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Abstract: In this paper, a real-time dynamic hand gesture recognition system with gesture spotting
function is proposed. In the proposed system, input video frames are converted to feature vectors,
and they are used to form a posture sequence vector that represents the input gesture. Then, gesture
identification and gesture spotting are carried out in the self-organizing map (SOM)-Hebb classifier.
The gesture spotting function detects the end of the gesture by using the vector distance between the
posture sequence vector and the winner neuron’s weight vector. The proposed gesture recognition
method was tested by simulation and real-time gesture recognition experiment. Results revealed
that the system could recognize nine types of gesture with an accuracy of 96.6%, and it successfully
outputted the recognition result at the end of gesture using the spotting result.

Keywords: dynamic gesture recognition; gesture spotting; self-organizing map

1. Introduction

Hand gestures are one of the most important communication tools frequently used
in our daily lives, and they can be used as an attractive means of human–computer
interaction (HCI). Hand gestures are generally either static hand signs or dynamic hand
gesture. Hand signs are static hand poses without any movements, and the hand gesture
is defined as dynamic movement, which is a sequence of hand poses. Thus, a hand sign
recognition system identifies the meaning of a hand pose. Meanwhile, in the dynamic
gesture recognition, each gesture is defined as the trajectory of the hand movement or a
sequence of hand poses.

A number of video-based hand gesture recognition algorithm and systems have been
proposed [1]. This approach can use a conventional camera that most laptop PCs are
equipped with. Thus, the video-based gesture recognition system can easily be imple-
mented on widely available platforms. Another approach is based on three-dimensional
hand image, which has attracted researchers in gesture recognition because the use of
3D image can improve performance [2]. However, the 3D gesture recognition requires a
special device such as a Microsoft Kinect and a Leap Motion.

The gesture recognition system should work in real-time for practical use. One of the
important function required for the real-time dynamic gesture recognition system is gesture
spotting. The gesture spotting segments a meaningful portion from a continuous data
stream, and it finds the start and end of gesture. The simplest way to provide the gesture
spotting is to define key posture that indicates the start and end of gesture. However,
this approach disturbs the natural flow of the intended sequence of gesture. Thus, a new
approach that can detect the start and end of gesture naturally in continuous sequence of
hand motion, is desired.

In our previous work, a hardware hand sign recognition system was proposed, which
was video based system and recognized static hand signs [3]. Its recognition algorithm
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of the system consisted of feature vector generation and a vector classifier, and the whole
system was implemented as a custom hardware on a field programmable gate array (FPGA).
Self-organizing map (SOM) and Hebbian learning network were combined to form a SOM-
Hebb classifier, which was used as the vector classifier. The SOM [4] is an unsupervised
neural network that has been used in pattern recognition, data analysis, and visualization
by using its clustering or vector quantization capabilities. The feature vector was computed
from video frames and the hand sign recognition was carried out in real time by taking
advantage of its high speed computation power of the dedicated hardware.

This paper proposes a new video-based dynamic hand gesture recognition system
with the gesture spotting. The SOM-Hebb classifier is enhanced to SOM-SOM-Hebb
classifier for the dynamic gesture classification. The proposed system consists of feature
vector computation and two SOMs and a Hebbian learning network. The feature vectors
computed from video frames are quantized by the first SOM, and a posture sequence
vector that represents the current gesture is generated. Then, the SOM-Hebb classifier that
contains the second SOM, recognizes the input gesture. During the gesture classification,
the end of gesture is detected by the SOM-Hebb classifier, and a recognized gesture class is
outputted when the gesture’s end is detected. As a result, natural gesture spotting without
any key pose is implemented. This paper examines detailed performance of the proposed
recognition system by simulation and experiment by using nine types of dynamic gesture.

