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Abstract: We introduce a new mathematical basis for similarity space. For the first time, we describe
the relationship between distance and similarity from set theory. Then, we derive generally valid
relations for the conversion between similarity and a metric and vice versa. We present a general
solution for the normalization of a given similarity space or metric space. The derived solutions lead
to many already used similarity and distance functions, and combine them into a unified theory. The
Jaccard coefficient, Tanimoto coefficient, Steinhaus distance, Ruzicka similarity, Gaussian similarity,
edit distance and edit similarity satisfy this relationship, which verifies our fundamental theory.

Keywords: similarity metric; similarity space; distance metric; metric space; normalized similarity
metric; normalized distance metric; edit distance; edit similarity; Jaccard coefficient; Gaussian
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1. Introduction

Mathematical spaces have been studied for centuries and belong to the basic math-
ematical theories, which are used in various real-world applications [1]. In general, a
mathematical space is a set of mathematical objects with an associated structure. This
structure can be specified by a number of operations on the objects of the set. These opera-
tions must satisfy certain axioms of mathematical space. The mathematical construction of
metric space and similarity space are based on topological space, and a topological space
is based on set theory [2]. Nowadays many research groups all over the world deal with
similarity spaces in different research fields, e.g., [3,4].

For readability and to reach a broad audience, we do not treat all the mathematical
circumstances and conditions in detail. Rather, we present the main concept and a way to a
solution. It would take too much time to grasp all the current theories and consequently
there would be no time left for innovations. We refer readers to [3,5–9] for the fundamental
concepts and properties of topological spaces and metric spaces (convergence, continuity,
completeness, separability, connectedness, compactness, etc.).

Similarity and dissimilarity functions are widely used in many research areas: in
information retrieval, data mining, machine learning, cluster analysis and applications
in database search, protein sequence comparison and many more. When a dissimilarity
function is used, a distance metric is normally required. On the other hand, although
similarity functions are used, there is no formally accepted definition of this concept [4].
Therefore, in this article we introduce a formal generalised mathematical theory, with all
proofs. The organization of the paper is as follows—in Section 1 we briefly introduce
the topic. In Sections 2 and 3 the background of metric space and partial metric space
is presented. Sections 4 and 5, revised similarity space and duality theory focus on the
authors’ contribution in the reformulation and the replenishment of the metrics. Section 6,
Application of similarity space, presents the connection between revised metrics and
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selected well known coefficients. Section 7, Results, and Section 8, Conclusion, conclude
the paper.

2. Metric Space

The theory of metric space is a well defined mathematical concept. Recall the formal
definition of a distance metric.

Definition 1 (Metric Space [5]). Let X be a non-empty set. Then, a function d : X × X → R is a
distance metric if for all subsets x, y, z ∈ X, the following conditions are fulfilled:

(D1) d(x, y) = d(y, x) (symmetry),
(D2) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality),
(D3) d(x, y) = 0⇐⇒ x = y (identity of indiscernibles).

A metric space is an ordered pair (X, d).

Given the above three axioms, we also have that d(x, y) ≥ 0 (non-negativity) for any
x, y ∈ X. The definition from [1,4] contains this axiom redundantly, there is a derivation
in [9].

3. Partial Metric Space

The concept of a partial metric space is a generalization of metric space. We think that
it should be implemented as a superset of the axioms for a metric space, as well as the
definition of a similarity space. We can see both as special cases of a partial metric space.

Definition 2 (Partial Metric Space). Let X be a non-empty set. A partial metric or p-metric
function p : X × X → R is a function such that

(P1) p(x, y) = p(y, x) (symmetry),
(P2) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangle inequality),
(P3) p(x, x) = p(x, y) = p(y, y)⇐⇒ x = y (identity of indiscernibles),
(P4) p(x, y) ≥ 0 (non-negativity),
(P5) p(x, y) ≥ p(x, x) (small self-distance).

A partial metric space is an ordered pair (X, p).

Our introduced partial metric space comes from the original definition [10,11]. Note
that it is possible to have p(x, x) 6= p(y, y). The definition of a partial metric allows for
the possibility that the self-distance is non-zero. Thus, a metric space can be defined as a
partial metric space in which each self-distance is zero, so p(x, x) = p(y, y) = 0, and hence
the term p(y, y) will disappear in P2. The reason for allowing non-zero self-distances first
came with the definition of a similarity metric.

4. Similarity Space Revisited

Especially in the last two decades, the research and development of a formal definition
of similarity metric (or similarity space) has begun. The new applications and the purpose
of this article call for a general consensus and search for well-defined axiomatic systems
and theoretical foundations instead of using a non-intuitive duality with the distance.
Based on [1,4] we introduce a modified axiomatic system for a similarity metric, which is in
agreement with the current notions but simplified so as to be a minimal axiomatic system.

Definition 3 (Similarity Space). Given a non-empty set X, a function s : X × X → R is a
similarity metric if for all subsets x, y, z ∈ X, it satisfies the following conditions:

(S1) s(x, y) = s(y, x) (symmetry),
(S2) s(x, z) + s(y, y) ≥ s(x, y) + s(y, z) (triangle inequality),
(S3) s(x, x) = s(x, y) = s(y, y)⇐⇒ x = y (identity of indiscernibles),
(S4) s(x, y) ≥ 0 (non-negativity).
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A similarity space is an ordered pair (X, s).

Compared to the original system, we have removed the axiom of bounded self-
similarity, which can be derived from the remaining axioms.

Theorem 1 (Bounded Self-Similarity). A similarity metric satisfies s(x, y) ≤ s(x,x)+s(y,y)
2 .

Proof. Appendix A.1.

