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Abstract: Source enumeration is an important procedure for radio direction-of-arrival finding in
the multiple signal classification (MUSIC) algorithm. The most widely used source enumeration
approaches are based on the eigenvalues themselves of the covariance matrix obtained from the
received signal. However, they have shortcomings such as the imperfect accuracy even at a high
signal-to-noise ratio (SNR), the poor performance at low SNR, and the limited detection number of
sources. This paper proposestwo source enumeration approaches using the ratio of eigenvalue gaps
and the threshold trained by a machine learning based clustering algorithm for gaps of normalized
eigenvalues, respectively. In the first approach, a criterion formula derived with eigenvalue gaps
is used to determine the number of sources, where the formula has maximum value. In the second
approach, datasets of normalized eigenvalue gaps are generated for the machine learning based
clustering algorithm and the optimal threshold for estimation of the number of sources are derived,
which minimizes source enumeration error probability. Simulation results show that our proposed
approaches are superior to the conventional approaches from both the estimation accuracy and
numerical detectability extent points of view. The results demonstrate that the second proposed
approach has the feasibility to improve source enumeration performance if appropriate learning
datasets are sufficiently provided.

Keywords: electronic warfare; source enumeration; eigenvalues of covariance matrix; subspace-
based estimation; uniform linear array; machine learning; Gaussian mixture model

1. Introduction

In the battlefield of modern and future warfare, the importance of electronic warfare
(EW) is increasing. EW consists of an electronic attack (EA), which controls the enemy’s elec-
tromagnetic spectrum; electronic protection (EP), which is used for defense; and electronic
warfare support (ES), which supports tasks such as surveillance and reconnaissance [1].
Direction-of-arrival (DOA) is a key process of ES for locating the signal sources of the ene-
mies [2,3]. DOA is used not only for EW applications but also in many applications such as
radar, sonar, wireless communication, radio astronomy, and satellite communications [4].

Algorithms such as multiple signal classification (MUSIC) [5] and estimation of the
signal parameters via rotational invariance techniques (ESPRIT) [6] are widely used for
the DOA estimation, which are subspace-based techniques. They divide the covariance
matrix of the received signals into two subspaces: signal–subspace and noise–subspace,
and estimate the DOA of the received signals utilizing the orthogonal relation between the
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signal–subspace and noise–subspace [7–9]. Although the subspace-based techniques such
as MUSIC and ESPRIT can estimate DOA with high-resolution, they need to know the exact
number of sources to distinguish between the signal- and noise–subspace [10]. In practice,
however, the number of sources is not known a priori; the source enumeration must be
executed before the DOA techniques are performed. If we fail to estimate the exact number
of sources, it will lead to a deterioration in the performance of the DOA estimation [11].
Therefore, the source enumeration is greatly important for DOA estimation.

There are two famous source enumeration approaches by information theoretic criteria:
Akaike information criterion (AIC) and minimum description length (MDL) [12]. AIC
has fairly good estimation accuracy at low signal-to-noise ratio (SNR) but does not reach
perfect (100%) accuracy even at high SNR [13], while MDL has 100% accuracy at high SNR,
but the performance is sharply and extremely degraded at a low level of SNR [14]. Another
algorithm called a second order statistic of the eigenvalues (SORTE) [15] outperforms other
approaches in estimation accuracy but its numerical detectability extent—the maximum
number of source signal detection with a given array—is less than that of AIC and MDL [16].

In this paper, two approaches that use gaps of the eigenvalues for the covariance matrix
obtained from the received multiple signals are proposed to overcome the poverties of the
accuracy of AIC at high SNR and MDL at low SNR, and the limited detectability extent of
source enumeration for SORTE. In the first approach, the source signals are enumerated
with the criterion formula selection that is comprised of the ratio of the eigenvalues
gaps. In the second approach, the threshold-based estimation using the machine learning
approaches is proposed; the optimal threshold that minimizes the estimation error is
derived by the machine learning based clustering algorithm. In the performance evaluation,
AIC, MDL, SORTE, and our two proposed approaches are compared in terms of source
enumeration accuracy in a wide range of SNR. Conclusively, simulation results demonstrate
that the first approach has better performance than SORTE for the overall range of SNR,
and our proposed approach can detect one more source than SORTE can. In addition,
results show that the second proposed approach has fairly good performance and its
performance can be further enhanced if the appropriate learning data are provided.

The main contributions of our study are summarized as follows:

1. Our proposed approach based on the criterion formula selection shows the better
performance of source enumeration accuracy than SORTE for the overall range of
SNR, and it can detect one more signal than SORTE can. In addition, the source
enumerating criterion formula of the proposed approach is much simpler than that
of SORTE.

2. To the best of our knowledge, this paper presents the first source enumeration ap-
proach based on the machine learning algorithm using gaps of eigenvalues. It is
shown that our proposed machine learning based clustering approach has fairly good
performances, and it also reveals the strong feasibility to improve its performance
when the appropriate learning data are sufficiently supported for the designated
SNR range.

