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Abstract: Bisphenol A (BPA), which is widely used for manufacturing polycarbonate plastics and
epoxy resins, has been banned from use in plastic baby bottles because of concerns regarding
endocrine disruption. Substances with similar chemical structures have been used as BPA alternatives;
however, limited information is available on their toxic effects. In the present study, we reviewed the
endocrine disrupting potential in the gonad and thyroid endocrine system in zebrafish after exposure
to BPA and its alternatives (i.e., bisphenol AF, bisphenol C, bisphenol F, bisphenol S, bisphenol SIP,
and bisphenol Z). Most BPA alternatives disturbed the endocrine system by altering the levels of
genes and hormones involved in reproduction, development, and growth in zebrafish. Changes
in gene expression related to steroidogenesis and sex hormone production were more prevalent in
males than in females. Vitellogenin, an egg yolk precursor produced in females, was also detected
in males, confirming that it could induce estrogenicity. Exposure to bisphenols in the parental
generation induced a decrease in the hatchability associated with offspring generation. In zebrafish
exposed to bisphenols, significant decreases in thyroxine concentrations and increases in thyroid-
stimulating hormone concentrations were commonly observed. Alternative compounds used to
replace a chemical of concern are believed to be less toxic than the original compound; however,
several BPA alternatives appear to have similar or greater effects on the endocrine system in zebrafish.
Since endocrine systems interact with each other, further studies are needed to assess the primary
target of BPA alternatives among the endocrine axes.

Keywords: bisphenol A alternatives; endocrine disruption; reproduction; thyroid; zebrafish

1. Introduction

The endocrine system comprises endocrine glands, hormones, and target cells in-
volved in reproduction, development, growth, metabolism, and stress response, thereby
maintaining the living organism’s homeostasis [1]. Hormones produced by the endocrine
glands throughout the blood flow circulate in the whole organism and bind to receptors on
target cells thus transmitting chemical signals or inducing hormone action. The endocrine
system is present in all vertebrates ranging from fish to mammals and secretes similar
hormones [2]. Synthetic or natural chemicals that have an abnormal effect on normal en-
docrine system function are called endocrine disruptors. The exact definition of endocrine
disruptors is different for various organizations, such as the United States Environmental
Protection Agency [3] or the Organization for Economic Co-operation and Development [4].
Therefore, a globally established list of endocrine disruptors is non-existent, and chemical
substances with potential risks are estimated through prior research [5]. Unlike biological
hormones, these endocrine disruptors are stable and not easily degraded; therefore, they
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remain in the environment or inside a living organism [6]. Additionally, due to their strong
lipid affinity, endocrine disruptors can accumulate in fats and tissues of organisms along
the food chain [7]. Chemicals that are estimated to disturb the endocrine system are very
diverse, such as plastic plasticizers [8], pesticides [9], heavy metals [10], and persistent
organic compounds [11]. Bisphenol A (BPA) is suspected to be a representative endocrine
disruptor [12].

BPA is a compound synthesized from phenol and acetone in 1891 [13] and has been
used since the 1950s to produce resilient and transparent polycarbonate plastics and epoxy
resins [14]. This compound has been used for various purposes, including electronic equip-
ment, medical devices, reusable bottles, food storage containers, canned food, and thermal
paper receipts [13,15–17]. The worldwide demand for BPA increases by 5% annually and is
classified as a high production volume chemical in the United States [18]. As the use of BPA
increases, it is frequently detected in human samples [19–21], as well as in environmental
media [22,23].

As BPA causes estrogenic activity [24,25] and is detected at a high frequency in human,
environmental, and product samples, concerns regarding its use have increased. According
to the precautionary principle, Canada, the European Union, and the United States have
banned the use of BPA in baby bottles [26]. Substances similar in structure to BPA are now
used as an alternative [27]. As shown in Table 1, bisphenol analogs have two phenolic
rings, and the types and positions of functional groups are slightly different. Since the key
structure of bisphenol analogs is similar to the original compound, they can replace the
role of BPA. However, there is a possibility that the toxicity resulting from the structure
remains. BPA analogs are used in many consumer products and are frequently detected in
urine samples of the general population [28], surface water [23], and indoor dust [22].

Table 1. Structural resemblance of bisphenol A analogs.