A few issues require attention. The name ‘similarity metric’ is an already proposed
convention. Calling it a ‘metric’ should be understood in the sense of monotonously
decreasing convex transformation of a partial metric or a distance metric that will be shown
further in the next section. By this way we avoid misunderstanding.

Unlike D3, d(x, x) = 0, the similarity metric has an upper bound in s(x,x)+s(y,y)
2 and

allows s(x, x) 6= s(y, y). At first sight, this may seem counter-intuitive: x is more (or less)
similar to itself than y. In spatial considerations of dissimilarity and distance, this does not
arise since d(x, x) = 0 for all objects. Similarity depends on the set of common features, and
the result is the possibility of non-identical self-similarities. If we interpret such common
features as ‘description lengths’ or ‘complexities’, unequal self-similarities become quite
natural, and if x has more features than y, we have s(x, x) > s(y, y) [1]. For instance, having
a German word x = ‘Einkommensteuererklärung’ (income tax return) and y = ‘Steuer’
(tax), then s(x, x) ≥ s(y, y) when counting common characters or q-grams.

We suggest in addition having non-negativity in S4 because the similarity metric
doesn’t have a direction—in contrast to a vector, it is a scalar value, and so it doesn’t make
sense to assign to it a negative sign, similar to non-negativity in a metric space. The same
principle should be valid for a similarity metric as a requirement for ‘symmetric measure-
ment’. The distance between objects remains the same when we measure a distance from
another direction. The second reason follows from measure theory (see Appendix A.6),
where there is a non-negativity condition µ(X) ≥ 0 for a measure µ on the set X.

At first glance, it is not clear how the axiom of the triangle inequality was formed, just
let us refer to related Theorem 6.

Theorem 2 (Linear Transformation). Every positive linear transformation TL : R+ → R+ of a
similarity metric is a similarity metric:

sL(x, y) = TL(s(x, y)) = αs(x, y) + β (1)

where α, β ∈ R and α > 0, β ≥ 0.

Proof. Appendix A.2.

This theorem allows us to apply any linear standardization or re-scaling without any
violations of the axioms. In statistics, there is very often used a standard score

X′ =
X− µs

σs
, (2)

where µs is the mean and σs is the standard deviation. Another example could be taken
from min-max feature scaling

X′ = a +
(X− Xmin)(b− a)

Xmax − Xmin
, (3)

where Xmin denotes the minimum value, and Xmax the maximum value. All values are
re-scaled (normalization) to lie within the range [a, b]. When the parameters a = 0, b = 1
are chosen, then this is a unity-based normalization.
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For instance, it should be clear that two errors in a comparison of short strings are
more critical than in a comparison of long strings. Therefore, it is necessary in some
circumstances to normalize the similarity metric. Until the beginning of this century, no
such normalization preserving the metric axioms was known for the edit distance metric.
Initially, [12] developed a normalized edit distance metric, with the range [0, 1]. It is obvious
that for any normalized distance metric dn(x, y), there is also a normalized similarity metric
sn(x, y) = 1− dn(x, y) satisfying Definition 3.

Because this axiomatic system is too general and valid for any unnormalized similarity
metric functions, we introduce for our case a new specific axiomatic system for a normalized
similarity metric in the range [0, 1].

Definition 4 (Normalized Similarity Metric). A function sn(x, y) : X × X → [0, 1] ⊂ R is
a normalized similarity metric if, such that for all subsets x, y, z ∈ X, it satisfies the following
conditions:

(N1) sn(x, y) = sn(y, x) (symmetry),
(N2) sn(x, z) + 1 ≥ sn(x, y) + sn(y, z) (triangle inequality),
(N3) sn(x, y) = 1⇐⇒ x = y (identity of indiscernibles)
(N4) sn(x, y) ≥ 0 (non-negativity) .

A normalized similarity space is an ordered pair (X, sn).

We do not relax any axiom compared to Definition 3, but we have created a stricter
meaningful special case of that definition by substituting sn(x, x) = 1, which is also the
least upper bound sn(x, y). Due to this normalization, the self-similarity is always bounded
by the same number s(x, x) = s(y, y) = 1. The total dissimilarity also defines the greatest
lower bound sn(x, y) = 0. The requirements for both limit conditions N3 and N4 thus
stretch the similarity metric to its boundaries.

Theorem 3 (Self-Similarity Inequality). A normalized similarity metric satisfies sn(x, y) ≤ 1.

Proof. Appendix A.3.

With these properties, we are also connected with probability theory, where we want
to ensure that the probability of the similarity is 0 ≤ P(x, y) ≤ 1 as well as 0 ≤ sn(x, y) ≤ 1.

Theorem 4 (Convex Combinations). A convex combination TC : R→ R of normalized similar-
ity metrics is again a normalized similarity metric:

snC (x, y) = TC(sn(x, y)) =
m

∑
i=1

αisi = α1s1 + α2s2 + ... + αmsm (4)

where ∑m
i=1 αi = 1 and 0 ≤ αi ≤ 1.

Proof. Appendix A.4.

This property of convex combinations allows us to assemble different normalized
similarity metrics together and obtain again a normalized similarity metric.

5. Duality of Similarity and Metric Space

The relationship between distance and similarity is not obvious, as distance derives
from spatial considerations and similarity relations derive from considering common and
non-common features [1]. In many cases, distance is used to measure similarity, although
this is far from intuitive and it is often a non-trivial task to find such a dual notion. Let us
present a transformation of distance into similarity.
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Theorem 5 (Duality of Distance and Similarity [13]). Generally, if a function f : R→ [a, b] ⊆
R is a monotonously decreasing convex function such that b = f (0) > 0 and limn→∞ f (n) =
a ≥ 0, then

s(x, y) = f (d(x, y)). (5)

Proof. We refer further to the related proof of Corollary 4.