3. While in most existing literature, the performances of source enumeration approaches
are evaluated with predefined fixed parameters (e.g., the number of sources and
the arrival angles of the sources), which results in the eigenvalues of the covariance
matrix being fixed. In this paper, the performances for the cases with a comprehensive
number of sources and arrival angle of the sources are compared in this paper. It is
shown that our proposed approaches have comparatively good performances in the
various scenario conditions of signal sources.

The remainder of this paper is organized as follows: Section 2 surveys related research
studies on DOA estimation and source enumeration approaches. Section 3 presents our
system model for the source enumeration. In Section 4, two source enumeration approaches
based on the gap ratio criterion formula and threshold of eigenvalues gaps are proposed.
Analyses through simulations are presented in Section 5, and conclusions are drawn in
Section 6.
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2. Related Works

In this section, previous works on DOA estimation and source enumeration are
surveyed. Machine learning techniques are also introduced briefly and previous works
applying machine learning to DOA estimation and source enumeration are presented.

Not only MUSIC and ESPRIT but also many DOA estimation studies are assuming
that they know the number of signals a priori. Zuo et al. [17] proposed a subspace-based
localization of far-field and near-field signals without eigendecomposition; they assume
that the number of far-field and near-field signals are known when they state the problem
formulation. Lonkeng and Zhuang [18] and Nie et al. [19] proposed a low-complexity and
fast two-dimensional DOA estimation, where they are assuming the a priori knowledge of
the number of signals. Yan et al. [20] proposed a reduced-complexity algorithm for DOA
estimation exploiting only the real part of the covariance matrix of the array and showed
that it can lead to a real-valued version of the MUSIC algorithm with no dependence on
array configurations, while their basic assumptions include that the number of sources is
known. Weng et al. [21] address the problem of DOA estimation with coprime arrays with
the emphasis on reduced computational complexity while preserving estimation accuracy;
the number of sources is also assumed to be known. As described above, the source
enumeration is critical to many applications of DOA estimation.

There are a large number of studies on source enumeration approaches, and they can
be classified into information theoretic based and threshold based approaches, etc. [14].
AIC and MDL, which are the information theoretic based approaches, are the most popular
approaches for source enumeration. Wax and Kailath [12] are the first who applied AIC
and MDL to detect the number of signals. These approaches use the eigenvalues of the
covariance matrix and have advantages in which no subjective judgment (e.g., deciding
on the threshold levels) is required in the decision process. However, AIC yields an
inconsistent estimate that tends to overestimate the number of signals; hence, AIC does not
reach 100% accuracy even at high SNR levels. Meanwhile, MDL has 100% accuracy at high
SNR levels but has poor performance at low SNR levels [22]. Another eigenvalue-based
approach named SORTE was proposed by He et al. [15] to detect the number of clusters; it
also can be used to detect the number of signals and showed comparatively good estimation
performances [23]. While AIC and MDL use the eigenvalues directly, SORTE uses the gaps
of the eigenvalues; hence, SORTE cannot detect as many signals as AIC and MDL can—
two less signals than AIC and MDL. Meanwhile, a threshold based approach named the
eigenthreshold (ET) approach was proposed by Chen et al. [24]. ET detects the number of
signals by setting the upper thresholds for the observed eigenvalues and then implementing
a hypothesis testing procedure. Another threshold based approach, the eigen-increment
threshold, was proposed by Hu et al. [25]. This approach is based on the assumption
that, without the existence of the signals, the noise eigenvalues distribute approximately
along a straight line; if the signals exist, it causes the increase of the eigenincrement on
the boundary between two subspaces. Based on this observation, they proposed a single
threshold concerning about the information of signal and noise strength, data length, and
array size.

The studies on machine learning have attracted a great amount of attention over
the past few years. Machine learning techniques can be divided into four categories:
supervised, unsupervised, semi-supervised, and reinforcement learning [26]. Supervised
learning uses a labeled training dataset to teach a model; after training, a new piece of
unlabeled data can decide to be one of the trained labels according to the model. The widely-
used supervised learning algorithms are k-Nearest neighbor, decision tree, random forest,
and neural network, etc. Unlike supervised learning, unsupervised learning is not given
the labeled training dataset; the patterns of the dataset are discovered by themselves.
The widely-used unsupervised learning algorithms are k-Means clustering and a self-
organizing map. Semi-supervised learning uses both labeled and unlabeled data, and
reinforcement learning is to learn the best action to maximize its long-term rewards.
These machine learning techniques have been applied to DOA estimation and source
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enumeration. The authors of [27–29] applied neural networks to DOA estimations, and the
results showed that their neural networks based schemes can improve the performance
of DOA estimations. Yang et al. [30] proposed eigenvalue based deep neural networks
for source enumeration, and the results showed that the proposed networks can achieve
significantly better performance than the state-of-the-art methods in the low SNR regime.
Yun et al. [31] proposed to jointly estimate SNR and the source number in a novel data-
driven manner by employing artificial neural networks. Their proposed scheme can
estimate the source number stably and reliably even in the low SNR condition.