2. Related Work

In the gesture recognition, a hand segmentation is carried out first, which detects
the hand position or hand shape. A popular segmentation method in the vision based
system is skin color detection that extracts hand portion from cluttered background [5,6].
Yun et al. [7] proposed a multi-feature fusion method that improved recognition results
by extracting angle count, skin color angle, and non-skin color angle in combination
with Hu invariant moments features. Some gesture recognition systems simplified hand
extraction from the background with the help of inexpensive color-coded gloves for hand
segmentation. A glove providing color-coding with six unique colors were used in [8,9].
Wang and Popovi [10] employed an ordinary cloth glove being printed with a custom
pattern that was designed to estimate the poses. Our previous work [3] also employed
a two-colored glove for hand segmentation. Another option for gesture segmentation is
the use of the 3D image that is taken through depth sensors, such as the Microsoft Kinect
depth camera and the Leap Motion. The 3D camera views the subject in the front plane
and generates a depth image of the subject, and the depth image is used for background
removal, followed by the generation of the depth profile of the subject. Gesture recognition
systems with the Kinect are found in [11–15]. Molina et al. [16] used another depth camera
called Time-Of-Flight range camera that supplied real-time depth information per pixel.
In terms of applicability, the vision-based gesture segmentation is desirable since it requires
only a conventional camera available on most laptop PCs, and no special depth sensor
is needed.

Unlike the Kinect sensor and other depth sensors, the output of the Leap Motion is
the depth data which consists of palm direction, fingertips positions, palm center position,
and other relevant points. Therefore, no extra computational work is needed to get these
information. Due to its unique features, the Leap Motion has been applied to dynamic
hand gesture recognition by by researchers. Lu et al. [17] proposed a dynamic gesture
recognition system, in which the Leap Motion was used to compute feature vector of the
gesture, and a hidden conditional neural field (HCNF) classifier was used to recognize
dynamic hand gesture. Another example is the work done by H. Li et al. [18]. Their hand
gesture recognition system was based on the Leap Motion and a spatial fuzzy matching
(SFM). Hand–eye coordination means the ability to combine seeing and hand movement.
Ujbanyi et al. [19,20] examined the correlations between eye motion and the motion of
the mouse cursor regarding hand–eye coordination, and they used an hand–eye tracking
system which was made of the Leap Motion and Eye Tribe tracker.
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Challenge of real-time dynamic gesture recognition is the gesture spotting or temporal
segmentation that detects when the gesture starts and ends. In the system proposed by
Varshini et al. [13], each dynamic gesture was defined as a sequence of trigger-poses,
and the start and end of the gesture were detected by finding the start and end triggers.
Chai et al. [21] used hand positions to perform the temporal segmentation by assuming
that a user put hands-up pose at the start of gesture and put hands-down pose at end of the
gesture. A real-time dynamic hand gesture recognition system proposed by Chen et al. [15]
used two hand configurations (open-hand, closed-hand) to achieve gesture spotting and
its 3D motion trajectory of the dynamic gesture was captured by the Kinect sensor. These
approaches disturb the natural flow of gesture, and thus a new approach that can detect
the start and end of gesture naturally, is desirable.

A static hand gesture recognition can be achieved by applying standard pattern
recognition techniques such as template matching, whereas dynamic gesture recognition
requires time-series pattern recognition algorithm such as a hidden Markov model (HMM)
or dynamic time warping (DTW) algorithm. The HMM is a statistical Markov model in
which the system being modeled is assumed to be a Markov process. The HMM is a doubly
stochastic process with an underlying stochastic process that is not observable, but can be
observed through another set of stochastic processes that produce a sequence of observed
symbols, and the model is known for their applications to various fields including the
gesture recognition such as [22]. Problem of the gesture recognition with the HMM is that
its recognition accuracy decreases if the behavior during the gesture transition has not
been precisely trained. The DTW is one of the algorithms for measuring similarity between
two temporal sequences which may vary in speed. Plouffe et al. [14] and Molina et al. [16]
employed the DTW algorithm for their dynamic gesture recognition systems.

Another popular recognition algorithm is a neural network and its derivatives, espe-
cially deep learning methodologies [23]. Most modern deep learning models are based on
convolutional neural networks (CNNs). The CNNs have been well studied and applied
to fields of image recognition. The most crucial challenge in deep learning based gesture
recognition is the handling of the temporal dimension. One approach uses 3D filters in
the convolutional layer of the CNN. The 3D-CNN captures features of both spatial and
temporal dimensions while maintaining a certain temporal structure. Another approach
combines a temporal sequence modeling with a 2D (or 3D) CNN. One of the most used
networks for the temporal modeling is a recurrent neural network (RNN), which can
take into account the temporal data using recurrent connections in hidden layers. The
drawback of this network is its short-term memory, and long short-term memory (LSTM)
was proposed to solve the problem.