The range [a, b] does not have to be a closed set. We might just denote a = inf{s(x, y)}
and b = sup{s(x, y)}. The condition a ≥ 0 is introduced in order to preserve the symmetry
with the non-negativity of the values of the distance metric d(x, y). Once we allow a convex
distortion of a metric space into a similarity space, this is not necessarily an isomorphic
(isometric) transformation, and so the distances between points do not have to be preserved.
Most importantly, the relative ’distances’ (in the meaning of the inverse of partial order)
between the points are preserved in accordance with geometric terminology, for instance
d(x, z) ≤ d(x, y) =⇒ s(x, z) ≥ s(x, y) for any subsets x, y, z.

Theorem 6 (Triangle Inequality of Similarity). Any decreasing monotonic convex transforma-
tion f of the triangular inequality of the metric d forms a triangular inequality of similarity s:

d(x, z) ≤ d(x, y) + d(y, z)
f−→ s(x, z) + s(y, y) ≥ s(x, y) + s(y, z), (6)

Proof. Appendix A.5.

Hence the condition of monotonously decreasing function preserves the triangle
inequality. Because we measure similarities between objects, and not the distance, it is quite
arguable that such a distortion would be more suitable. Moreover, many similarity metrics
are not related to distance at all, but, conversely, distance is derived in many cases from
similarity, for example, the passage from Jaccard similarity to the Jaccard distance [14].

The measure µ (see Appendix A.6) of the symmetric difference of two sets can be
considered as a distance between sets, well known as the distance of Fréchet–Nikodym–
Aronszajn. This distance is a particular case of the distance in the space of Lebesgue
integrable functions. In fact, the distance between sets may be treated as the distance
between the characteristic functions χx and χy. These characteristic functions are defined
on a set X and indicate membership of an element in the subset x, respectively y. In
classical set theory, its value is 1 for all elements of x and 0 for all elements of X not in x.
Employing fuzzy set theory, we can give an uncertainty to the membership in the range of
real values χ ∈ [0, 1].

Theorem 7 (Distance between Two Objects). Let x, y be subsets of set X. The symmetric
difference between two objects is a distance metric.

d(x, y) = µ(x4y) =
∫
|χx − χy|dµ, (7)

where x4y = (x ∪ y) \ (x ∩ y) is the symmetric difference.

Proof. Appendix A.7.

For better illustration, let us suppose two Lebesgue measurable sets A, B. Let us
imagine that these sets are described by non-negative real-valued functions f , g in Cartesian
system R1 or R2 (A corresponds to f and B corresponds to g) [15].

The shaded gray area at the top of Figure 1 essentially shows the distance between
objects. Then, we can calculate the area between functions f and g that corresponds area
between sets A and B. We can compute the areas in the regions d(A, B) = µ(A4B) =∫ ∫
| f (x, y)− g(x, y)|dxdy and the functions d( f (x), g(x)) = µ( f4g) =

∫
| f (x)− g(x)|dx.
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Figure 1. Top—symmetric difference (gray area); bottom—intersection (gray area); left—sets A and B; right—sub-graphs of f and g
(inspired by [15]).

Conversely, the shaded gray area at the bottom Figure 1 within overlapping regions
A and B and under both graphs f and g represent the similarity between those objects. Ana-
logically, we may deduce a calculation s(A, B) = µ(A∩B) =

∫ ∫
min{ f (x, y), g(x, y)}dxdy

and s( f (x), g(x)) = µ( f ∩ g) =
∫

min{ f (x), g(x)}dx.
This fundamental observation allows us to create a bridge between set theory and

topology, such as the theories of metric spaces and similarity spaces. From the definition
of the similarity s(x, y) it can be deduced that the number of features shared between
two objects x and y is given by their intersection µ(x ∩ y). The idea behind definition
is very simple, direct and intuitive too, assuming that a similarity metric is a measure
s(x, y) = µ(x ∩ y).

Theorem 8 (Similarity of Two Objects). The intersection of two objects represented by subsets x
and y is a similarity metric

s(x, y) = µ(x ∩ y) =
∫

min{χx, χy}dµ = µ(x)+µ(y)−µ(x4y)
2 = µ(x)+µ(y)−d(x,y)

2 , (8)

Proof. Appendix A.8.

Now we can generalize our knowledge using the similarity axioms.

Corollary 1 (Similarity of Two Objects using Duality). The similarity metric of two objects
given by subsets x, y ∈ X is expressed

s(x, y) =
s(x, x) + s(y, y)− d(x, y)

2
, (9)

Proof. Appendix A.9.

As a result from the proof, self-similarity is equivalent to a measure on set µ(x), e.g.,
cardinality of a countable set, s(x, x) = |x|, respectively s(y, y) = |y|. We can go back to
the distance metric from the similarity metric, too.
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Corollary 2 (Distance between Two Objects using Duality). The distance metric applied to
two objects defined by subsets x, y ∈ X is given by

d(x, y) = s(x, x) + s(y, y)− 2s(x, y), (10)

Proof. Expressing d(x, y) from Corollary 1.

Corollary 3 (Total Dissimilarity using Duality). The total dissimilarity between two objects is
given

s(x, y) = µ(x ∩ y) = 0⇐⇒ µ(x4y) = µ(x) + µ(y)⇐⇒ d(x, y) = s(x, x) + s(y, y), (11)

Proof. Appendix A.10.

Total dissimilarity should mean that there are no features shared between the two
objects. In set theory, this is equivalent to being a pair of disjoint sets.