3. System Model

In our system model, a uniform linear array (ULA) with M elements are considered
and D uncorrelated far-field signals are impinging on the ULA, where M > D is assumed.
Figure 1 shows our considered ULA model.

d th source
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First 

element

�

M th

element

0�

�d

���

�

�

Figure 1. Our considered ULA model.

The received signals at time t can be expressed as

xxx(t) =
D

∑
d=1

aaa(θd)sd(t) + nnn(t), (1)

where xxx(t) = [x1(t), . . . , xM(t)]T is the array output, aaa(θd) is the steering vector for the
signal d arriving at angle θd, sd(t) is the impinging signal from the dth source at time t,
and nnn(t) is the additive white Gaussian noise (AWGN). In the matrix form, (1) can be
represented as

XXX = AAASSS + NNN, (2)

where XXX ∈ CM×L, AAA ∈ CM×D, SSS ∈ CD×L and NNN ∈ CM×L, with L being the number of
collected snapshots and C represents the set of complex numbers. The steering matrix AAA is

AAA = [aaa(θ1), aaa(θ2), . . . , aaa(θD)], (3)

and the steering vector aaa(θd) for the ULA can be written as

aaa(θd) = [1, e−j 2π
η ξ sin θd , . . . , e−j(M−1) 2π

η ξ sin θd ]T, (4)

where η is the wavelength of center frequency for signals, and ξ is the distance between
the two adjacent elements of ULA.
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If an infinitely large number of snapshots are collected, then nnn(t) follows the AWGN
perfectly, so the covariance matrix of the array output RRRxx can be described as

RRRxx = lim
L→∞

1
L

L

∑
t=1

xxx(t)xxxH(t)

= AAARRRssAAAH + σ2
NIIIM,

(5)

where RRRss is the covariance matrix of the impinging signals, σ2
N is the variance of the noises

and IIIM is the M×M identity matrix. From [15], the eigenvalues of RRRxx can be represented
in ascending order as

λ1 = · · · = λM−D < λM−D+1 ≤ · · · ≤ λM, (6)

where the noise–subspace eigenvalues are

λ1 = · · · = λM−D = σ2
N, (7)

and the signal–subspace eigenvalues are

λM−D+1 ≤ · · · ≤ λM. (8)

The gaps of eigenvalues ∆λi are defined as

∆λi , λi+1 − λi (i = 1, . . . , M− 1). (9)

From (6) and (9), we have
∆λi = 0, i = 1, . . . , M− D− 1,
∆λi > 0, i = M− D,
∆λi ≥ 0, i = M− D + 1, . . . , M− 1.

(10)

The first row of (10) represents the gaps between the noise–subspace eigenvalues; this
paper calls these gaps “NN gaps” (noise–noise subspace eigenvalues gaps). The second row
of (10) represents the gap between the greatest noise–subspace eigenvalue and the smallest
signal–subspace eigenvalue; this paper call this gap “NS gap” (noise–signal subspace
eigenvalues gap). The third row of (10) represents the gaps between the signal–subspace
eigenvalues; this paper call these gaps “SS gaps” (signal–signal subspace eigenvalues gaps).

In practice, the ideal covariance matrix RRRxx cannot be obtained. With finite L snapshots,
the estimated covariance matrix R̂RRxx is

R̂RRxx =
1
L

L

∑
t=1

xxx(t)xxxH(t), (11)

and its eigenvalues are
λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂M. (12)

The eigenvalues λ̂i (i = 1, . . . , M) can be written as

λ̂i = λi + εi, (13)

where εi is an error component, and it converges to 0 for a large number of snapshots.

4. Proposed Approaches

In this section, two source enumeration approaches named Accumulated Ratio of
Eigenvalues Gaps (AREG) and Threshold for GAp of Normalized Eigenvalues (T-GANE)
are proposed.
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4.1. Accumulated Ratio of Eigenvalues Gaps

The main idea of AREG is to detect the NS gap using a ratio of the NS gap to the NN
gap. The simplest way to detect the NS gap is computing ∆λi with i in ascending order
and then the first non-zero ∆λi will be the NS gap. In practice, however, this simplest
way cannot be applied because NN gaps are not exactly zero. Nonetheless, NN gaps are
probably closer to zero than the NS gap is; the NS gap can be found using the maximum
value of the ratios of the eigenvalues gaps because the NN gaps are comparatively close
to zero.

AREG is defined as follows:

AREG(i) , lim
δ→+0

∆λi+1

1
i

i

∑
k=1

∆λk + δ

, (14)

where i = 1, . . . , M− 2. From (10) and (14), when 1 ≤ D ≤ M− 3, we have

AREG(i) =


0, i = 1, . . . , M− D− 2,
+∞, i = M− D− 1,
ci, i = M− D, . . . , M− 2.

