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Abstract: To detect areas with the potential for landslides, slopes are routinely subjected to stability
analyses. To this end, there is a need to adopt appropriate mitigation techniques. In general, the
stability of slopes with circular failure mode is defined as the factor of safety (FOS). The literature
includes a variety of numerical/analytical models proposed in different studies to compute the
FOS values of slopes. However, the main challenge is to propose a model for solving a non-linear
relationship between independent parameters (which have a great impact on slope stability) and
FOS values of slopes. This creates a problem with a high level of complexity and with multiple
variables. To resolve the problem, this study proposes a new hybrid intelligent model for FOS
evaluation and analysis of slopes in two different phases: simulation and optimization. In the
simulation phase, different support vector regression (SVR) kernels were built to predict FOS values.
The results showed that the radius basis function (RBF) kernel produces more accurate performance
prediction compared with the other applied kernels. The prediction accuracy of this kernel was
obtained as coefficient of determination = 0.94, which indicates a high prediction capacity during
the simulation phase. Then, in the optimization phase, the proposed SVR model was optimized
through the use of two well-known techniques, namely, the whale optimization algorithm (WOA)
and Harris hawks optimization (HHO), and the optimum input parameters were obtained. The
optimal results confirmed that both optimization techniques are able to achieve a high value for FOS
of slopes; however, the HHO shows a more powerful process in FOS maximization compared with
the WOA technique. In addition, the developed model was also successfully validated using new
data with nine data samples.

Keywords: slope stability; factor of safety; support vector regression; whale optimization algorithm;
Harris hawks optimization

1. Introduction

Landslides have been classified as one of the most hazardous natural events, causing
damage to lots of public and private properties, and even human lives. Many countries
spend a considerable amount of money annually to mitigate and control these events. To
do this, one of the most straightforward and conventional steps is identifying potential
landslide sections by conducting slope stability analyses. A number of parameters affect
the stability of a slope; the most important ones are the geometrical shape of the slope, its
gravity, the shear strength of geomaterial, and the water quantity in the soil. Generally, the
above-noted parameters are represented by five different factors: the slope height, the pore–
pressure ratio, the slope angle, the soil unit weight, and the soil shear strength parameters
(i.e., cohesion and angle of internal friction) [1]. These parameters bring lots of uncertainties
to the problem, which makes slope stability analysis a statistically indeterminate problem

Appl. Sci. 2021, 11, 1922. https://doi.org/10.3390/app11041922 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4769-4487
https://doi.org/10.3390/app11041922
https://doi.org/10.3390/app11041922
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041922
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1922?type=check_update&version=3


Appl. Sci. 2021, 11, 1922 2 of 21

with a high non-linearity. Different researchers have proposed different assumptions with
the aim of simplifying this problem, which has resulted in the development of several
methods for slope stability analysis [2,3].

Typically, the stability of a slope is expressed by the term ‘factor of safety’ (FOS). If the
FOS value is greater than one, the slope is thought to be safe. To compute the FOS value,
several methods have been suggested in different studies. Two conventional types applied
for this purpose are numerical methods (such as finite element method, finite difference
method, and discrete element method) and limit equilibrium methods (LEMs) [4,5]; both
have certain advantages as well as drawbacks. Finite element methods are used to analyze
slope stability for two-dimensional and three-dimensional simulation. However, each
method has its advantages and disadvantages. Two-dimensional methods are usually
conservative and can differ by up to 30% from three-dimensional results. This creates
unsafe designs for FOS projects. On the other hand, 3D models have a higher execution
time, which also reduces their use [6,7]. In general, these traditionally used methods
are complex and iterative and cause an overloaded computation system [8]. Such faults
have obliged researchers working in this field to make attempts to propose alternative
approaches to slope stability computation.

