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Abstract: With the advent of the Internet of Things era, more and more emerging applications need to
provide real-time interactive services. Although cloud computing has many advantages, the massive
expansion of the Internet of Things devices and the explosive growth of data may induce network
congestion and add network latency. Cloud-fog computing processes some data locally on edge
devices to reduce the network delay. This paper investigates the optimal task assignment strategy by
considering the execution time and operating costs in a cloud-fog computing environment. Linear
transformation techniques are used to solve the nonlinear mathematical programming model of the
task assignment problem in cloud-fog computing systems. The proposed method can determine the
globally optimal solution for the task assignment problem based on the requirements of the tasks,
the processing speed of nodes, and the resource usage cost of nodes in cloud-fog computing systems.

Keywords: task assignment strategy; cloud-fog computing; mathematical programming model;
linear transformation technique

1. Introduction

In the era of the Internet of Things (IoT), many emerging applications need to provide
real-time responses and interactions. According to the report by market insights firm
IoT Analytics, global IoT device connections are estimated to surpass non-IoT device
connections and reach 11.7 billion in 2020 [1]. The International Data Corporation (IDC)
predicts that 75% of 55.7 billion devices worldwide will be connected to an IoT platform
by 2025. IDC also estimates that the data generated from the IoT devices will grow from
18.3 ZB in 2019 to 73.1 ZB by 2025 [2].

In various industries, such as transportation, oil and gas, manufacturing, mining, and
utilities, a short response time plays a vital role in improving the output, boosting service
levels, and increasing the safety. The data sensed from the IoT devices often requires
a rapid and real-time analysis of the data. Consequently, an appropriate infrastructure
must be designed to deal with the rapid growth of the IoT data for making a timely and
correct decision during event detection [3]. Cisco [3] listed the main requirements for
the processing of the IoT data; a well-designed task assignment strategy can satisfy the
following requirements:

• latency decrement
• network bandwidth conservation
• data movement to the best place for processing

Although cloud computing has many advantages, the massive expansion of the
IoT devices and the explosive growth of data may induce network congestion and add
network latency. Conventional cloud computing architectures that transmit all data from
the network edge to the central data center for processing cannot meet all of the above
requirements. Transmitting the huge amount of data from the IoT devices to the cloud
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imposes a significantly heavy burden on network performance. This situation also results
in unreliable network latency or uncertain response time for end-users [4,5].

Edge computing has a decentralized architecture that assigns processing tasks to the
edge in the network to reduce the network delay. Fog computing transforms network edge
devices into parts of a distributed computing architecture to implement IoT applications
such as medical and healthcare, building and home automation, traffic control, environ-
mental monitoring, energy management, transportation networks, etc. [3,4]. Compared
to pure cloud computing, edge computing and fog computing perform better within the
aspects of data transmission speed, privacy and security, limited bandwidths, and data con-
trol [6]. Due to the advancements in information technology, conventional network edge
devices—for instance, routers, gateways, workstations, and personal computers—have
become increasingly powerful in the context of the processing capability, storage space,
and communication capability. The resources not only can be utilized by their owners but
help to push data handling to the network edge [5].

This paper focuses on the optimal task assignment strategy that minimizes the exe-
cution time and operating costs in a cloud-fog computing environment. Nguyen et al. [4]
constructed a nonlinear mathematical programming model to treat the task assignment
problem in a cloud-fog computing environment for the IoT. The model consists of an objec-
tive function that involves a parameter to control the trade-off between task completion
time and total cost. They also developed evolutionary algorithms to solve the problem.
However, their methods cannot guarantee the global optimality of the obtained solution.
This study proposes a method to transform the nonlinear problem into a linear model and
then guarantees to find a globally optimal solution of the task assignment problem.

The rest of this paper is organized as follows. Section 2 presents a review of the related
research on the optimal task assignment strategy in the cloud-fog computing environment.
Section 3 introduces the task assignment problem by considering the execution time and
operating costs in the cloud-fog system. The proposed method is described in Section 4.
Finally, Section 5 provides the conclusions.