(15)

When D = M− 2, we have

AREG(i) =

{
+∞, i = 1,
ci, i = 2, . . . , M− 2.

(16)

Note that ci is a real number satisfying 0 ≤ ci < +∞.
According to (15) and (16), the source enumeration can be performed by the follow-

ing criterion:
D̂ = M− 1− argmax

i=1,...,M−2
AREG(i), (17)

where D̂ is the estimated number of sources.

4.2. Threshold for Gap of Normalized Eigenvalues

T-GANE is our proposed threshold based source enumeration approach by employing
the machine learning algorithm using gaps of normalized eigenvalues. In this approach,
a large number of NN gaps and NS gaps are observed, and the probability density func-
tions (PDFs) for NN gaps and NS gaps are derived to compute the optimal threshold
that minimizes source enumeration error probability. Finally, the source enumeration is
performed with the optimal threshold computed by the procedures above.

T-GANE can be divided into three steps: datasets generation, learning and computing
optimal threshold, and source enumeration using the optimal threshold. The detailed
procedures for T-GANE are described as follows.

4.2.1. Datasets Generation

In the first step, datasets of NN gaps and NS gaps for learning and computing optimal
threshold are generated. In order to keep consistency with the datasets, the eigenvalues are
normalized before generating NN gaps and NS gaps. Note that the diagonal elements of
covariance matrix are the received signals powers with noise power, and the trace—the
sum of diagonal elements—of the covariance matrix is equal to the sum of the eigenvalues
of the covariance matrix [32]; this fact means that the eigenvalues are greatly changed by
signal power and noise power, which makes it difficult to determine the threshold. Thus,
the eigenvalues are normalized at first in the T-GANE procedures. By this preliminary
process, T-GANE can be applied regardless of the signal power and noise power.



Appl. Sci. 2021, 11, 1942 7 of 18

The normalized eigenvalues ei are defined as

ei ,
λi

∑M
k=1 λk

, (18)

where i = 1, . . . , M. Then, the gaps of normalized eigenvalues ∆ei are defined as

∆ei , ei+1 − ei, (19)

where i = 1, . . . , M− 1. Moreover, two sets named “NN gaps set” and “NS gap set” are
defined as

ENN = {∆ei | i = 1, . . . , M− D− 1}, (20)

ENS = {∆ei | i = M− D}, (21)

respectively.
To generate the datasets for learning, NN gaps and NS gaps in various situations,

i.e., different arriving angle, source number, and SNR, should be collected. Two datasets
named “NN gaps dataset” and “NS gaps dataset” are defined as

Edata
NN =

Q⋃
q=1

Eq
NN, (22)

Edata
NS =

Q⋃
q=1

Eq
NS, (23)

respectively, where Eq
NN and Eq

NS are ENN and ENS of the qth situation, respectively. Note
that Q denotes the number of situations for generating the datasets.

4.2.2. Learning and Computing Optimal Thresholds

In the second step, two PDFs are derived from NN gaps dataset and NS gaps dataset.
Then, the optimal threshold that minimizes source enumeration error probability is com-
puted from the two PDFs.

Let Edata
NN and Edata

NS follow PDF fNN(x) and fNS(x), respectively, where x denotes the
value of the gaps; x ranges from 0 to 1 because the eigenvalues are normalized. The objective
of learning is to estimate fNN(x) and fNS(x). By using the Gaussian mixture model (GMM)
and the expectation–maximization (EM) algorithm, which are widely used in machine
learning studies, fNN(x) and fNS(x) are estimated. The two PDFs fNN(x) and fNS(x) can
be presented using GMM as follows:

fNN(x) =
f (x; φNN)∫ 1

0
f (x; φNN) dx

, (24)

fNS(x) =
f (x; φNS)∫ 1

0
f (x; φNS) dx

, (25)

where

f (x; φ) =
K

∑
i=1

wi

σi
√

2π
exp

(
− (x− µi)

2

2σ2
i

)
, (26)

and φ = {(wi, µi, σ2
i )}K

i=1 is a set of GMM parameters, K is the number of GMM compo-
nents, wi is the mixture weight of the ith component, µi is the mean of the ith component,
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and σ2
i is the variance of the ith component. Because x ranges from 0 to 1, fNN(x) and

fNS(x) should meet ∫ 1

0
fNN(x) dx = 1, (27)

∫ 1

0
fNS(x) dx = 1, (28)

respectively; hence, f (x; φNN) and f (x; φNS) are divided by
∫ 1

0 f (x; φNN) dx and∫ 1
0 f (x; φNS) dx as presented in (24) and (25), respectively.