Corollary 4 (Duality of Axiomatic Systems). Consider a similarity space (X, s) and a metric
space (X, d). We can define a similarity s on X, dual to metric d, vice versa a distance metric d on
X, dual to similarity s, as follows:

s(x, y) = f (d(x, y)) =
s(x, x) + s(y, y)− d(x, y)

2
by Corollary 1

d(x, y) = f−1(d(x, y)) = s(x, x) + s(y, y)− 2s(x, y) by Corollary 2,
(12)

Proof. Appendix A.11.

Comparing similarity axiom system with the partial metrics from Definition 2, we can
see the relation p(x, y) = f−1(d(x, y)) = s(x, x) + s(y, y)− 2s(x, y) with dependency on
Corollary 2 and Corollary 4 which differs from the source [16].

Theorem 9 (Rozinek Similarity). Rozinek similarity is a normalized similarity metric

R(x, y) =
µ(x) + µ(y)− µ(x4y)
µ(x) + µ(y) + µ(x4y)

=
µ(x) + µ(y)− d(x, y)
µ(x) + µ(y) + d(x, y)

, (13)

Proof. Appendix A.12.

Theorem 10 (Generalized Rozinek Similarity). Generalized Rozinek similarity is a normalized
similarity metric

RGS(x, y) =
s(x, x) + s(y, y)− d(x, y)
s(x, x) + s(y, y) + d(x, y)

, (14)

Proof. Appendix A.13.

As has been proved, this similarity forms the bridge between Jaccard similarity (see
Theorem 13) and similarity metrics derived from distances. From this equation one can
deduce that
µ(x ∪ y) = s(x,x)+s(y,y)+d(x,y)

2 .
We can again return from a normalized similarity metric to a normalized similarity

distance.

Theorem 11 (Generalized Rozinek Normalized Distance). Generalized Rozinek normalized
distance is the following normalized distance metric

RGDn =
2d(x, y)

s(x, x) + s(y, y) + d(x, y)
, (15)
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Proof. Appendix A.14.

Theorem 12 (Generalized Rozinek distance). Generalized Rozinek distance is the distance
metric

RGD(x, y) =
s(x, x) + s(y, y)− s(x, x)s(x, y)− s(y, y)s(x, y)

s(x, y) + 1
, (16)

Proof. Appendix A.15.

6. Applications of Similarity Spaces

We will show how this is connected to some already well-known coefficients from
previous developments of similarity space theory.

Theorem 13 (Jaccard Similarity). Jaccard similarity is a normalized similarity metric

JS(x, y) =
µ(x ∩ y)
µ(x ∪ y)

, (17)

Proof. Appendix A.16.

The Jaccard similarity is a fundamental similarity measure on sets. Whenever it is
used, it is called mainly an index or a coefficient, but it is never called a proper similarity
metric. Note that the nonexistence of a mathematical foundation on similarity metrics
imposes the necessity of transforming the Jaccard index into the Jaccard distance JD(x, y) =
1− JS(x, y) and then verifying the triangle inequality JD(x, z) ≤ JD(x, y) + JD(y, z) for
that distance [14].

Theorem 14 (Jaccard Distance). The Jaccard distance is a normalized distance metric

JD(x, y) = 1− µ(x ∩ y)
µ(x ∪ y)

=
µ(x4y)
µ(x ∪ y)

(18)

Proof. [14].

Theorem 15 (Tanimoto Coefficient). The Tanimoto coefficient is a generalized Rozinek similarity

RGS(x, y) = S(x, y) =
s(x, y)

s(x, x) + s(y, y)− s(x, y)
, (19)

Proof. Appendix A.17.

Theorem 16 (Steinhaus Distance [17]). Steinhaus distance is a generalized Rozinek normalized
distance

RGS(x, y) = σµ( f , g) =
∫
| f (x)− g(x)|dµ(x)∫

max{| f (x)|, |g(x)|, | f (x)− g(x)|}dµ(x)
, (20)

Proof. Appendix A.18.

Theorem 17 (Ruzicka Similarity). Ruzicka similarity [3] (generalized Jaccard similarity [18]) is
a generalized Rozinek similarity

RGS(x, y) = JG(x, y) = ∑k min{xk, yk}
∑k max{xk, yk}

, (21)

Proof. Appendix A.19.
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The distance derived from the Ruzicka similarity dn(x, y) = 1− JG(x, y) is known by
the name ‘Soergel distance’ [3].

Theorem 18 (Gaussian Similarity). Gaussian similarity is a similarity metric

s(x, y) =
1

σ
√

2π
exp

{
−(x− y)2

2σ2

}
≈ exp{−(x− y)2} = exp{−d(x, y)2}, (22)

Proof. Appendix A.20.

Gaussian similarity is relevant to the natural human and animal perception of sim-
ilarity based on psychological research [19], where it is shown that a stimulus decays
exponentially with the distance. Numerous experiments have provided empirical obser-
vations of learned responses to some measure of different stimuli. As the independent
variable of a physical measure of the difference between two stimuli, there have been
chosen, for example, the difference in wavelengths of light, frequencies of tones or angular
orientations of shapes.

Theorem 19 (Rozinek Natural Distance). The Rozinek natural distance is a distance metric

RND(x, y) = σ

√
−2 ln (σ

√
2πs(x, y)) ≈

√
− ln(s(x, y)), (23)

Proof. Expressing d(x, y) from Theorem 18.

This distance is derived from Gaussian similarity and describes an inverse problem
of how human and animal perception treats a distance depending on the similarity. In
addition, there is a limit lims(x,y)→0+ RND(x, y) = +∞.

In cases where the similarity measurement is only dependent on the distance and
Jaccard-like similarities cannot be used directly, for example, for an edit distance—also
called the k difference problem [20]—our similarity metric is very appropriate. We can see
an analogy between the k difference problem and the symmetric difference set x4y in set
theory.