In recent years, a number of studies have used soft computing techniques (e.g., vector
machine algorithm, neural networks, etc.) to solve such highly complicated, multivariate,
non-linear problems. In various fields of science and engineering, intelligent methods have
proven to be highly efficient in function approximation [9–32]. Different studies have devel-
oped various models based on artificial neural networks (ANNs), support vector regression
(SVR), and random forest techniques to solve such complex problems [33–39]. Several re-
searchers have employed these methods to work on the slope stability problem [1,3,8,40,41].
ANN and SVR essentially predict the relationship between the input(s) and output for a
certain set of data. These methods include various strengths and weaknesses, which can be
improved with optimization algorithms such as genetic algorithm (GA), particle swarm
optimization (PSO), differential evolution (DE), and ant colonization optimization (ACO).
Optimization algorithms are used to optimize various problems. Complex problems can
be simulated well using a combination of different models. Table 1 summarizes some of
the past proposed works in the area of slope stability using soft computing techniques.

Table 1. Summary of some studies that applied soft computing techniques to evaluate the factor of safety (FOS).

Author (Reference) Soft Computing Technique Aim

Verma et al. [42] ANN Provide a hybrid ANN-FEM model for slope stability
analysis and FOS

Rukhaiyar et al. [43] PSO-ANN Development of a hybrid model for FOS evaluation and
comparison with numerical methods

Chakraborty et al. [44] ANN Applying multiple linear regression and ANN models
for 200 cases and comparison with analytical methods

Koopialipoor et al. [41]
Imperialist competitive algorithm

(ICA)-ANN, GA-ANN, PSO-ANN and
artificial bee colony (ABC)-ANN

Development of various ANN models using
4 optimization algorithms and evaluation of FOS with

different conditions

Samui et al. [45] SVR FOS forecasting using SVR method and testing of
real cases

Abdalla et al. [46] ANN Prediction of minimum FOS against slope failure in
clayey soils using ANN

Khandelwal et al. [47] ANN Calculate the factor of safety of dump slope of a coal
mine using developed ANNs

In this research, a simulation was implemented to evaluate FOS using an SVR model.
In this simulation, different models were designed based on four kernels. Finally, the
model with the lowest error and with high accuracy was optimized by two new algorithms,
namely, the whale optimization algorithm (WOA) and Harris hawks optimization (HHO).
This problem was optimized using a combination of SVR and HHO-WOA models. The
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results show that a new methodology can be proposed for FOS parameter analysis. This
article has the following sections: The second section discusses the analysis methods for
FOS. Then, a review of the data conditions is performed, and simulation and optimization
models are implemented. Finally, the article continues with discussion and conclusions
about the applications of this research.

2. Methodology
2.1. Support Vector Regression (SVR)

SVR, pioneered by Cortes and Vapnik [48], is an algorithm that works based on
machine learning. This algorithm is extensively used in numerous fields such as blasting,
tunneling, landslides, and rockburst [49–55]. It is broadly used to solve many regression-
and classification-related problems. SVR generally uses a mapping of data with an f(x)
function for the aim of transforming a low-dimensional non-linear dataset into a high-
dimensional linear problem in feature space. The SVR for regression can be defined as
follows.

Assume a training dataset T = {(x1, y1), (x2, y2), . . . , (xk, yk) }, where xi and yi stand
for the input and output, respectively, then xi ∈ Rn and then yi ∈ R, and k signifies
the training observations. The SVM model for the regression problem can be calculated
as follows [48]:

f (x) = a.δ(x) + b (1)

where a.δ(x) stands for the kernel function. Table 2 presents a list of some types of kernel
functions for regression. These functions can be effectively used to transform a dataset
from a low to a higher dimension for SVR.

Table 2. Types of kernel used in this research.

Kernel Function Parameter

Linear X,Y -
Polynomial (gX.Y + c) d g, c, d

Radius basis function (RBF) exp (−g|X−Y|2) g
Sigmoid tanh (gX.Y + c) g, c

Then, the Lagrangian can be solved as follows:

max
k

∑
i=1

yi(ε̂i − εi)− η(ε̂i − εi)−
1
2

k

∑
i=1

k

∑
j=1

(ε̂i − εi)
(
ε̂ j − ε j

)
δ
(

xi, xj
)

(2)

where 
k
∑

i=1
(ε̂i − εi) = 0

0 ≤ εi, ε̂i ≤ C, i = 1, 2, . . . k
(3)

where C represents the penalty factor (cost) of a kernel function. For the dataset to be
mapped, Equation (2) needs to meet the conditions of Karush–Kuhn–Tucker [56] as:

εi( f (xi)− yi − η −ωi) = 0
ε̂i(yi − f (xi)− ε− ω̂i) = 0

εi ε̂i = 0; ωiω̂i = 0
(C− εi)ωi = 0; (C− ε̂i)ω̂i = 0

(4)

The SVM for regression can be finally solved as follows:

f (x) =
k

∑
i=1

(ε̂i − εi).δ
(
xi, xj

)
+ b (5)
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b = yi + η −
k

∑
i=1

(ε̂i − εi).δ
(
xi, xj

)
+ b (6)

2.2. Whale Optimization Algorithm (WOA)

This algorithm, which was originally developed on the basis of the natural behaviors
of humpback whales [20,24,57,58], is an alternative swarm algorithm. WOA, like the other
swarm optimization algorithms, starts its operation with an initial population. Then, it
computes an objective function for each member of the population (solution). To end
with, the optimum solution is selected on the basis of the humpback whales’ strategies,
e.g., encircling the prey and creating a bubble-net. To encircle, WOA updates the current
solution; therefore:

SWi(t + 1) = SWbest(t)− GD (7)

where {
G = 2cr2 − c
D = |SWbest (t) − SWi (t)|, E = 2r1

(8)

where D stands for the distance between solution SWi(t) at iteration (t) and the best
solution SWbest(t), r1 and r2 represent random coefficients in the interval [0, 1], which is
the element-wise multiplication operation, and c signifies a coefficient of iteration varying
in the intervals [0, 2] and is computed as follows:

C = c− t
c

MaxIterw
(9)

In the bubble-net making phase, WOA updates the solution with the use of encircling
or spiral methods [57]. First, the shrinking circling method is implemented with the
strategy of coefficient iteration c expressed in Equation (9). Otherwise, the spiral technique
is adopted for the aim of updating the solution in WOA. The algorithm makes a simulation
of the helix-shaped movement. This movement (defined by Equation (10)) is indeed a
unique action taken by whales around the best solution (SWbest) when preying:

SWi(t + 1) = D́esk cos(2πk) + SWbest(t) (10)

where
D́ = |SWbest (t) − SWi (t)| (11)

where s represents the logarithmic spiral shape, and k stands for a random variable in the
interval [1, 1]. In addition, as suggested by Mirjalili and Lewis [57], the WOA solutions can
be updated through switching between spiral-shaped and shrinking; consequently:

SWi(t + 1) =

{
SWbest (t)− GD i f r3 ≥ 0.5

D́esk cos(2πk) + SWbest(t) i f r3 ≤ 0.5
(12)

where r3 denotes the probability of swathing in which r3 ∈ [0, 1]. In nature, whales often
adopt another strategy when preying (to choose the optimal solution), i.e., the random
search method. In this method, a random position is chosen rather than the optimal
solution; therefore:

SWi(t + 1) = SWr(t)− GD (13)

where
D = |EδSWr (t) − SWi (t)| (14)

Remember that, according to Mirjalili and Lewis [57], updating the WOA solutions
is dependent upon different parameters such as c, G, E, and r3. The WOA optimization
process terminates once the stopping criterion (i.e., minimum error or maximum iterations
reached) is met and the best solution is obtained. Figure 1 displays the developed code
of WOA.
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Figure 1. The developed code of whale optimization algorithm (WOA).

2.3. Harris Hawks Optimization (HHO)

The co-operative hunting behavior of Harris’s hawks has been taken into consider-
ation for the purpose of representing different issues for which optimum solutions are
required [59] in the Harris hawks optimization (HHO) algorithm [60] proposed by Heidari
et al. (2019). In this optimization process, four actions are represented: tracing, encircling,
approaching, and attacking.