Algorithm 1 shows estimating φ from a given dataset Edata using the EM algorithm.
The details of EM algorithm are presented in [33]. Although K cannot be determined
by the EM algorithm, by using Bayesian information criteria (BIC)—likelihood-based
measures of model fit that include a penalty for complexity to avoid over-fitting [34]—K
can be determined; the determined K is the value that minimizes BIC. In Algorithm 1, φk
is computed for every k from 2 to Kmax, where Kmax is set properly before Algorithm 1
performed; if Kmax too large, the computation time will incredibly increase, while Kmax is
too small, the optimal k may not be determined. For each k, the BIC of f (x; φk) is calculated
and saved to Bk. After all BIC values are saved, Algorithm 1 selects k that minimizes BIC.
Then, the φK is returned where K is the selected k. By Algorithm 1 and using Edata

NN and
Edata

NS , φNN and φNS can be obtained, respectively; finally, the two PDFs fNN(x) and fNS(x)
are obtained.

Algorithm 1 Estimation of GMM parameters

Input Edata

Output φ

1: for k = 2 to Kmax do

2: Compute φk = {(wi, µi, σ2
i )}k

i=1 with Edata using EM algorithm.

3: Calculate BIC for φk and save the value to Bk.

Bk ← BIC(Edata, f (x; φk));

4: end for

5: K ← argmin
k

Bk

6: return φK

After fNN(x) and fNS(x) are estimated, the optimal threshold that minimizes source
enumeration error probability is calculated. Let γ be a threshold to decide whether the gap
is an NN gap or NS gap; this decision process can be described as follows:

if ∆ei ≤ γ, then ∆ei is a NN gap, (29)

if ∆ei > γ, then ∆ei is a NS gap. (30)

Next, two kinds of probability are calculated: the probability that mistakes the NS gap
for an NN gap (this is called “missing signal (MS)”) and the probability that mistakes the
NN gap for an NS gap (this is called “false alarm (FA)”). Using fNS(x) and fNN(x), the two
probabilities PMS and PFA can be written as follows, respectively:

PMS(γ) =
∫ γ

0
fNS(x) dx, (31)

PFA(γ) =
∫ 1

γ
fNN(x) dx. (32)
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Finally, the source enumeration error probability PErr(γ) can be described as

PErr(γ) = PMS(γ) + PFA(γ). (33)

The optimal threshold γ̂ can be calculated by the following criterion:

γ̂ = argmin
0≤γ≤1

PErr(γ). (34)

4.2.3. Source Enumeration Using the Optimal Threshold

Algorithm 2 shows the source enumeration procedure using ∆ei (i = 1, . . . , M− 1) and
γ̂. Typically, NN gaps are comparatively smaller than NS gaps; Algorithm 2 sequentially
searches the NS gap in ascending order, i.e., from ∆e1 to ∆eM−1. If the dth gap is greater
than γ̂, the algorithm terminates the search process immediately. Finally, M− d will be the
estimated number of sources.

Algorithm 2 Source enumeration using the optimal threshold
Input ∆ei (i = 1, . . . , M− 1), γ̂

Output D̂
1: for i = 1 to M− 1 do

2: if ∆ei > γ̂ then

3: d← i

4: break

5: end if

6: end for

7: return M− d

5. Simulation Analysis

In this section, AREG and T-GANE are numerically analyzed and the performances
of AREG and T-GANE versus AIC, MDL, and SORTE are evaluated by employing Monte
Carlo simulation.

5.1. Analysis of AREG

As mentioned in Section 4.1, AREG detects the NS gap using the ratio of the NS gap
to the NN gap. In order to verify the performance of AREG, the eigenvalues, the gaps of
eigenvalues, and the values of AREG are numerically analyzed. The parameters are set to
M = 7, ξ = η/2, D = 3, θ1 = −30◦, θ2 = 45◦, θ3 = 60◦, AWGN with σ2

N = 1, SNR = 0 dB,
and L = 1000. Under these settings, R̂RRxx is generated, and the eigenvalues are calculated.

Figure 2 shows the results of numerical analysis of AREG. Panel (a) shows the eigen-
values, where λ̂1 to λ̂4 denote the noise–subspace eigenvalues and λ̂5 to λ̂7 denote the
signal–subspace eigenvalues. Because of σ2

N = 1, the values of noise–subspace eigenvalues
are close to 1, while the values of signal–subspace eigenvalues are comparatively greater
than 1.

Panel (b) shows the gaps of eigenvalues, where ∆λ̂1 to ∆λ̂3 denote NN gaps, ∆λ̂4
denotes the NS gap, and ∆λ̂5 and ∆λ̂6 denote SS gaps. This result shows that the NN
gaps are comparatively smaller than the NS gap is; however, the greatest value is ∆λ̂6,
which is the SS gap. This is why the ratio of the NS gap to the NN gap is used in AREG to
avoid wrong estimation which can be caused by using the greatest gap of eigenvalues for
source enumeration.