2. Literature Review

Due to the exponential increase of data generated by network devices, the conventional
cloud computing architecture cannot meet the level of low latency and quick response
required by IoT applications. Therefore, fog computing has received increasing attention in
recent years. Cisco first proposed fog computing that can transform network edge devices
into parts of a distributed computing infrastructure for supporting IoT applications [3].
Shi et al. [7] investigated the fundamental characteristics of fog computing for healthcare
systems. Yi et al. [8] discussed the definition of fog computing and similar concepts,
introduced three representative applications, and identified various issues when designing
and implementing fog computing systems. Yousefpour et al. [9] developed a fog-node
policy that considered queue lengths and various types of requests with different processing
times to minimize service delays for IoT nodes. Lee et al. [10] explored the security threats
and privacy issues for implementing the IoT in a fog computing environment. Hong
et al. [11] proposed an architecture to deploy IoT applications across various devices,
from the edge devices to the cloud. Mahmud et al. [12] proposed a taxonomy of the fog
computing environment and discussed possible challenges and features.

Cloud-fog computing allows some cloud services to be executed on the edge of the
network. How to select the appropriate nodes for the tasks to be processed is critical to
the performance of the cloud-fog computing architecture. Deng et al. [13] investigated a
workload allocation problem considering power consumption and delay in a cloud-fog
computing system. They approximately decomposed the problem into three subproblems
and then solved each subproblem by existing optimization techniques. The simulations
and numerical results indicated that fog computing can complement cloud computing in
bandwidth conservation and transmission latency reduction. Pham and Huh [14] discussed
the task scheduling problem in a cloud-fog environment. They developed a heuristic-based
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algorithm for task scheduling to achieve the balance between the execution time and
the monetary cost of cloud resources. Nikoui et al. [15] proposed a cost-aware genetic-
based task scheduling algorithm to enhance the cost efficiency for real-time applications
in a fog-cloud environment. Guevara and da Fonseca [16] developed task scheduling
algorithms based on integer linear programming techniques for multiclass services in
cloud-fog computing systems.

Nguyen et al. [4] investigated the main techniques and the improvement criteria
of the developed task assignment algorithms for cloud computing or fog computing.
However, in the hybrid cloud-fog computing environment, the cloud nodes and fog nodes
are different in processing capability and resource usage costs. Therefore, the tasks may
not be equally assigned to all nodes [4]. The tasks should be allocated to different nodes
according to the requirements of the tasks, the processing speed of nodes, and the resource
usage cost of nodes. Since existing methods are not suitable for the hybrid cloud-fog
computing architecture, Nguyen et al. [4] constructed a mathematical programming model
to investigate the task assignment problem and developed evolutionary algorithms to solve
the problem.

3. Proposed Method

Although Nguyen et al. [4] developed evolutionary algorithms to solve the task
assignment problem, their methods cannot guarantee the global optimality of the obtained
solution. This study transforms the nonlinear model of the task assignment problem into
a linear model that is solvable by the general linear programming technique to derive a
globally optimal solution.

The optimal task assignment problem in the cloud-fog computing environment dis-
cussed in this study, referring to Nguyen et al. [4], can be described as follows. Assume Tk
be the kth task, then n independent tasks in T are required to be completed in the system
and expressed as follows:

T = {T1, T2, T3, . . . , Tn}. (1)

The cloud-fog computing system includes cloud nodes and fog nodes; the nodes of
the same type have similar characteristics, such as CPU processing power, CPU usage cost,
memory usage cost, and bandwidth usage cost. Typically, the cloud nodes have higher
capabilities in computing and storage than the fog nodes, but running the tasks on the
cloud nodes must pay higher costs. Assume that m nodes consisting of cloud and fog
nodes in a set can be expressed as:

N = {N1, N2, N3, . . . , Nm}, (2)

where Ni is the ith processing node. Each task Tk will be assigned to one processing node
Ni, which is represented as Ti

k. Each processing node Ni (i = 1, 2, 3, . . . , m) can be assigned
multiple tasks, expressed as:

NT
i =

{
Ti

x, Ti
y, . . . , Ti

z

}
. (3)

The task assignment problem considered in this study could be formulated as a node
assignment of the tasks in T:

Tnode =
{

Ta
1 , Tb

2 , Tc
3 , . . . , Tp

n

}
. (4)

The execution time for node Ni to complete all assigned tasks in NT
i can be ex-

pressed as:

E_Time (Ni) = ∑
Ti

k∈NT
i

E_Time
(

Ti
k

)
=

∑Ti
k∈NT

i
L(Ti

k)

CPUrate(Ni)
, (5)
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where L
(
Ti

k
)

is the number of instructions of task Ti
k, and CPUrate(Ni) is the CPU clock

rate of node Ni. E_Time
(
Ti

k
)
=

L(Ti
k)

CPUrate(Ni)
is the execution time of Tk assigned in node Ni.

Assume Timespan is the total time to complete all tasks in T. Timespan can be derived
by the following formula:

Timespan = Max1≤i≤mE_Time(Ni). (6)

Let Cost(Ti
k) be a monetary amount that must be paid for executing task Ti

k in node
Ni, consisting of the processing cost Cp(Ti

k), memory usage cost Cm(Ti
k), and bandwidth

usage cost Cb(Ti
k). Cost(Ti

k) can be expressed as:

Cost
(

Ti
k

)
= Cp

(
Ti

k

)
+ Cm

(
Ti

k

)
+ Cb

(
Ti

k

)
. (7)

The above three costs can be defined as:

Cp

(
Ti

k

)
= cost_pi × E_Time

(
Ti

k

)
, (8)

Cm

(
Ti

k

)
= cost_mi ×Memory

(
Ti

k

)
, (9)

Cb

(
Ti

k

)
= cost_bi × Bandwidth

(
Ti

k

)
, (10)

where cost_pi is the usage cost of CPU per time unit in node Ni, cost_mi is the usage cost of
memory per data unit in node Ni, Memory

(
Ti

k
)

is the memory required by task Tk in node
Ni, cost_bi is the usage cost of bandwidth per data unit, and Bandwidth

(
Ti

k
)

is the amount
of bandwidth required by transmitting task Tk to be processed in node Ni.

The total cost for all tasks to be completed in a cloud-fog system can be expressed
as below:

Total_Cost = ∑
Ti

k∈Tnode

Cost
(

Ti
k

)
. (11)

Since the optimal task assignment problem considers the execution time and operating
costs, Nguyen et al. [4] used an objective function to compute the trade-off between
Timespan and Total_Cost as follows:

Objective = α× Timespan + (1− α)× Total_Cost, (12)

where α ∈ [0, 1] is the trade-off coefficient between the execution time and operating costs.
If α > 0.5, the task assignment strategy concentrates on minimizing the execution time with
a higher priority than the total operating costs. If α < 0.5, minimizing the total operating
costs is more important than the execution time. The value of α depends on the amount of
the budget or the level of the required response time.

Nguyen et al. [4] used evolutionary algorithms to find the optimal trade-off task
assignment strategy between the execution time and operating costs. Since the heuristic
approaches cannot guarantee the quality of the obtained solution, this study derived the
optimal assignment strategy based on the globally optimal solution by a deterministic
approach. The original mathematical programming model of the task assignment problem
in a cloud-fog system can be expressed as follows [4].

Model OTA1:

minimizeα× Timespan + (1− α)× Total_Cost (13)

subject to:
m

∑
i=1

Ti
k = 1, 1 ≤ k ≤ n, (14)
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Total_Cost =
n

∑
k=1

m

∑
i=1

(Ti
k × Costi

k), (15)

Costi
k = cost_pi ×

L(Ti
k)

CPUrate(Ni)
+ cost_mi ×Memory

(
Ti

k
)
+ cost_bi×

Bandwidth
(
Ti

k
)
, ∀Ti

k ∈ T,
(16)

Timespan = Max1≤i≤mE_Time(Ni), (17)

E_Time(Ni) = ∑
Ti

k∈NT
i

E_Time
(

Ti
k

)
=

∑Ti
k∈NT

i
L(Ti

k)

CPUrate(Ni)
, (18)

where α, L(Tk), CPUrate(Ni), E_Time
(
Ti

k
)
, Memory

(
Ti

k
)
, Bandwidth

(
Ti

k
)
, cost_pi, cost_mi,

and cost_bi are the same as described before. The decision variables are Ti
k and Ti

k ∈ {0, 1}.
Constraint (14) means that the task Tk must be assigned to only one node for execution.