Molchanov et al. [24] proposed a recurrent 3D-CNN that performed simultaneous
detection and classification of dynamic hand gesture from multi-modal data. Wu et al. [25]
employed a novel method called deep dynamic neural networks (DDNN) for multimodal
gesture recognition. The multimodal gesture recognition method based on 3D convolu-
tional LSTM network was proposed by Zhu et al. [26]. Naguri [27] proposed a gesture
recognition system based on the LSTM and a convolutional neural network (CNN) that
were trained to process input sequences of 3D hand positions and velocity. Chai et al. [21]
proposed a continuous gesture recognition method with a two-stream RNN (2S-RNN)
for the RGB-depth image recognition. John et al. [28] proposed a vision-based gesture
recognition system for automotive user interface, and they employed a long-term recurrent
convolution network to classify the video sequence of the dynamic hand gesture.

A recognition system proposed by Chen et al. [15] employed a Support Vector Machine
(SVM) as the recognition algorithm. Kim et al. [29] proposed a novel method to measure
the video-to-video volume similarity by extending a canonical correlation analysis (CCA).
Then, the proposed matching method was demonstrated for action classification by a
simple nearest neighbor classifier. Jordan recurrent neural network (JRNN) is a class of
recurrent neural networks, which is a three-layer network with addition of a set of context
units [30]. The context units are fed from the output layer, and they have a recurrent
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connection to themselves. This allows the JRNN to exhibit temporal dynamic behavior
and can be applied for the gesture recognition. Araga et al. [31] employed the JRNN to
implement their dynamic gesture recognition system.

3. Gesture Recognition System

Figure 1 outlines the flow for the gesture recognition algorithm. The proposed system
consists of a feature vector generator, a sequence vector generator, and the SOM-Hebb
classifier. Input to the system is video frames, and a dynamic hand gestures are assumed
to be made of a sequence of F video frames. Since each frame contains different types of
posture, the dynamic gesture can be classified by examining change of the posture in the F
consecutive video frames.
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Figure 1. Dynamic gesture recognition system.

3.1. Feature Vector Generation

In the feature vector generator, the image frame that is P × Q pixels in RGB color
format is converted to the feature vector ~G. The feature vector proposed in [3] is employed.
Computation to obtain the feature vector is shown in Figure 2, which consists of a binary
quantization, horizontal and vertical projection histogram calculations, and two discrete
Fourier transforms (DFTs). Output is the D dimensional feature vector ~G.
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Fourier transforms (DFTs). Output is the D dimensional feature vector ~G.
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Firstly, the input color frame image is converted to a binary image I(x, y). For the
system to remove the background image including the arm as well as to extract the finger
segments, the user is required to wear a glove, finger portion of which is colored in red.
If color of pixel is red the pixel is treated as 1, otherwise 0. Then horizontal and vertical
histograms PH(y) and PV(x) of I(x, y) are calculated as follows:

PH(y) =
P−1
∑

x=0
I(x, y) (1)

PV(x) =
Q−1
∑

y=0
I(x, y) (2)

After the histogram calculations, DFTs are carried out on the histograms.

AH(k) =
Q−1
∑

y=0
PH(y)· cos

(
2πyk

Q

)
(3)

BH(k) =
Q−1
∑

y=0
PH(y)· sin

(
2πyk

Q

)
(4)

AV(k) =
P−1
∑

x=0
PV(x)· cos

(
2πxk

P

)
(5)

BV(k) =
P−1
∑

x=0
PV(x)· sin

(
2πxk

P

)
(6)

Here, AH(k), AV(k) and BH(k), BV(k) are real and imaginary parts of the frequency
components of the histograms. Then, FH(n) and FV(n), i.e., the magnitude spectra of PH(y)
and PV(x) are computed as

FH(k) =
√

A2
H(k) + B2

H(k) (7)

FV(k) =
√

A2
V(k) + B2

V(k) (8)

The FH(k) and FV(k) of the same hand posture images placed in different positions
are identical because they are the magnitude spectra lacking the phase information related
to the hand posture position. Since most of the image’s feature information is concentrated
in the lower frequency components, they are used as the feature vector. The D-dimensional

feature vector,
→
G is formed from FH(k) and FV(k) as;

→
G = {λ0, λ1, · · · , λD−1} ∈ <D (9)

λi =

 FH(i)
(

0 ≤ i < D
2

)
FV

(
i− D

2

) (
D
2 ≤ i < D

)
This feature vector

→
G is fed to the sequence vector generator.