Classification Bisphenol Bisphenol A (BPA) Bisphenol AF (BPAF) Bisphenol C (BPC)

Structure a
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The zebrafish has become a powerful model for testing endocrine disruptors based
on their higher fecundity, fast embryonic development, and a conserved neuroendocrine
system, which are also observed in humans [2]. This small fish has a hypothalamus-
pituitary-endocrine gland axis, which connects the central nervous system and the en-
docrine system. Depending on the prominent glands, the axis can be divided into the
hypothalamic-pituitary-gonad (HPG) axis, hypothalamic-pituitary-thyroid (HPT) axis, and
hypothalamic-pituitary-adrenal (HPA) axis. All axes cooperate with other neuroendocrine
systems to control body physiology [2]. Both the technical and practical advantages have
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made zebrafish an ideal organism for the identification of endocrine-disrupting chemi-
cals [29].

As their production and discharge into the environment are estimated to increase
worldwide, the health risk potentials of BPA and its alternatives are of increasing con-
cern. Unlike BPA, whose endocrine disruption has been investigated thoroughly, limited
information is available regarding the toxicity of BPA alternatives. This review focuses
on the endocrine disruption of BPA alternatives in zebrafish that have been reported in
previous studies and presents the current status of related knowledge to identify gaps for
future research. The first step involves a systematic review to define the protocol through a
population-based comparator-outcome (PECO) statement (Table 2). Our review included
the literature in which zebrafish were exposed to BPA and its alternatives, with control
groups or vehicle-treated groups included for comparison. The effects on the reproduction
(fertility, fecundity, vitellogenesis, sex hormones, and genes related to the HPG axis) and
development (hatchability, time-to-hatch, spontaneous movement, body length, thyroid
hormones, and genes related to hypothalamic-pituitary-thyroid (HPT) axis) were consid-
ered as the potential adverse outcomes. The PECO statement serves as a guide for the entire
review process, including the literature search strategy, criteria for the inclusion/exclusion
of studies, type of data extracted from studies, and strategy for reporting results [25].
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Table 2. Elements of a population-based comparator-outcome (PECO) statement in the present study.

Element Explanation Inclusion Criteria Exclusion Criteria

(P) Population What are the characteristics of the receptors? • Experimental zebrafish studies • All humans and rodents studies

(E) Exposures What are the types of chemicals and the timing of exposure?
• Exposure to BPA, BPAF, BPC, BPF, BPS, BPSIP, and BPZ

in adult stages or early life stages • Exposure to other chemicals

(C) Comparator Which exposure groups will be compared to each other?
• Exposed groups versus vehicle-treated or
• negative controls • No controls in experimental studies

(O) Outcome Which outcomes will be included or covered?

• Fertility, fecundity, sex ratio, gonad weight, sex
hormones, and genes related to the
hypothalamic-pituitary-gonad (HPG) axis,
vitellogenesis

• Length, weight, thyroid hormones, and genes related to
the hypothalamic-pituitary-thyroid (HPT) axis

• All other endocrine disruption effects

Publication
parameters -

• Peer-reviewed
• Original data
• Available in English

• Non-peer reviewed
• Not an original data

(e.g., reviews, editorials)
• Unavailable in English



Appl. Sci. 2021, 11, 1837 5 of 24

2. Methods
2.1. Search and Selection of Studies for Inclusion

Relevant studies were selected using two screening phases. The first selection was
based on title and abstract screening, and the second selection was based on full-text
screening. Studies were selected for full-text screening when they met the inclusion criteria.
Articles published before April 1, 2020, were identified in PubMed. A comprehensive search
strategy was developed and included the search components “bisphenol A alternatives”,
“zebrafish”, “HPG axis”, and “HPT axis”. The reference lists of the included articles and
relevant reviews were screened manually for potentially relevant new articles. In case of
doubt, articles were also analyzed based on their full text. Studies were included in this
systematic review when they met all of the following criteria (Table 2): (a) an original full
paper that presented unique data; (b) a study where exposure to BPA and its alternatives
was elucidated; and (c) an article related to HPG or HPT axes. Studies were excluded
if they met one of the following criteria: (a) unoriginal paper, (b) studies involving the
exposure to a chemical other than the BPA alternatives, (c) no outcome of interest, and (d)
not a zebrafish study. Moreover, selection was restricted to English-language articles.

2.2. Reliability Assessment of Individual Studies

The quality of evidence of the systematic review outcomes was rated using the criteria
for reporting and evaluating ecotoxicity data (CRED) [24]. A total of 20 criteria were
divided into 6 categories for evaluation, including general information, test design, test
substance, test organism, exposure conditions, and statistical method. Data above the
standard score were judged as high-quality toxicity data. Five points were assigned for
each criterion, and the reliability level of the toxicity data was determined based on the
satisfaction of 12 essential items and the total score. The CRED evaluation method uses 4
reliability categories, similar to the Klimisch scores [26]: reliable without restrictions (R1),
reliable with restrictions (R2), not reliable (R3), and not assignable (R4). R1 grade is given
when all 12 essential items are satisfied, and the total score is 80 points or more. The R2
grade is a case where the total score is 60–80 points, and one of the 12 required items is not
satisfied. We selected the data corresponding to R1 and R2 grades.