Panel (c) shows the means of the accumulated gaps of eigenvalues, i.e., 1
i ∑i

k=1 ∆λk
from (14). The means of the NN gaps (when i is 1, 2 and 3) are relatively small, while the
mean of the NN gaps and the NS gap (when i is 4) and the mean of the NN gaps, the NS
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gap, and the SS gap (when i is 5) are comparatively greater than the means of the NN
gaps are; this reduces the value of AREG even if the greatest gap is the SS gap because the
denominator of AREG is increased when the NS gap or SS gap are included. As a result,
the wrong estimation of the NS gap can be prevented.

Panel (d) shows the values of AREG. The result shows that AREG(3) is significantly
greater than the other values of AREG—about eight times greater than AREG(4). According
to (17), the estimated number of sources D̂ is 3; this result shows that AREG can estimate the
right number of sources in an 0 dB SNR condition. In addition, under the same condition,
10,000 cases of AWGN are randomly generated, and the performances of AREG and AIC
are compared. The result is that AREG estimates the number of sources in 100% accuracy
while AIC has 90.03% accuracy.

0.877 0.93 1.01 1.08
3.96

7.90 12.2

(a)

0.0524 0.077 0.0752
2.88

3.94 4.33

(b)

0.0524 0.0647 0.0682

0.771
1.41

(c)

1.47 1.16

42.2

5.11 3.07

(d)

Figure 2. Numerical analysis of AREG. (a) the eigenvalues; (b) the gaps of eigenvalues; (c) the means
of the accumulated gaps of eigenvalues; (d) the values of AREG.

5.2. Analysis of T-GANE

In this subsection, how to generate the datasets is firstly presented. Next, the values
of BIC used for determining the number of GMM components and the estimated PDFs
derived from the datasets are described. Finally, the probabilities and the optimal threshold,
i.e., PMS, PFA, PErr, and γ̂ mentioned in (31)–(34) are shown.

In order to generate the datasets (Edata
NN and Edata

NS ), the parameters—especially the
range of arrival angle of signals (θmin and θmax) and the minimum angle difference between
two adjacent signals (∆θab) as shown in Figure 3—should be set; ∆θab is defined as

∆θab = |θa − θb| (a 6= b). (35)
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� �

�

min
�

max

��aba th source

b th source

Figure 3. The range of arrival angle of signals and the angle difference between the two adjacent signals.

From our experiences, the NS gap is extremely small even at a high SNR when the
arrival angle of a signal is too oblique (e.g., −80◦ or 80◦) or when the angle difference
between two adjacent signals is small (e.g., 5◦ for ∆θab). Generally, source enumeration and
DOA estimation suffer from these extremely oblique impinging on ULA or high-resolution
problems; but these problems are out of scope for this study, and those special situations
probably degrade the learning performance of T-GANE because they will be outliers of the
datasets. Therefore, the values of θmin, θmax and ∆θab should be limited when the datasets
are generated. The parameters are set as follows:

Parameter Settings for Generation the Datasets

• Number of elements of ULA M is 7.
• Distance of the two adjacent elements ξ is η/2.
• Number of signal sources D ranges from 1 to 6 (uniform random).
• Arrival angle of signals θi (i = 1, . . . , D) ranges from θmin = −60◦ to θmax = 60◦ (uni-

form random, non-discrete).
• Minimum angle difference between the two adjacent signals ∆θab ≥ 15◦.
• Number of snapshots L is 1000.
• SNR ranges from −20 dB to 10 dB (uniform random, non-discrete).
• Number of situations for generating the datasets Q is 100,000.

Each situation, number of signal sources D, arrival angle of signals θi (i = 1, . . . , D),
and SNR are randomly selected subject to the parameter settings. From this simulation,
252,249 NN gaps and 100,000 NS gaps data are obtained.

After generating Edata
NN and Edata

NS according to the parameter settings, Algorithm 1 with
Kmax = 100 is executed to obtain the GMM parameters. Figure 4 shows the values of BIC
versus the number of GMM components K; Panels (a) and (b) of Figure 4 show the results
for Edata

NN and Edata
NS , respectively. Both results show that the value of BIC rapidly decreases

for small K, then gradually increases for large K. Although there are some fluctuations of
the BIC values in the results of panel (b), the smallest BIC values can be found; 6 for Edata

NN
and 33 for Edata

NS .
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(a)

(b)

Figure 4. Values of BIC versus the number of GMM components. (a) the BIC values for Edata
NN ; (b) the

BIC values for Edata
NS .

Figure 5 shows fNN(x) and fNS(x) obtained by Algorithm 1. Additionally, the visual-
ization of (31) and (32) is also shown in Figure 5. As mentioned in Section 4.2.2, if a gap
value is smaller than or equal to the threshold, then the gap is decided as the NN gap; the
left-side of fNS(x) is mistaken for NN gaps. Otherwise, if a gap value is greater than the
threshold, then the gap is decided as an NS gap; the right side of fNN(x) is mistaken for
NS gaps.

Figure 5. PDFs fNN(x) and fNS(x). Probabilities PMS(γ) and PFA(γ) are also visualized.