3.2. Sequence Vector Generator

The SOM-1 in the sequence vector generator quantizes the input vectors, and the
quantization results are sequentially stored in the shift registers. The contents of the shift
registers form the sequence vector, which represents temporal change of the input posture,
and is fed to the next SOM-Hebb classifier. The SOM-1 includes M1×M1 neurons, and
D-dimensional vector

→
mj that is called a weight vector is included in each neuron.

→
mj =

{
µj0, µj1, · · · , µjD−1

}
∈ <D, (10)

where, j is the neuron number.



Appl. Sci. 2021, 11, 1933 6 of 14

Operation of the SOM is divided into learning and recall phases. The weight vectors
of the neurons are trained with a set of input vectors in the learning phase. The learning
phase is made of a winner search and weight update. During the recall phase, only the
winner search is carried out by using the map of the trained weight vectors.

The winner neuron has the weight vector that is the nearest to the input vector. Eu-
clidean distance V1(j) between the input vector and weight vector of neuron-j, is calculated
for the winner search.

V1(j) =

√
D−1
∑

i=0

(
µji − λi

)2 (11)

The winner neuron-c is then determined.

c = arg min
j

V1(j) (12)

In the weight update, weight vectors of the winner and its neighborhood neurons are
updated to be closer to the input vector as;

→
mj(t + 1) =

→
mj(t) + h(c, j, t)·

[ →
G(t)−→mj(t)

]
, (13)

where t is time index, and h(c, j, t) is a function called neighborhood function, which is
defined as;

h(c, j, t) = α(t)· exp

(
−‖

→
r c −

→
r j ‖

2σ(t)2

)
, (14)

where α(t) is a learning coefficient, (0 < α(t) < 1). The
→
rc and

→
rj are the coordinate vectors

of the winner neuron-c, and a neuron-j, respectively. The σ(t) represents the neighborhood
radius, and the weight vectors within the radius from the winner neuron are updated.

After the learning phase, all weight vectors are kept unchanged and the weight map
is used in the recall phase. The winner neuron represents the cluster to which the input
vector belongs, and the coordinates (wX , wY) of the winner neuron for the input vector are
treated as the quantization result. These coordinates are stored sequentially in the shift
registers, so their contents represent the sequence of the input video frames. In this paper,

this vector is called the sequence vector,
→
X, which is a 2F-dimensional vector. Its vector

element ξm is defined as:
→
X = {ξ0, ξ1, · · · , ξ2F−1} (15)

ξm =

{
wX(m) (0 ≤ m < F)
wY(m− F) (F ≤ m < 2F).

(16)

Figure 3 shows examples explaining operation of the system. As shown in Figure 3A,
a gesture is made of 10 posture images in different video frames. In the example, SOM-1
is composed of 8× 8 neurons and Figure 3B shows the transition of the winner neuron
with respect to the input video frames. Posture in the first video frame ( f = 0) makes a
neuron at (wX , wY) = (0, 0) the winner. Then the coordinates of the winner neuron are
stored in the registers in the sequence vector generator as shown in Figure 3C. Question
marks in Figure 3C are the coordinates of the winner neurons of the previous gesture,
which are not related to the current gesture. The winner for the second posture ( f = 1) is
a neuron at (4, 2). The registers are shifted to the right and the new winner coordinates
(4, 2) is stored into the registers’ most left position. For the third posture at f = 2, wX = 6
and wY = 6 are loaded into the registers. In this way, the information of the previous
gesture in the registers are gradually replaced with that of the current gesture. Therefore,

the sequence vector
→
X representing the current gesture approaches completion as the video

frame progresses, and
→
X is completed at the 10th frame ( f = 9). The vector

→
X is fed to the

SOM-Hebb classifier that is described in the next subsection.
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Figure 3. Example of operation of the proposed system, (A) Input gesture frames, (B) Winner neurons in the SOM-1,
(C) Development of the shift registers, (D) Vector distance V(c) of winner neurons in the SOM-2.