After linearly expressing the constraint (17) in the above model OTA1, the original
model can be transformed as follows.

Model OTA2:

minimizeα× Timespan + (1− α)× Total_Cost (19)

subject to:
m

∑
i=1

Ti
k = 1, 1 ≤ k ≤ n, (20)

Total_Cost =
n

∑
k=1

m

∑
i=1

(Ti
k × Costi

k), (21)

Costi
k = cost_pi ×

Ti
k×L(Ti

k)

CPUrate(Ni)
+ cost_mi ×Memory

(
Ti

k
)
+ cost_bi×

Bandwidth
(
Ti

k
)
, ∀Ti

k ∈ T,
(22)

E_Time(Ni) ≤ Timespan, ∀i, 1 ≤ i ≤ m, (23)

E_Time(Ni) =
∑n

k=1(T
i
k × L(Ti

k))

CPUrate(Ni)
, (24)

Ti
k ∈ {0, 1}. (25)

Model OTA2 is a mixed-integer linear model that can be solved by the optimization
solver to obtain a globally optimal solution. The obtained solution may be different when
the trade-off coefficient α changes.

4. Numerical Experiments and Results

This study discusses the optimal task assignment problem in a cloud-fog computing
environment; several numerical experiments are presented to demonstrate the effectiveness
of the proposed method. The experiments were conducted on a Notebook with a 2.6 GHz
Intel Core i5-7300 CPU and 24 GB memory. All reformulated models were solved by a
mathematical programming solver GUROBI 9.1.1 with default settings.

In a cloud-fog computing environment, each node has its own processing capacity,
memory, and bandwidth usage cost. This study randomly generated several problems
according to the parameters suggested by Nguyen et al. [4]. Table 1 lists the characteristics
of the nodes used to execute the tasks in a cloud-fog computing environment. Table 2 lists
the characteristics of the tasks.
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Table 1. Characteristics of the nodes in a cloud-fog computing environment.

Parameter Fog Nodes Cloud Nodes

CPU rate (MIPS) [500,1500] [3000,5000]
CPU usage cost [0.1,0.4] [0.7,1.0]

Memory usage cost [0.01,0.03] [0.02,0.05]
Bandwidth usage cost [0.01,0.02] [0.05,0.1]

Table 2. Characteristics of the tasks to be assigned.

Property Value

Number of instructions (109 instructions) [1]
Memory required (MB) [50,200]

Input file size (MB) [10,100]
Output file size (MB) [10,100]

In our experiments, α = 0.5 is adopted, which means that the time and cost have
identical priorities in the objective. Three datasets are used in our experiments. Referring
to the research of Nguyen et al. [4], datasets 1 includes three cloud nodes and 10 fog
nodes. To explore the impact of different numbers of cloud and fog nodes on the solution
speed of the proposed method, dataset 2 includes five cloud nodes and 12 fog nodes, and
dataset 3 includes seven cloud nodes and 14 fog nodes. Cloud nodes are more powerful
for processing tasks, but the cost of using them is higher. In each dataset, 10–50 tasks are
assigned to different nodes according to the globally optimal solution of Model OTA2
solved by GUROBI. For each case, ten instances with identical numbers of cloud nodes, fog
nodes, and tasks are randomly generated. The average CPU time is the average running
time of GUROBI to solve each instance.

As seen in Tables 3–5, the average CPU time increases as the number of tasks increases
under identical numbers of cloud nodes and fog nodes. For small cases, the results
can be obtained within several seconds. Comparing the average CPU time for solving
the case with the same number of tasks in the three datasets, the difference is more
significant as the number of cloud nodes and fog nodes increases. Since the number of
cloud nodes, fog nodes, and tasks determines the number of binary variables in Model
OTA2, more cloud nodes, fog nodes, or tasks results in more CPU time for solving the task
assignment problem. Since Model OTA2 involves an SOS1 constraint, the technique for
treating the SOS1 constraint with fewer binary variables can be considered to improve
the computational efficiency of the large-scale task assignment problems in a cloud-fog
computing environment.