Theorem 20 (Normalized Edit Similarity). The normalized edit similarity is a Rozinek similarity
over the alphabet Σ

sn(x, y) =
|x|+ |y| − d(x, y)
|x|+ |y|+ d(x, y)

, (24)

where d(x, y) is an edit distance.

Proof. Appendix A.21.

The normalized edit similarity is suitable for conversion from Levenshtein distance or
the normalization of the longest common subsequence (LCS). The procedure is shown in
proofs.

Definition 5 (Disjoint Strings). Let Σ be a finite alphabet, and let Σ∗ denote the set of all finite
strings over Σ. Given x and xd any two strings in Σ∗, we say that they are disjoint strings if they
have no character or symbol in common

x ∩ xd = ∅. (25)

From the meaning of similarity, we should measure the amount of features shared
by two objects. If they have no common features, they are disjoint from each other in
their features. Indeed, between two strings, there are no common features if they have no
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common symbols or letters, hence this is the maximum possible dissimilarity (or, dually,
the minimum possible similarity).

Theorem 21 (Total Dissimilarity of Strings). The total dissimilarity of strings x and y over the
alphabet Σ means

s(x, xd) = 0, (26)

Proof. Trivial.

The derived property of total dissimilarity results from the property of the set of the
alphabet Σ, which contains distinguishable different objects, namely its letters or symbols.
We should always have a textual similarity of zero if two strings x and y have no character
or symbol in common. Take, for example, x = ”abc” and y = ”de f ”—it doesn’t make much
sense for them to have a positive string similarity s(x, y) > 0.

7. Results

We have proposed a formal generalized mathematical theory of space similarity and
similarity functions. General relations for converting a metric to a similarity were derived
and general solutions for the normalization of a given similarity space or metric space
were introduced. All proofs are attached as appendices. The highlights of the presented
concepts are as follows:

– Development of a new revised theory of similarity space.
– The main contribution is a direct explanation and unified theory of the duality between

a similarity space (similarity coefficients) and a metric space. Similarity spaces are as
important as metric spaces, and should be used wherever similarity measurements
are used, avoiding the confused notion of a dual to the distance.

– New Rozinek similarities and distances, using the duality between similarity spaces
and metric spaces, have been derived on the basis of set theory. In principle, they are
equivalent to a measure of set intersection or Jaccard similarity. This point of view has
a general application in transforming any distance metric into a similarity metric, and
back to distance metric.

8. Conclusions

Similarity functions are used in different areas of research, from data mining to
protein sequence comparison. This paper introduced a generalized mathematical theory of
similarity space, which leads to many already used similarity and distance functions.

The main novelty of the approach is an explanation of unified theory between similar-
ity and metric spaces. From this unified theory, it is possible to derive all the widely used
functions, such as the Jaccard coefficient, Tanimoto coefficient, Steinhaus distance, Ruzicka
similarity, Soergel distance, Gaussian similarity, edit distance and edit similarity.

Moreover, we introduced new Rozinek similarity metrics and distance metrics based
on set intersection, Jaccard-like coefficients, the Gaussian function and edit similarity. The
novelty and benefit of Rozinek metrics is an easy way to transform any distance metric
into a similarity metric, and vice versa.

Future Work

In our future work, we will mainly focus on:

– Development of a novel definition of a space based on elementary mathematical
particles from set theory. It is possible to imagine them as “basic” particles that are
indivisible in the space and the space is built on them. Therefore, we should be able to
describe some relationships with a wider area of applications.

– Verification selected conjectures about elementary space particles.
– Development applications to approximate string search in a cloud environment and

databases for customers worldwide.
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Appendix A

Appendix A.1. Proof of Theorem 1

Assuming z = x,

s(x, x) + s(y, y) ≥ s(x, y) + s(y, x) by triangle inequality

s(x, x) + s(y, y) ≥ 2s(x, y) by symmetry

s(x, y) ≤ s(x, x) + s(y, y)
2

(A1)

Appendix A.2. Proof of Theorem 2

Let s(x, y) be a positive linear transformation of s(x, y) such that s(x, y) = αs(x, y) + β
for α > 0 and β ≥ 0.

S1. By symmetry by multiplication α and adding β
s(x, y) = s(y, x) =⇒ αs(x, y) + β = αs(y, x) + β =⇒ s(x, y) = s(y, x)
S2. By the triangle inequality, we obtain

s(x, z) + s(y, y) ≥ s(x, y) + s(y, z)

α(s(x, z) + s(y, y)) + 2β ≥ α(s(x, y) + s(y, z)) + 2β

s(x, z) + s(y, y) ≥ s(x, y) + s(y, z)

(A2)

By multiplication by α and adding 2β, the proof is complete. We proceed similarly in
cases S3 and S4.

Appendix A.3. Proof of Theorem 3

By identity of indiscernibles (N3) is an upper bound given

sn(x, y) = sn(y, y) = sn(x, x) = 1 (A3)

and Theorem 1 implies

sn(x, y) ≤ sn(x, x) + sn(y, y)
2

= 1 (A4)

Appendix A.4. Proof of Theorem 4

Just we continue to prove for each axiom, assuming s(x, y) = ∑m
i=1 αisi(xi, yi),

N1. Obviously,

m

∑
i=1

αisi(xi, yi) =
m

∑
i=1

αisi(yi, xi)

s(x, y) = s(y, x)

(A5)

Similarly, N2, N3 and N4 are trivial.

https://www.rozinet.net
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Appendix A.5. Proof of Theorem 6

A real-valued function f (d) is said to be convex over the interval [a, b] ∈ R if for any
d1, d2 ∈ [a, b] and any λ ∈ [0, 1] we have that

λ f (d1) + (1− λ) f (d2) ≥ f (λd1 + (1− λ)d2) (A6)

The validity of the triangle inequality s(x, z) + s(y, y) ≥ s(x, y) + s(y, z) can be proven
from the dual notion of distance s(x, y) = f (d(x, y)) by applying d(x, z) ≤ d(x, y) + d(y, z)
and considering possible cases as follows [13].

