid volume fraction
Φ Trapezoidal angle
σ Electrical conductivity
ε Porosity
(ξ, η) Coordinates of the rectangular domain
Subscripts
eff Effective
f Fluid
P Porous medium
hn f Hybrid Nanofluid
h Hot
f p Fluid phase
p Porous phase
C Cold
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