Figure 6 shows PMS(γ), PFA(γ), PErr(γ), and the optimal threshold γ̂ that minimizes
PErr. As shown in Figure 6, PMS(γ) is monotonically increasing, while PFA(γ) is mono-
tonically decreasing. The graph of PErr(γ) shows that the minimum value of PErr(γ) is
about 0.157 at γ = 0.0113. Therefore, from (34), the optimal threshold γ̂ is set to 0.0113.
The source enumeration performance with this optimal threshold will be shown in the
next subsection.
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Figure 6. PMS(γ), PFA(γ), PErr(γ) and the optimal threshold γ̂ that minimizes PErr.

5.3. Evaluation of Comprehensive Approaches

The performances of comprehensive approaches—AIC, MDL, SORTE, and our two
proposed approaches (AREG and T-GANE)—are evaluated. First, the estimation accuracy
of the approaches in various SNR conditions is described. Second, how many snapshots
and ULA elements are required to provide 70% accuracy in various SNR conditions is
presented. Finally, it is shown that T-GANE has the feasibility of improvement in low SNR
performance with the designated SNR range for the generation of the datasets. The for-
mulas of AIC and MDL refer to [12], and that of SORTE refers to [15], respectively. Our
evaluation parameter settings are as follows:

Evaluation Parameter Settings

• Number of elements of ULA M is 7.
• Distance of the two adjacent elements ξ is η/2.
• Number of signal sources D ranges from 1 to 4 (uniform random).
• Arrival angle of signals θi (i = 1, . . . , D) ranges from θmin = −60◦ to θmax = 60◦ (uni-

form random, non-discrete).
• Minimum angle difference between the two adjacent signals ∆θab ≥ 15◦.
• Number of snapshots L is 1000.
• Number of trials for each SNR is 10,000 times.
• T-GANE is trained the same as is mentioned in Section 5.2.

Because the numerical detectability extent of SORTE is M− 3, the maximum D is set
to 4. Note that γ̂ of T-GANE is set to 0.0113, and the source enumeration procedure of
T-GANE is performed with Algorithm 2.

Figure 7 shows the estimation accuracy of AIC, MDL, SORTE, and our two proposed
approaches (AREG, T-GANE) versus SNR. The performances are evaluated in the SNR range
from−20 dB to 10 dB, which is roughly chosen in many other papers [4,10–12,14,16,23–25,31].
This paper is interested in improving accuracy of AIC at high SNR—where MDL has 100%
accuracy, but AIC does not reach 100% accuracy—and it of MDL at low SNR—where the
MDL accuracy begins to decrease sharply, but AIC maintais good accuracy. The results show
that MDL, SORTE, AREG, and T-GANE have 100% accuracy at high SNR (roughly above
−5 dB at this result), while AIC has about 90% accuracy despite a high SNR; however, AIC
keeps its performance at about −13 dB and shows the best performance in SNR −15 dB
to −13 dB among the approaches. SORTE and T-GANE begin to decrease below −5 dB,
while AREG maintains 100% accuracy the same as MDL does. In the SNR range −14 dB to
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−5 dB, among AREG, SORTE, and T-GANE, AREG shows the best performance, the next
is SORTE, and the third is T-GANE and its performance gradually decreases at that range
of SNR. It is worth mentioning that the learning datasets certainly affect the performance
of T-GANE; hence, T-GANE with another datasets is also evaluated, and the results are
described afterwards.

SNR [dB]

A
c
c
u
ra

c
y
 [
%

]

AIC

MDL

SORTE

AREG

T-GANE

Figure 7. Estimation accuracy of AIC, MDL, SORTE, and our two proposed approaches (AREG,
T-GANE) versus SNR. The number of signal sources D is randomly selected from a set {1, 2, 3, 4} at
each trial.

Figure 8 shows the required number of snapshots (L) to provide 70% accuracy versus
SNR. Note that the learning data for T-GANE are newly generated when the number of
snapshots is changed (among the parameters, only the number of snapshots is changed;
other parameters are not changed) and then the optimal thresholds are updated. Regardless
of the approaches, the required number of snapshots sharply increases when SNR decreases.
At the same SNR, AIC requires the smallest number of snapshots, while MDL requires
the largest number of snapshots. SORTE, AREG, and T-GANE have similar performances,
but our two proposed approaches have better performances than SORTE has. At the
small number of snapshots (1000 to 5000), T-GANE has slightly better performance than
AREG, while, for the large number of snapshots (6000 to 8000), AREG has slightly better
performance than T-GANE. Over 8000 snapshots, the performance improvement of T-
GANE is not as good as the other approaches. The reason is considered that the designated
SNR range for generating datasets is fixed to −20 dB to 10 dB; if the designated SNR range
for generating datasets is flexibly adjusted when the number of snapshots is changed,
T-GANE may have better performance than that shown in Figure 8.