Case 1: d(x, z) ≤ d(x, y)

Thus we get f (d(x, z)) ≥ f (d(x, y)). As 0 ≤ d(y, z), we have f (0) = f (d(y, y)) ≥
f (d(y, z)). We sum both expressions

f (d(y, y)) + f (d(x, z)) ≥ f (d(x, y)) + f (d(y, z)) (A7)

So the claim is proven.

Case 2: d(x, z) ≤ d(y, z)

The reasoning is analogous to the above, just flipping x and z.

Case 3: d(x, z) > d(x, y) ∧ d(x, z) > d(y, z)

As a metric is assumed, d(x, z) ≤ d(x, y) + d(y, z). Hence

1 ≤ d(y, z)
d(x, z)

+
d(x, y)
d(x, z)

=⇒ 0 ≤ 1− d(y, z)
d(x, z)

≤ d(x, y)
d(x, z)

≤ 1 (A8)

Let us pick any λ ∈
[
0, d(x,y)

d(x,z)

]
such that 1− d(y,z)

d(x,z) ≤ λ ≤ d(x,y)
d(x,z) . Obviously 0 ≤ λ ≤ 1.

We see immediately that λd(x, z) ≤ d(x, y) and (1−λ)d(x, z) ≤ d(y, z). From the definition
of convexity, we have that

(1− λ) f (0) + λ f (d(x, z)) ≥ f ((1− λ)0 + λd(x, z)) (A9)

f (λd(x, z)) ≥ f (d(x, y)) (A10)

with the last inequality being due to the fact that f is monotonic decreasing. Similarly

λ f (0) + (1− λ) f (d(x, z)) ≥ f (λ0 + (1− λ)d(x, z)) (A11)

f ((1− λ)d(x, z)) ≥ f (d(y, z)) (A12)

By summing all inequalities (Appendix A9–A12) by transitivity ≥ we get

f (0) + f (d(x, z)) ≥ f (d(x, y)) + f (d(y, z)) (A13)

so obviously the triangle inequality holds here too.

Appendix A.6. Measure Space Definition

A measurable space is a set X and σ-ring S of subsets of X with the property that⋃
S = X. A measure is an extended real valued, non-negative, and countably additive set

function µ, defined on a σ-ring S, and such that µ(0) = 0. An ordered triple (X, S, µ) is
called a measure space.

The meaning of this definition lies in the abstraction of measurement on countable set
given by cardinality or on Lebesgue measurable set. For more details we refer the readers
to the source [21].
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Appendix A.7. Proof of Theorem 7

We must show that a distance equals the symmetric difference of two sets d(x, y) =
µ(x4y) [21–23]. If µ is a σ-finite measure on a σ-ring S, this function is pseudometric on S
(D1 and D2 must be satisfied), assuming x, y, z ∈ S

d(x, z) = µ(x4z) = µ(z4x) = µ((x4y))4(y4z))

≤ µ((x4y) ∪ (y4z))

≤ µ(x4y) + µ(y4z)

= d(x, y) + d(y, z)

(A14)

The relation (D3) x ∼ y⇐⇒ d(x, y) = 0 is an equivalence relation on S, so d becomes
a metric on the set S. We need also to prove sequential continuity with Cauchy sequence,
i.e., {xn}n∈N0 ,

lim
n→∞

d(xn, x) = 0 =⇒ lim
n→∞

|µ(xn)− µ(x)| = 0 (A15)

This implies that

d(x, y) = |µ(x)− µ(y)| = |(µ(x \ y) + µ(x ∩ y))− (µ(x ∩ y) + µ(y \ x))|
= |µ(x \ y)− µ(y \ x)|
≤ |µ(x \ y)|+ |µ(y \ x)| = µ(x \ y) + µ(y \ x) = µ(x \ y) ∪ µ(y \ x)

= µ(x4y) =
∫
|χx − χy|dµ

(A16)

We call d the symmetric difference metric. The symmetric difference between two sets
can be considered a measure of how ‘far apart’ they are.

Appendix A.8. Proof of Theorem 8

At first, we will prove the relation for the intersection of the two objects.

s(x, y) = µ(x ∩ y) = µ(x) + µ(y)− µ(x ∪ y) =
2(µ(x) + µ(y)− µ(x ∪ y))

2

=
µ(x) + µ(x) + µ(y) + µ(y)− (µ(x) + µ(y)− µ(x ∩ y))− µ(x ∪ y)

2

=
µ(x) + µ(y) + µ(x ∩ y)− µ(x ∪ y)

2
=

µ(x) + µ(y)− µ(x4y)
2

(A17)

The conditions S1, S3 and S4 are trivial. We show only S2. Since y ⊇ (x ∩ y) ∪ (z ∩ y),
we have

µ(y) ≥ µ(x ∩ y) + µ(z ∩ y)− µ(x ∩ z ∩ y), (A18)

and, consequently,

µ(x ∩ z) + µ(y) ≥ µ(x ∩ z ∩ y) + µ(y) ≥ µ(x ∩ y) + µ(z ∩ y). (A19)

This yields the desired triangle inequality.