3.3. SOM-Hebb Classifier for Sequence Vector Classification

The SOM-Hebb classifier classifies the sequence vector ~X and identifies the input
gesture. This classifier is the same one that was proposed in our previous work [3]. The
SOM-2 in this classifier consists of M2×M2 neurons and 2F-dimensional weight vectors
are included in the neurons. The SOM-2 is trained in the same way as was explained in
the previous section. Note that V2(c) is the vector distance of the winner neuron’s weight
vector to the input vector that is the sequence vector ~X, and V2(c) is used to implement the
gesture spotting function.

During the recall phase, the class to which the input vector belongs can be identified
from the winner neuron of the SOM-2. Here, H represents the number of classes. The Hebb
network generates its output Ĉh from the winner neuron. Each neuron represents a single
cluster in the input vector space. Since a single gesture class may consist of combination

Figure 3. Example of operation of the proposed system, (A) Input gesture frames, (B) Winner neurons in the SOM-1, (C)
Development of the shift registers, (D) Vector distance V(c) of winner neurons in the SOM-2.

3.3. SOM-Hebb Classifier for Sequence Vector Classification

The SOM-Hebb classifier classifies the sequence vector
→
X and identifies the input

gesture. This classifier is the same one that was proposed in our previous work [3]. The
SOM-2 in this classifier consists of M2×M2 neurons and 2F-dimensional weight vectors
are included in the neurons. The SOM-2 is trained in the same way as was explained in
the previous section. Note that V2(c) is the vector distance of the winner neuron’s weight

vector to the input vector that is the sequence vector
→
X, and V2(c) is used to implement the

gesture spotting function.
During the recall phase, the class to which the input vector belongs can be identified

from the winner neuron of the SOM-2. Here, H represents the number of classes. The Hebb
network generates its output Ĉh from the winner neuron. Each neuron represents a single
cluster in the input vector space. Since a single gesture class may consist of combination
of multiple clusters, multiple neurons must be associated to the single class in that case.
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Selection of the neurons belonging to the same class is done by a single layer feedforward
network. This network is trained by the Hebbian training algorithm, which is a supervised
training. During the Hebb training, training vectors with their class data are sequentially
fed to the network. Every training vector makes one of the neurons the winner. If strong
correlation is found between training vectors in class h and neuron j, then the neuron j is
assigned to the class h. In practice, the class of the input vectors with which the neuron j
won the most, is associated to the neuron.

The SOM-2 must have appropriate number of neurons for the SOM-Hebb network to
work properly. It happens that some neurons may have no connection to any gesture class.
Obviously, the selection of such neuron as the winner in the recognition phase causes false
recognition. To avoid this situation, neurons without connections to class ID are culled.
The culling replaces the weight vectors of these neurons with huge vectors so that they
never win.

3.4. Gesture Spotting

An important function required for the dynamic gesture recognition system is the
gesture spotting which detects when gesture ends so that a meaningful gesture is segmented
from the sequence of hand motions. The gesture spotting is implemented in the SOM-Hebb
classifier by using V2(c) that is the vector distance of the winner neuron’s weight vector
in the SOM-2 to the input vector. The SOM-Hebb classifier performs the recognition for
every input frame and generates its recognition results Ĉh. However most of the Ĉi are
not correct because the contents of the shift registers are not complete vector sequence for
the current input gesture until the last gesture frame is input. The recognition result Ch is
outputted only when the spotting module detects the end of gesture.

The end of gesture is detected by observing the transition of the vector distance V2(c).
Figure 3C shows the transitions in the shift registers, which is development process of the

posture sequence vector,
→
X. Each gesture consisted of 10 frames in this example, therefore

the shift register is filled with appropriate vector’s elements at 10th frame ( f = 9) and

posture sequence vector
→
X is completed as shown in Figure 3C. The completed vector

→
X

matches with one of the weight vectors in SOM-2, which decreases the vector distance
V2(c) remarkably as shown in Figure 3D. After that, the distance increases because the next
gesture vector elements are loaded into the register. Therefore, the end of gesture can be
detected by searching a dip in the transition of the vector distance V2(c). However, the
actual distance transition is not as smooth as that plotted in Figure 3C. The transition in
the actual input fluctuates, which makes it difficult to find the dip. In order to solve the
problem, a moving average of the vector distance is employed. The moving average Vc( f )
is computed as;

Vc( f ) =
1
L

L−1

∑
l=0

Vc( f − l), (17)

where Vc( f ) is the V2(c) at video frame f, and L is the number of samples to be averaged.