As depicted by Figure 2, HHO comprises three phases: Exploration, Exploitation, and
a Transition Phase in between. During the first phase, the hawk searches and finds the
exact location of the prey and its position Xrabit. The hawks assigns a random relationship
to the prey Xrand and then defines their own position in relation to the prey position,
implementing an iterative process:

X(iter + 1) = Xrand (iter) − r1 Xrand (iter) − 2r2X(iter) if q ≥ 0.5Xrabit(iter) − Xm(iter) − r3(LB + r4(UB− LB)) if q < 0.5 (15)

where Xm stands for the average position, and ri denotes a position based on i, a random
number that varies from I = (1,2,3,4, . . . q).
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Figure 2. The main stages of Harris hawks optimization (HHO).

The term m is given by the following equation:

Xm(iter) =
1
N

N

∑
i=1

Xi(iter) (16)

where N signifies the size of the hawk and Xi stands for the location. Eh, the escaping
energy of the hunt, is given by the following relationship:

Eh = 2E0

(
1− iter

T

)
(17)

where T represents the maximum size of the repetitions, and E0 signifies the initial en-
ergy. Remember that E0 ∈ (−1, 1) and the decision about starting the exploration or
exploitation phase depends upon the |E| value. For example, in the exploitation phase,
the |E| value indeed denotes the type of attack arranged for capturing the rabbit. In the
case |E|≥ 0.5, the catch is considered easy, while if |E| < 0.5, it will be difficult [61,62].

2.4. Evaluation

In statistical science, both the reliability and performance of models are required to
be assessed in a quantitative way with the use of statistical indicators. For this purpose,
in the current study, two statistical criteria were adopted, i.e., correlation coefficient (R2)
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and RMSE. R2 shows the difference between the estimated and actual FOS values, whereas
RMSE represents the model’s error rate. They are computed as follows [20,50,63–70]:

RMSE =

√
1
n

n

∑
i=1

(
y f r,i − ŷ f r,i

)2
(18)

R2 = 1−
∑n

i=1

(
y f r,i − ŷ f r,i

)2

∑n
i=1

(
y f r,i − y f r,i

)2 (19)

where n stands for the number of FOS cases, y f r,i and ŷ f r,i represent the measured and the
estimated FOS values, respectively, and y f r,i . signifies the mean of the FOS in reality.

3. Results and Discussion
3.1. Data Preparation

The current research was carried out assuming the circular critical failure of slopes.
A database comprising 80 slope cases (formerly analyzed considering circular failure
mode) was extracted from the existing literature [1,43,71–76]. Table 3 provides the datasets
used in this study. Six key parameters were extracted, i.e., the unit weight of slope
material (γ), cohesion (c) and angle of internal friction (φ), average angle of slope (β), shear
strength parameter, pore water pressure coefficient (ru), and the slope height (H). Table 4
summarizes the slope stability database regarding the minimum (Min), average (Ave),
maximum, standard deviation, and median values. This condition causes the slope stability
analysis to be a problem of high complexity.

Table 3. The complete dataset used to develop models.

Density
(kn/m3) C (kpa) φ (degree) β (degree) H (m) ru FOS

18.68 26.34 15 35 8.23 0 1.11
18.84 14.36 25 20 30.5 0 1.875
18.84 57.46 20 20 30.5 0 2.045
28.44 29.42 35 35 100 0 1.78
28.44 39.23 38 35 100 0 1.99
20.6 16.28 26.5 30 40 0 1.25
14 11.97 26 30 88 0 1.02
25 120 45 53 120 0 1.3
26 150.05 45 50 200 0 1.2

22.4 10 35 30 10 0 2
21.4 10 30.34 30 20 0 1.7
22 20 36 45 50 0 1.02
16 70 20 40 115 0 1.11

20.41 24.9 13 22 10.67 0.35 1.4
19.63 11.97 20 22 12.19 0.405 1.35
21.82 8.62 32 28 12.8 0.49 1.03
18.84 15.32 30 25 10.67 0.38 1.63
19.06 11.71 28 35 21 0.11 1.09
18.84 14.36 25 20 30.5 0.45 1.11
21.51 6.94 30 31 76.81 0.38 1.01

18 24 30.15 45 20 0.12 1.12
22.4 100 45 45 15 0.25 1.8
22.4 10 35 45 10 0.4 0.9
20 20 36 45 50 0.25 0.96
20 20 36 45 50 0.5 0.83
21 20 40 40 12 0 1.84
21 45 25 49 12 0.3 1.53
21 30 35 40 12 0.4 1.49
21 35 28 40 12 0.5 1.43



Appl. Sci. 2021, 11, 1922 8 of 21

Table 3. Cont.