Appendix A.9. Proof of Corollary 1

The self-similarity could be derived from Theorem 8

s(x, x) =
µ(x) + µ(x)− d(x, x)

2
=

2µ(x)
2

= µ(x) (A20)

Similarly we obtain s(y, y) = µ(y). We substitute these terms into

s(x, y) =
µ(x) + µ(y)− d(x, y)

2
=

s(x, x) + s(y, y)− d(x, y)
2

(A21)
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Appendix A.10. Proof of Corollary 3

Let x, y be disjoint subsets of a set X. Let be total dissimilarity given by expression
s(x, y) = µ(x ∩ y) = 0, thus satisfying

d(x, y) = µ(x4y) = µ((x \ y) ∪ (y \ x)) = µ(x ∪ y) = µ(x) + µ(y)

= s(x, x) + s(y, y)
(A22)

Appendix A.11. Proof of Corollary 4

Let us show you the duality on this case d(x, y) = f−1(d(x, y)) = s(x, x) + s(y, y)−
2s(x, y) by applying Corollary 2

D1
f−1

−−−→ S1

d(x, y) = d(y, x)

s(x, x) + s(y, y)− 2s(x, y) = s(x, x) + s(y, y)− 2s(y, x)

s(x, y) = s(y, x)

(A23)

D2
f−1

−−−→ S2

d(x, z) ≤ d(x, y) + d(y, z)

s(x, x) + s(z, z)− 2s(x, z) ≤ s(x, x) + s(y, y)− 2s(x, y) + s(y, y) + s(z, z)− 2s(y, z)

− 2s(x, z) ≤ −2s(x, y) + 2s(y, y)− 2s(y, z)

s(x, z) + s(y, y) ≥ s(x, y) + s(y, z)

(A24)

so we receive S2 from the Definition 3 and the triangle inequality is proven.

D3
f−1

−−−→ S3

d(x, y) = 0 =⇒ x = y

s(x, x) + s(y, y)− 2s(x, y) = 0 =⇒ x = y

s(x, y) = s(y, y) = s(x, x) =⇒ x = y

(A25)

D3
f−1

−−−→ S4
Since d(x, y) = 0⇐⇒ x = y is bounded by zero at the same axiom by that reason we

should add S4 as explained previously for Definition 3.
Similarly, on the opposite we proceed by applying Corollary 1 to transform s(x, y) =

f (d(x, y)).
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Appendix A.12. Proof of Theorem 9

We can proceed according to Appendix A.16 for JS(x, y) and we will now show the
equivalence with the Jaccard similarity as follows.

JS(x, y) =
µ(x ∩ y)
µ(x ∪ y)

=
2µ(x ∩ y)

2(µ(x) + µ(y)− µ(x ∩ y))

=
µ(x) + µ(y)− µ(x)− µ(y) + µ(x ∩ y) + µ(x ∩ y)
µ(x) + µ(y) + µ(x) + µ(y)− µ(x ∩ y)− µ(x ∩ y)

=
µ(x) + µ(y)− µ(x ∪ y) + µ(x ∩ y)
µ(x) + µ(y) + µ(x ∪ y)− µ(x ∩ y)

=
µ(x) + µ(y)− µ((x ∪ y)− (x ∩ y))
µ(x) + µ(y) + µ((x ∪ y)− (x ∩ y))

=
µ(x) + µ(y)− µ(x4y)
µ(x) + µ(y) + µ(x4y)

= R(x, y)

(A26)

Appendix A.13. Proof of Theorem 10

At first we proceed in proving R(x, y) being a normalized similarity metric in
Appendix A.12 then we substitute into equation of Theorem 9

R(x, y) =
µ(x) + µ(y)− d(x, y)
µ(x) + µ(y) + d(x, y)

=
µ(x)+µ(x)−d(x,x)

2 + µ(y)+µ(y)−d(y,y)
2 − d(x, y)

µ(x)+µ(x)−d(x,x)
2 + µ(y)+µ(y)−d(y,y)

2 + d(x, y)

=
s(x, x) + s(y, y)− d(x, y)
s(x, x) + s(y, y) + d(x, y)

= RGS(x, y)

(A27)

Appendix A.14. Proof of Theorem 11

We express a direct relationship between the Jaccard distance (Theorem 14) and the
generalized Rozinek normalized distance

JD(x, y) =
µ(x4y)
µ(x ∪ y)

=
d(x, y)

µ(x ∪ y)
=

d(x, y)
µ(x)+µ(y)+d(x,y)

2

=
2d(x, y)

µ(x) + µ(y) + d(x, y)
=

2d(x, y)
s(x, x) + s(y, y) + d(x, y)

= RGDn(x, y)

(A28)

Obviously, conditions D1 and D3 are satisfied. We refer to [14] for D2.

Appendix A.15. Proof of Theorem 12

From Theorem 10 we can write d(x, y) as follows

RGS(x, y) = s(x, y) =
s(x, x) + s(y, y)− d(x, y)
s(x, x) + s(y, y) + d(x, y)

=⇒ s(x, y)(s(x, x) + s(y, y) + d(x, y)) = s(x, x) + s(y, y)− d(x, y)

=⇒ s(x, x)s(x, y) + s(y, y)s(x, y) + d(x, y)s(x, y) + d(x, y) = s(x, x) + s(y, y)

=⇒ d(x, y)(s(x, y) + 1) = s(x, x) + s(y, y)− s(x, x)s(x, y)− s(y, y)s(x, y)

=⇒ d(x, y) =
s(x, x) + s(y, y)− s(x, x)s(x, y)− s(y, y)s(x, y)

s(x, y) + 1
= RGD

(A29)



Appl. Sci. 2021, 11, 1910 16 of 18

From the previously proven theorems, it is obvious that d(x, y) = µ(x4y) satisfies
the axioms for being a distance metric.