Table 3. Experimental results of the proposed method for 3 cloud nodes and 10 fog nodes (dataset 1).

Case No. 1 2 3 4 5 6 7 8 9

Number of cloud nodes 3 3 3 3 3 3 3 3 3
Number of fog nodes 10 10 10 10 10 10 10 10 10

Number of tasks 10 15 20 25 30 35 40 45 50
Number of 0-1 variables 130 195 260 325 390 455 520 585 650
Number of continuous

variables 15 15 15 15 15 15 15 15 15

Number of constraints 37 42 47 52 57 62 67 72 77
Average Timespan (sec) 40.4057 63.6957 89.3140 99.3824 124.0032 107.3536 186.0245 160.2466 195.3863

Average Total_Cost 145.7769 228.4093 266.5487 386.4935 498.4282 561.9562 607.3436 673.5105 764.3977
Average CPU time 0.2191 1.1957 12.0210 46.0756 102.5049 414.2663 580.9763 590.1869 677.3602
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Table 4. Experimental results of the proposed method for 5 cloud nodes and 12 fog nodes (dataset 2).

Case No. 10 11 12 13 14 15 16 17 18

Number of cloud nodes 5 5 5 5 5 5 5 5 5
Number of fog nodes 12 12 12 12 12 12 12 12 12

Number of tasks 10 15 20 25 30 35 40 45 50
Number of 0-1 variables 170 255 340 425 510 595 680 765 850
Number of continuous

variables 19 19 19 19 19 19 19 19 19

Number of constraints 45 50 55 60 65 70 75 80 85
Average Timespan (sec) 48.9281 46.6694 59.0551 81.3217 101.6427 124.4561 141.8461 166.3881 214.1368

Average Total_Cost 142.4031 239.3706 239.2414 354.4158 442.8219 535.4207 596.2381 691.7541 760.2561
Average CPU time 0.3900 1.3135 12.6975 83.7108 149.1998 453.4950 665.6732 721.8558 844.8545

Table 5. Experimental results of the proposed method for 7 cloud nodes and 14 fog nodes (dataset 3).

Case No. 19 20 21 22 23 24 25 26 27

Number of cloud nodes 7 7 7 7 7 7 7 7 7
Number of fog nodes 14 14 14 14 14 14 14 14 14

Number of tasks 10 15 20 25 30 35 40 45 50
Number of 0-1 variables 210 315 420 525 630 735 840 945 1050
Number of continuous

variables 23 23 23 23 23 23 23 23 23

Number of constraints 53 58 63 68 73 78 83 88 93
Average Timespan (sec) 45.4530 60.9926 79.7936 91.4356 115.0861 103.8784 130.1187 130.7363 164.7988

Average Total_Cost 125.9765 195.1031 270.6764 324.1400 421.4838 494.4605 609.9551 679.6400 729.3251
Average CPU time 0.4890 1.3852 119.1511 148.9607 470.8410 679.0558 706.5134 887.7305 1157.8949

5. Conclusions

In the era of IoT, how to improve the quality of service in IoT networks becomes a
challenging problem. Since conventional cloud computing architectures do not meet the
requirements of the IoT applications, edge computing and fog computing have attracted
increasing attention from the industrial and academic sectors in recent years. Although
evolutionary algorithms can solve the task assignment problem with hundreds of tasks
in the cloud-fog system, the quality of the obtained solution cannot be guaranteed. This
study developed a linearization method to solve the nonlinear task assignment problem.
Therefore, the global optimality of the obtained solution can be guaranteed by using the
proposed deterministic optimization approach. This proposed method can allocate tasks to
different cloud nodes or fog nodes based on the requirements of the tasks, the processing
speed of nodes, and the resource usage cost of nodes in a cloud-fog system.

Although the deterministic method can find a global optimum, the limitation of the
proposed approach is that the computational complexity grows rapidly as the problem
size increases. More investigation and research will be required to develop an efficient
approach for solving the task assignment problem in a cloud-fog system.
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