Density
(kn/m3) C (kpa) φ (degree) β (degree) H (m) ru FOS

20 40 30 30 15 0.3 1.84
18 45 25 25 14 0.3 2.09
19 30 35 35 11 0.2 2
20 40 40 40 10 0.2 2.31

18.85 24.8 21.3 29.2 37 0.5 1.07
18.85 10.34 21.3 34 37 0.3 1.29
18.8 30 10 25 50 0.1 1.4
18.8 25 10 25 50 0.2 1.18
18.8 20 10 25 50 0.3 0.97
19.1 10 10 25 50 0.4 0.65
18.8 30 20 30 50 0.1 1.46
18.8 25 20 30 50 0.2 1.21
18.8 20 20 30 50 0.3 1
19.1 10 20 30 50 0.4 0.65
22 20 22 20 180 0 1.12
22 20 22 20 180 0.1 0.99
25 55 36 45 239 0.25 1.71
25 63 32 44.5 239 0.25 1.49
25 63 32 46 300 0.25 1.45
25 48 40 45 330 0.25 1.62

31.3 68.6 37 47.5 262.5 0.25 1.2
31.3 68.6 37 47 270 0.25 1.2
31.3 58.8 35.5 47.5 438.5 0.25 1.2
31.3 58.8 35.5 47.5 502.7 0.25 1.2
31.3 68 37 47 360.5 0.25 1.2
27.3 14 31 41 110 0.25 1.249
27 40 35 43 420 0.25 1.15
27 50 40 42 407 0.25 1.44
27 35 35 42 359 0.25 1.27
27 32 33 42.4 289 0.25 1.3
27 32 33 42.6 301 0.25 1.16
25 46 35 46 393 0.25 1.31
25 48 40 49 330 0.25 1.49

31.3 68.6 37 47 305 0.25 1.2
25 55 36 45.5 299 0.25 1.52

31.3 68 37 47 213 0.25 1.2
22 29 15 18 400 0 1.04
23 24 19.8 23 380 0 1.15
22 40 30 30 196 0 1.11

22.54 29.4 20 24 210 0 1.06
22 21 23 30 257 0 1.1

23.5 10 27 26 190 0 1.02
22.5 18 20 20 290 0 1.05
22.5 20 16 25 220 0 1.36
21 20 24 21 565 0 1.26

26.49 150 33 45 73 0.15 1.23
26.7 150 33 50 130 0.25 1.8

26.89 150 33 52 120 0.25 1.8
26.43 50 26.6 40 92.2 0.15 1.25
26.7 50 26.6 50 170 0.25 1.25
26.8 60 28.8 59 108 0.25 1.25
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Table 4. The main statistical information of the dataset.

Parameter Type Min Max Average Standard
Deviation Median

γ input 14 31.3 22.9337 4.0706 22
c input 6.94 150.05 40.4358 33.1699 30
φ input 10 45 28.8924 8.6297 30.075
β input 18 59 36.2587 10.3505 37.5
ru input 0 0.5 0.1936 0.1515 0.25
H input 8.23 565 149.1659 142.6898 96.1

FOS target 2.31 0.65 1.3305 0.3369 1.2495

3.2. Study Steps

One of the main objectives of this research is FOS optimization based on intelligent
methods and optimization algorithms. In this methodology, different SVR models are
implemented to obtain the best model for FOS simulation. These models are analyzed
with different statistical criteria in order to identify the model that has more flexibility than
other models by proper comparison. In the next step, the two optimization algorithms
HHO and WOA are connected to the superior SVR model. The purpose of this work is to
optimize the identified parameters to maximize the FOS value. This was done by coding in
the MATLAB environment. For each analysis, a series of different designs of intelligent
models and optimization algorithms are performed to achieve the best conditions. The
steps outlined in the flowchart are shown in Figure 3.

Figure 3. The main flowchart of the current research.