Appendix A.16. Proof of Theorem 13

N1. Trivial.
N2. Since we know that sn(x, y) = 1− dn(x, y), we modify theorem 3 of [14] in the

dual form of Jaccard similarity instead of Jaccard distance. Then, for all sets x, y, z ∈ X,
from Definition 4 one has

JS(x, z) + 1 ≥ JS(x, y) + JS(y, z) (A30)

Let f be a nonnegative, monotone, modular set function on X. Say that a set x is a null
set if f (x) = 0. Observe that if at least one of the sets is a null set, then the inequality is
satisfied. So, it is enough to show the equivalent inequality

f (x ∩ z)
f (x ∪ z)

+ 1 ≥ f (x ∩ y)
f (x ∪ y)

+
f (y ∩ z)
f (y ∪ z)

(A31)

for arbitrary non-null sets x, y, z ⊆ X. For more details of proof we refer the readers to [14].
N3. If x = y⇐⇒ µ(x ∩ y) = µ(x ∪ y)⇐⇒ JS(x, y) = 1.
N4. Let xd be any disjoint set to x. Then µ(x ∩ xd) = ∅⇐⇒ JS(x, y) = 0.

Appendix A.17. Proof of Theorem 15

Substituting s(x, y) into the Tanimoto coefficient we get

S(x, y) =
s(x, y)

s(x, x) + s(y, y)− s(x, y)
=

s(x,x)+s(y,y)−d(x,y)
2

s(x, x) + s(y, y)− ( s(x,x)+s(y,y)−d(x,y)
2 )

=
s(x, x) + s(y, y)− d(x, y)

2
2

s(x, x) + s(y, y) + d(x, y)

= RGS(x, y)

(A32)

Appendix A.18. Proof of Theorem 16

Let A, B be Lebesgue measurable sets. Then we can write [17]

µ(A4B) =
∫
|χA(x)− χB(x)|dµ(x) =

∫
| f (x)− g(x)|dµ(x)

µ(A ∪ B) =
∫

max{χA(x), χB(x)}dµ(x) =
∫

max{| f (x)|, |g(x)|, | f (x)− g(x)|}
(A33)

We obtain, by substitution of µ(A4B) and µ(A ∪ B),

JD(x, y) =
µ(A4B)
µ(A ∪ B)

=

∫
| f (x)− g(x)|dµ(x)∫

max{| f (x)|, |g(x)|, | f (x)− g(x)|}

=
2d(x, y)

s(x, x) + s(y, y) + d(x, y)

(A34)

Appendix A.19. Proof of Theorem 17

For the proof, we apply the characteric functions χx, χy and non-negative real valued
functions f (x), g(x):

JS(x, y) =
µ(x ∩ y)
µ(x ∪ y)

=

∫
min{χx, χy}dµ(x)∫
max{χx, χy}dµ(x)

=

∫
min{ f (x), g(x)}dµ(x)∫
max{ f (x), g(x)}dµ(x)

= lim
δx→0

∑ min{ f (x), g(x)}δx
∑ max{ f (x), g(x)}δx

= JG(x, y)
(A35)
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In the last step, we discretized the continous functions where δ may be chosen as a
sampling length. The relation of JS(x, y) to RGS(x, y) is derived in Appendix A.13.

Appendix A.20. Proof of Theorem 18

The properties S1, S3 and S4 are trivial. S2 is satisfied as follows(
1− exp{−d(x, y)2}

)(
1− exp{−d(y, z)2}

)
≥ 0

exp{−d(x, y)2 − d(y, z)2}+ 1 ≥ exp{−d(x, y)2}+ exp{−d(y, z)2}
exp{−d(x, z)2}+ 1 ≥ exp{−d(x, y)2}+ exp{−d(y, z)2}
s(x, z) + s(y, y) ≥ s(x, y) + s(y, z)

(A36)

Appendix A.21. Proof of Theorem 20

Case 1: Levenshtein similarity

R(x, y) =
µ(x) + µ(y)− d(x, y)
µ(x) + µ(y) + d(x, y)

=
|x|+ |y| − d(x, y)
|x|+ |y|+ d(x, y)

= 1− 2d(x, y)
|x|+ |y|+ d(x, y)

= 1− dN−GLD(x, y)
(A37)

where dN−GLD(x, y) is a normalized generalized Levenshtein distance of the form

dN−GLD(x, y) =
2d(x, y)

α(|x|+ |y|) + d(x, y)
(A38)

where α = 1 is the minimum cost of insertion and deletion costs and d(x, y) is an edit
distance [24]. This proof has been inspired by [1,12] where it is further proved that dN−GLD
is a normalized distance metric. Hence by the duality between normalized similarity
metrics and normalized distance metrics, sn(x, y) = 1− dn(x, y) is proven.

Case 2: Longest Common Subsequence (LCS)

We obtain the same results when we normalize the LCS. Let l be the length of the
LCS [25]

l(x, y) =
1
2
(|x|+ |y| − dLCS(x, y)) (A39)

where l(x,y) satisfies the similarity axioms from Definition 3 and dLCS denotes the edit
distance based on unit insertion and deletation cost [1]. Now we turn our attention to
normalizing similarity through evaluating a generalized Tanimoto’s coefficient [1,26]

S(x, y) =
s(x, y)

s(x, x) + s(y, y)− s(x, y)
(A40)

The s(x, y) is interpreted as a count of common features, while S(x, y) express this
count as a fraction of the total number of features of x and y. We set s(x, y) = l(x, y) and
hence obtain

S(x, y) =
l(x, y)

|x|+ |y| − l(x, y)
(A41)

Since l(x, x) = |x| and l(x, y) = |y|, we elaborate the above expressions to

S(x, y) =
|x|+ |y| − dOM(x, y)
|x|+ |y|+ dOM(x, y)

(A42)

where dOM is an edit distance (for details see [1]). Hence we have proved that also
S(x, y) = R(x, y).
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