Figure 9 shows the required number of ULA elements (M) to provide 70% accuracy
versus SNR. Note that the learning data for T-GANE are newly generated when the number
of ULA elements is changed (among the parameters, only the number of ULA elements is
changed; other parameters are not changed) and then the optimal thresholds are updated.
Similar to the results of Figure 8, the required number of ULA elements sharply increases
when SNR decreases regardless of the approaches. Our two proposed approaches have
better performance than MDL and SORTE. Although T-GANE has unstable performance
improvement compared to the others, it is expected that T-GANE can have stable perfor-
mance improvement if appropriate datasets are provided for T-GANE as mentioned earlier.
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Figure 8. Required number of snapshots (L) to provide 70% accuracy versus SNR. The number of
signal sources D is randomly selected from a set {1, 2, 3, 4} at each trial.
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Figure 9. Required number of ULA elements (M) to provide 70% accuracy versus SNR. The number
of signal sources D is randomly selected from a set {1, 2, 3, 4} at each trial.

Figure 10 shows the estimation accuracy of AIC, MDL, T-GANE (−20 to 10), and
T-GANE (−14 to −11), where T-GANE (−20 to 10) and T-GANE (−14 to −11) denote that
the learning datasets for T-GANE are generated with the SNR range from −20 dB to 10 dB
and from −14 dB to −11 dB, respectively. The reason why the learning datasets SNR is set
to range from −14 dB to −11 dB is to improve the performance of T-GANE in the range of
−14 dB to −11 dB, where the performances of AIC and MDL in Figure 7 begin to sharply
decrease, respectively. Note that γ̂ of T-GANE (−20 to 10) is 0.0113 and γ̂ of T-GANE
(−14 to −11) is 0.0125. In this evaluation, the number of signal sources D is randomly
selected from a set {1, 2, . . . , 6} at each trial; hence, SORTE and AREG are excluded from
this evaluation. As shown in Figure 10, the estimation accuracy of T-GANE (−14 to −11) is
higher than T-GANE (−20 to 10) for SNR over −14 dB (maximum 5.06% higher at SNR
−12 dB). In addition, T-GANE (−14 to −11) shows the best performance that surpasses
AIC and MDL. From the results, it can be concluded that T-GANE has the feasibility of
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improvement performance at low SNR (roughly from −15 dB to −10 dB at this result) if
appropriate learning datasets are used for T-GANE.

Although the learning SNR range of T-GANE (−14 to−11) is less than that of T-GANE
(−20 to 10), T-GANE (−14 to −11) has better performance for both low and high SNR than
T-GANE (−20 to 10). Typically, the NS gap is greater than NN gaps when the SNR is not
too low. The difference between NS gap and NN gap is larger when the SNR is higher.
If the slight difference between NS gap and NN gaps can be detected in a low SNR range,
it is easy to detect the difference between them in a high SNR range; this is why T-GANE
(−14 to −11) also has good performance at high SNR. Meanwhile, if T-GANE learns too
much high SNR information, it may be not easy to detect the slight difference between
the NS gap and NN gaps because the difference between them is larger when the SNR is
higher; this is why T-GANE (−20 to 10) has worse performance than T-GANE (−14 to−11).
Intuitively, if the learning SNR range is too high level like from 0 dB to 10 dB, it probably
has worse performance than T-GANE (−20 to 10) at low SNR. Therefore, how to select the
learning SNR range for T-GANE provides a good starting point for discussion and further
research work.

SNR [dB]

A
c
c
u
ra

c
y
 [
%

]

AIC

MDL

T-GANE (-20 to 10)

T-GANE (-14 to -11)

Figure 10. The estimation accuracy of AIC, MDL, and T-GANE versus SNR. T-GANE (−20 to 10) and
T-GANE (−14 to −11) denote that the learning datasets for T-GANE are generated for SNR range
−20 dB to 10 dB and −14 dB to −11 dB, respectively. The number of signal sources D is randomly
selected from a set {1, 2, . . . , 6} at each trial.

6. Conclusions

In this paper, two source enumeration approaches named AREG and T-GANE are
proposed. Both approaches employ gaps of eigenvalues from the covariance matrix of the
received signals along multiple antenna arrays; AREG uses the ratio of the NS gap to the
mean of accumulated NN gaps, while T-GANE uses the gaps of the normalized eigenvalues
to compute the threshold by machine learning based clustering approaches. The criterion
formula of AREG using the gaps of eigenvalues is derived, and a source enumeration
criterion with AREG is presented. Three steps of the T-GANE procedure are also described:
dataset generation, learning and computing optimal threshold, and source enumeration
using the optimal threshold. The simulation results show that AREG provides better
accuracy of source enumeration than that of MDL and SORTE at a low SNR range and is
also better than that of AIC at high SNR. It is also shown that T-GANE with appropriate
learning datasets outperforms both AIC and MDL in high and low SNR. This feasibility
shows that the appropriate parameter settings for generating learning datasets of T-GANE
in the designated SNR range are sought to improve the T-GANE as future research work.
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