4. Simulation and Experiment

Performance of the proposed system was examined by computer simulation
and experiment.

4.1. Simulation

The system was configured as follows.

Frame size: P×Q = 128× 128.
Feature vector dimension: D = 32.
Sequence vector dimension: F = 20.
The numbers of neurons in the SOMs: M1 ×M1 = M2 ×M2 = 16× 16 = 256.
Moving average: L = 4 in Equation (17).
The number of gesture classes: H = 9.
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Data set for the simulation was vector sequence taken from video frames of recorded
gesture video. Nine types of gesture shown in Figure 4 were used for the test. We defined
the gesture by using the Cambridge Hand Gesture Data set [29] for reference. As Figure 4
shows, the data set consisted of nine classes. Each class gesture was defined with 10 frames,

therefore the dimension of the sequence vector
→
X was 20. Class labels 1 to 9 are assigned to

every types of gesture. Note that the labels are used to distinguish class of the gesture types,
and the number does not represent numerical character. Gesture motions are combinations
of three basic poses (Flat, Spread, V-shape) and three movements (Leftward, Rightward,
Contract). Thus, the gesture classes are made of three groups, i.e., 1-2-3, 4-5-6, and 7-8-9.
Note that the last posture of gesture 1 is also the first posture of gesture 2, and the last
posture of class 2 is the first posture of gesture class 3. The other gesture groups were
designed in the same way so that the gesture classes in the same group could be performed
seamlessly. The number of training vectors per class was 50, and 100 test vectors were used.
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Figure 4. Nine types of gesture.

For comparison purpose, recognition performance of the JRNN [30] was examined
using the same feature vectors ~G. Table 1 summarizes the recognition accuracies of the two
methods.

Table 1. Gesture recognition accuracies of various classifiers.

Gesture Class
Method 1 2 3 4 5 6 7 8 9 Average

JRNN 100 % 100 % 82 % 89 % 72 % 60 % 99 % 99 % 46 % 83.0 %

This work 82 % 66 % 100 % 89 % 98 % 100 % 100 % 100 % 100 % 92.8 %

4.2. Real-Time Gesture Recognition

To conduct the experiment, real-time gesture recognition system was developed in
software that ran on a PC. The input gesture was taken by the USB camera, and fed to the
system. The recognition result was outputted only when the spotting function detected
the end of the gesture. Figure 5 is a screen shot of the implemented real-time gesture
recognition system.

Figure 4. Nine types of gesture.

For comparison purpose, recognition performance of the JRNN [30] was examined

using the same feature vectors
→
G. Table 1 summarizes the recognition accuracies of the

two methods.

Table 1. Gesture recognition accuracies of various classifiers.

Method
Gesture Class

Average
1 2 3 4 5 6 7 8 9

JRNN 100% 100% 82% 89% 72% 60% 99% 99% 46% 83.0%

This work 82% 66% 100% 89% 98% 100% 100% 100% 100% 92.8%

4.2. Real-Time Gesture Recognition

To conduct the experiment, real-time gesture recognition system was developed in
software that ran on a PC. The input gesture was taken by the USB camera, and fed to the
system. The recognition result was outputted only when the spotting function detected
the end of the gesture. Figure 5 is a screen shot of the implemented real-time gesture
recognition system.