3.3. Simulation

In this section, different SVR models were used to simulate and evaluate FOS. Based
on this step, optimization models are developed. The data used in this study include
80 data samples. Due to different conditions, 6 input parameters of these models were
used without change. For more accurate evaluation, the data were divided into two parts:
training and testing. Different and optimal conditions were designed to determine the
superior models. Finally, the best model that could provide suitable conditions for different
data for FOS prediction was determined. Each parameter has a specific effect on the data
and results of the models. Visualization of a correlation matrix of slope data is shown in
Figure 4. In Figures 5–10, the effect of each parameter on the output is investigated. Using
these figures, the input data can be examined more accurately. These data can provide
specific conditions and significant changes in model results. However, important ranges
can also be identified through various studies. With the help of these cases, proper accuracy
in FOS simulation and optimization can be achieved. This research has considered these
cases in the simulations.



Appl. Sci. 2021, 11, 1922 10 of 21

Figure 4. Correlation matrix (aka correlalogram) plot of slope data.
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Figure 8. β-FOS changes.
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Table 5 provides the simulation results for four different SVR models. To achieve the
best conditions of each model, parametric analysis was performed to determine the optimal
parameters of each model. As can be seen, both polynomial and RBF models provide better
conditions for FOS simulation. The RBF model with an accuracy of R2 = 0.947 shows that a
more appropriate assessment can be made than other models to simulate the problem in
this research. Figure 11 indicates the simulation results for four models. As can be seen,
the data are simulated with higher accuracy by the RBF model. The model developed in
this step is evaluated using optimization algorithms to determine the optimal conditions
of the parameters used for FOS. Figure 12 shows the error changes of the models. Using
this figure, the range of changes from prediction values to actual values can be obtained.
As can be seen, the RBF model provides limited error variations. This indicates that for
different samples, the predicted data are in the appropriate range and a good ability to
perform them is observed.
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Table 5. Results of various models for simulation of FOS.

SVR Model Optimal
Parameters

Result
R2 RMSE MAE

Linear - 0.267 0.284 0.236

Polynomial g = 0.3, c = 0.09,
d = 3 0.868 0.120 0.086

RBF g = 0.42 0.947 0.076 0.046
Sigmoid g = 0.03, c = 0 0.214 0.294 0.243

Figure 11. Simulation results for FOS based on various support vector regression (SVR) models.

Figure 12. The error changes of the developed models for simulation of FOS.
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3.4. Model Validation

This section presents our model validation using new data with nine data samples
from the L & K mine of Monyova copper mines, as presented in Table 6. These new cases
were used to validate the developed RBF-SVR model in this study. Figure 13 displays
FOS results related to new data and the developed model. As can be seen, the RBF-SVR
model has generally provided an acceptable performance against new data that have
been practically recorded. According to Figure 13, five cases are very close to each other,
i.e., (1.11, 1.17), (1.08, 1.16), (2.15, 2.06), (1.26, 1.19), and (1.24, 1.18). The other four cases
have a bigger difference between new data and the developed model. It can be concluded
that the performance of the developed model in this research offers a positive response for
optimization analyses that require a high-precision model. The developed model is able to
obtain the least error for optimal parameters.

Table 6. Additional data for the purpose of model verification.

Density
(kn/m3) C (kpa) φ (degree) β (degree) H (m) ru FOS

25.578 14.62 42.16 46 495 0 1.16

22.834 8.35 40.21 44 420 0 1.18

22.148 3.2 36.88 40 40 0 2.59

23.814 6.96 37.44 40 80 0 2.19

25.088 8.26 37.94 42 100 0 1.86

25.872 22.67 41.21 50 307 0 1.19

23.422 2.48 35.11 40 80 0 2.06

25.284 5.99 38.22 46 260 0 1.18

25.382 6.52 40.47 46 260 0 1.17
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3.5. Optimization

In this section, optimization algorithms connect to predictive models, and search for
optimal conditions for FOS. Since each optimization model requires a function in order
to obtain the optimal conditions, the regression model of the previous stage that was
developed is used here. Due to this fact, four models were developed in the previous step
for FOS simulation. Among the developed models, two models had better conditions for
evaluating this issue. The RBF model can act as a better option than the polynomial model
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because it was more accurate and could offer greater flexibility for evaluation. Therefore,
in this part, the RBF model is used as the base model.