The system was tested with the same gesture that was used in the simulation. The
system was trained off-line by using pre-captured gesture data set. The number of training
data for the off-line training was 50 samples for each gesture class. Each training sample was
acquired by simply capturing 10 consecutive frames. Neither setting up the key posture that
represented the gesture, nor manual selection of key frame was done in the acquisition of
the training data set. The recognition system then classified the dynamic gesture presented
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in real-time using the weight vectors obtained from the off-line training. In the experiment,
recognition test was carried out 100 times for each gesture by the same person who had
provided the training data set. Most of the gesture ends were correctly detected even
though the gesture groups 1-2-3, 4-5-6, and 7-8-9 were performed in succession (video of
the experiment (10 fps) is available on http://www2.kansai-u.ac.jp/hikawa/ichikawa.mp4,
19 February 2021). Since the gesture in our method is defined by the fixed number of posture
types, the input gesture must be made of the same number of posture types. Therefore, the
speed of gesture to be recognized depends on the speed of gesture that has been captured
as the training data. The recognition tests were carried out with two speeds, i.e., 5 frames
per second (fps) and 10 fps. Since F = 20 (10 frames for one gesture), the gesture speeds
were 2 second/gesture in case of 5 fps, and 1 second/gesture in case of 10 fps.
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The system was tested with the same gesture that was used in the simulation. The
system was trained off-line by using pre-captured gesture data set. The number of training
data for the off-line training was 50 samples for each gesture class. Each training sample was
acquired by simply capturing 10 consecutive frames. Neither setting up the key posture that
represented the gesture, nor manual selection of key frame was done in the acquisition of
the training data set. The recognition system then classified the dynamic gesture presented
in real-time using the weight vectors obtained from the off-line training. In the experiment,
recognition test was carried out 100 times for each gesture by the same person who had
provided the training data set. Most of the gesture ends were correctly detected even
though the gesture groups 1-2-3, 4-5-6, and 7-8-9 were performed in succession (video of
the experiment (10 fps) is available on http://www2.kansai-u.ac.jp/hikawa/ichikawa.mp4,
Feb. 2021.). Since the gesture in our method is defined by the fixed number of posture
types, the input gesture must be made of the same number of posture types. Therefore, the
speed of gesture to be recognized depends on the speed of gesture that has been captured
as the training data. The recognition tests were carried out with two speeds, i.e., 5 frames
per second (fps) and 10 fps. Since F = 20 (10 frames for one gesture), the gesture speeds
were 2 second/gesture in case of 5 fps, and 1 second/gesture in case of 10 fps.

Table 2 shows the experimental results of 5 fps frame rate. The average accuracy of
the recognition was 96.6%. NS in the table is the number of cases where no spotting was
detected, and MS is the number of cases where multiple spotting occurred. Both cases were
counted as errors. Table 3 summarizes the experimental results of 10 fps frame rate. The
average accuracy of the recognition rate was 97.0%, and no significant difference is found
due to the speed difference.

Table 2. Confusion table (5 fps).

Input Recognition Results Spotting Accuracy

Gesture 1 2 3 4 5 6 7 8 9 NS MS %

1 98 2 98
2 97 3 97
3 91 2 2 5 91
4 89 5 6 89
5 100 100
6 100 100
7 96 2 2 96
8 100 100
9 98 2 98

Average 96.6

Figure 5. Real-time gesture recognition system.

Table 2 shows the experimental results of 5 fps frame rate. The average accuracy of
the recognition was 96.6%. NS in the table is the number of cases where no spotting was
detected, and MS is the number of cases where multiple spotting occurred. Both cases were
counted as errors. Table 3 summarizes the experimental results of 10 fps frame rate. The
average accuracy of the recognition rate was 97.0%, and no significant difference is found
due to the speed difference.

Table 2. Confusion table (5 fps).

Input Recognition Results Spotting Accuracy

Gesture 1 2 3 4 5 6 7 8 9 NS MS %

1 98 2 98

2 97 3 97

3 91 2 2 5 91

4 89 5 6 89

5 100 100

6 100 100

7 96 2 2 96

8 100 100

9 98 2 98

Average 96.6

http://www2.kansai-u.ac.jp/hikawa/ichikawa.mp4
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Table 3. Confusion table (10 fps).

Input Recognition Results Spotting Accuracy

Gesture 1 2 3 4 5 6 7 8 9 NS MS %

1 93 7 93

2 95 3 2 95

3 98 1 1 98

4 2 94 1 3 94

5 100 100

6 1 99 99

7 95 3 2 95

8 99 1 99

9 100 100

Average 97.0

5. Discussion

The simulation results show that the proposed method outperformed the JRNN.
Difficulty of this gesture data set is that class pairs 1–2, 4–5, 7–8 are reverse gestures.
Appearance of poses in the gesture is reverse order and those pairs include the same hand
poses. For classes 1 and 2, the proposed system is inferior to the JRNN, but the proposed
method recognized class 5 better. Another noticeable point is that the recognition accuracies
of the JRNN for classes 6 and 9 are significantly worse than those of the proposed system.
This is caused by the another difficulty of the data set. As shown in Figure 4, the class pairs
4–6 and 7–9 have the same poses in their beginning, which confuse the classifiers.