The RBF model is connected to two optimization algorithms, WOA and HHO, so that
different parameters can be optimized. The two WOA and HHO models were implemented
in MATLAB software. To examine their performance in solving various problems, four
sample problems were used to find optimal locations. Figure 14 shows the comparison
results between these models. As can be seen, the models have the ability to find the
optimal locations. The goal is to find the optimal and sensitive conditions for FOS. Since
each optimization algorithm has its own conditions, its parameters must also be determined
for the optimal state. Therefore, numerical analysis was performed on the two optimization
algorithms WOA and HHO to find their optimal coefficients. After determining the optimal
coefficients, the algorithms use the basic RBF model to obtain the optimal conditions.
Table 7 presents the optimal parameters determined based on the two WOA and HHO
algorithms. As can be seen, the optimization algorithms can each offer different optimal
conditions that can be used depending on the different conditions. The solution of the
algorithms shows that each goes to the optimal state and ultimately leads to the desired
results. In general, it can be inferred from the results that using optimization methodology,
more efficient designs can be done for engineering and sensitive projects.

Table 7. Optimal parameters of FOS based on WOA and HHO.

Optimal Values Parameters

HHO WOA

28.0186 30.548 γ
159.1915 199.118 c

27.209 39.8714 φ
44.5905 29.8562 β
0.3128 0.1915 ru

563.3418 397.9759 H
2.4411 2.4301 FOS
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Figure 14. Cont.
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Figure 14. Evaluation of optimization models (WOA and HHO) to solve various problems.

4. Discussion

The method used in this research is a new way to analyze slope data. The simulations
performed in this project allow a good estimate to be obtained based on the six input
data (the unit weight of slope material (γ), cohesion (c) and angle of internal friction (φ),
average angle of slope (β), shear strength parameter, pore water pressure coefficient (ru),
and the slope height (H)) for the FOS parameter. The accuracy of the evaluation models
was about R2 = 0.947, which indicates a high accuracy for the data used. This accuracy
also shows that it provides different predicted results with less error intervals. All of these
conditions help us to achieve an optimal pattern with less error. Optimization algorithms
create different solutions according to the data conditions and the relationship between
different parameters. The two optimization algorithms connected to the superior RBF
model determined the optimal conditions by identifying the various parameters that were
introduced as inputs. Figure 15 displays the different FOS values and the optimal states by
the two WOA and HHO algorithms. As can be seen, it can be concluded from this figure
that with optimization, more suitable conditions can be found. In addition, by combining
simulation and optimization models, more accurate accuracy can be achieved for project
design. This article presents a new idea based on artificial intelligence and optimization
methods, which can be extended to different applications.

Figure 15. Comparison between different FOS and output of optimization models.
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5. Conclusions

This research has used computational intelligence to investigate the FOS in mea-
surement cases under different conditions. For model design and simulation, this study
was implemented based on six parameters, namely, the unit weight of slope material (γ),
cohesion (c) and angle of internal friction (φ), average angle of slope (β), shear strength
parameter, pore water pressure coefficient (ru), and the slope height (H). These data were
reviewed in the first stage, and initial analyses were performed on them. Then, these
data were used for modeling into a set of basic SVR models to simulate their behavior
to evaluate the FOS parameter. Different models were designed, and the best ones were
selected according to performance and flexibility for different conditions. Among the
various SVR models, the RBF model was developed with a lower error rate (RMSE = 0.076
and MAE = 0.046) and higher accuracy (R2 = 0.947) in evaluating the FOS parameter.
This basic model was used as a function by two optimization models WOA and HHO.
Different optimization steps of the parameters of these two algorithms were performed
to find different optimization conditions. Finally, both models came to close results with
different conditions. The developed model was also successfully validated using new
data with nine data samples. The results showed that combining a simulation model with
optimization models can provide a new solution for the optimal design of important and
sensitive projects. This research can be used as a new approach for FOS analysis.
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