The experimental results shown in Tables 2 and 3 disclose that the recognition and
spotting performances of the proposed system are very high. Regarding the spotting, the
spotting may be easily implemented by counting the frames because the number of frames
of gestures are fixed. To do so, the start of gesture must be detected correctly, and a possible
method is the use of key poses to indicate the start of gestures, which was used in [15,21].
However, these approaches disturb the natural flow of gesture. Meanwhile the proposed
spotting finds the end of gesture automatically when the sequence of frames matches one of
the pre-trained ones, therefore the user can start gesture at any time without the key poses.

The tables also indicate that the most of the recognition errors were caused by the
spotting errors. In case of NS, no spotting was detected, and the recognition result was not
available. During the experiment, we observed that the proposed spotting detected the
end of gesture twice in all MS cases, and two recognition results were outputted. In most
of such cases, recognition results at the first spotting were incorrect and the second ones
were correct. Therefore, if the detection accuracy of the spotting function is more precise,
recognition results would be improved.

Table 4 compares the recognition accuracies of the proposed system with the state-of-
the-art in the literature. Since experimental conditions are not the same, the accuracies in
the table should not be directly compared. Six of them are real-time recognition systems,
and the others were tested with various gesture data sets. Four of them are vision based
systems, and the others used 3D gesture images taken from the special sensors. Vision
based system is more challenging than the 3D gesture recognition since it uses limited 2D
information, but it can be realized with the simple readily available cameras. Additional
burdens of the real-time recognition system are high speed computation and the gesture
spotting. Note that the proposed system provides the natural spotting function with no
special key posture that indicates the start or end of gesture. Considering features of
vision-based, real-time accurate gesture recognition and spotting function, the overall
contribution of the proposed system in dynamic gesture recognition application is very
high. However, even though the proposed system does not require the special sensors, it
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still requires users to wear the color glove, which may prevent it being used in everyday
life. To solve the problem, use of the skin color detection [5,6] is one of the choice for the
hand segmentation without the colored glove.

Table 4. Comparison of accuracies.

Method Input Data Set Accuracy (%)

[11] 3D (Kinect) RT, 8 gestures 84.9

[14] Kinect RT, 9 gestures 96.25

[15] Kinect RT, 36 gestures 95.42

[16] time-of-flight RT, 9 gestures 95.1

[17] Leap Motion Handcraft-gesture dataset,
10 gestures 95.0

[18] Leap Motion RT, 4 gestures 97.5

[24] color+depth SKIG 97.7
color+depth+optical flow ChaLearn 98.6

[26] RGB+depth SKIG 98.89

[27] RGB+velocities RT, 6 gestures 97.0

[28] Vision (barehand) Cambridge 91.0

[29] Vision (barehand) Cambridge 86.0

[31] Vision (with colored glove) RT, 9 gestures 94.3

this work Vision (with colored glove) RT, Cambridge 96.6
RT: Real-time recognition; SKIG: Sheffield Kinect Gesture dataset, 10 gestures; ChaLearn: ChaLearn dataset,
20 gestures; Cambridge: Cambridge gesture recognition data set [29], 9 gestures.

6. Conclusions

This paper proposed a vision-based real-time dynamic hand gesture recognition
system with a gesture spotting function. In order to recognize the dynamic gesture,
the SOM-SOM-Hebb classifier was newly devised. To provide the spotting function,
end of gesture was detected from transitions of the vector distance between input and
winner neuron’s weight vectors. This gesture spotting capability made the system much
more practical.

The proposed recognition algorithm was examined by simulation and real-time ex-
periment. The results revealed that the system could recognize the nine types of gesture
with an accuracy of 96.6%, which was better than that of other recognition sysems. Other
advantages of our system over the compared methods are its real-time operability and the
gesture spotting function.

Major drawback of the proposed system is the use of the color glove, and imple-
mentation of the hand segmentation without the glove is left for our future work. An-
other future research objective is to develop a hardware gesture recognition system with
faster recognition speed, higher portability, and lower power consumption than those of
PC implementation.
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