3. Results and Discussion
3.1. Study Selection and Characteristics

Study selection is summarized in a flow chart (Figure 1). Literature searches in
PubMed identified 40,262 studies related to zebrafish and 24,133 studies related to bisphe-
nols. After removing duplicate records, 241 articles were identified as relevant. After
title and abstract screening, 58 articles were excluded based on the following criteria: (a)
unavailability in English, (b) unoriginal data, and (c) irrelevant research. Of these 183
publications, 49 were included in this review based on full text screening.
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Figure 1. Flow chart of study selection process.

Among 49 individual studies, 9 cases were R1 grade, 39 cases were R2 grade, and 1
case was R3 grade. Therefore, 48 high-quality studies (38 studies related to the HPG axis
and 10 studies related to the HPT axis) are summarized in the following section.

3.2. Effects of BPA and Its Alternatives on HPG Axis

It has been reported that functions of the reproductive system are susceptible to
disruption by endocrine-disrupting chemicals. Thirty-eight studies showed that BPA [27,
28,30–56], BPAF [42,45,51,57,58], BPC [45], BPF [42,46–57,59–61], BPS [42,46–48,62–64],
and BPSIP [65] disturbed fecundity, fertility, relative organ weight, vitellogenin protein
production, sex hormone production, and mRNA expression related to the HPG axis
(Table 3).
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Table 3. Summary of studies about hypothalamic-pituitary-gonad (HPG) axis in zebrafish exposed to bisphenol A and its alternatives.

Chemical Stage
(Type)

Exposure
Concentration (µg/L)

Exposure
Duration

No Observed
Adverse

Effect Level
(µg/L)

Lowest
Observed
Adverse

Effect Level
(µg/L)

Toxicity Effect

Ref
Gene Hormone Protein Organ Organism

BPA Embryo 0, 0.5, 5, 50, 500 96 h

- 0.5 ↑esr1, esr2a, vtg1 - - - -

[27]0.5 5 ↑cyp19a1b - - - -

50 500 ↑ar - - - -

BPA Adult 0, 1, 10, 100, 1000 14 days - 1 ↓cyp19a (♀) - ↑VTG (♀) - - [28]

BPA Adult 0, 100, 300, 600, 800, 1000
96 h >1000 - - - VTG (♂, ♀) - -

[30]
168 h >1000 - - - VTG (♂, ♀) - -

BPA Adult 0, 2, 20, 200 21 days

- 2 - - ↑VTG (♀) - -

[36]2 20 - - ↑VTG (♂) - -

20 200 - ↓FSH, LH, T,
E2 (♂, ♀) - - -

BPA Embryo
0, 0.02, 0.2, 2, 22, 228, 2282,

6848
(=0, 0.0001, 0.001, 0.01, 0.1, 1,

10, 30 µM)

5 days

0.2 2 ↓esr2 - - - -

[44]22 228 ↓ar - - - -

228 2282 ↓esr1 - - - -

BPA Adult 0, 5 21 days - 5 ↑vtg, erα, cyp19a (♂) ↑E2 (♂),
↓E2 (♀) - ↓GSI (♂) ↓Fecundity [37]

BPA Adult 0, 0.01, 0.1, 1, 10, 100 96 h 1 10 - - ↑VTG (♂) - - [54]

BPA Adult 0, 10, 200, 400 180 days - 10 - - ↑VTG (♂) - - [39]

BPA Embryo 0, 0.1, 1, 10, 100, 1000 120 h

1 10 ↑gnrh3, lhβ, kiss1r - - - -

[48]10 100 ↑erα, kiss1 - - - -

100 1000 ↑fshβ - - - -

BPA Adult 0, 20 4 min - 20 ↑F1 vtg2 ↓E2 (♂),↓T (♀) ↑F1 VTG2 - ↓Fecundity [32]

BPA Adult 0, 5, 10, 20 21 days 10 20 ↑star, esr2b, fshr (♀) - - - - [50]

BPA Adult (F2) 0, 20 28 days - 20 ↑star, fshr (♀) - - ↓GSI (♀) ↓Fertility [49]

BPA Embryo 0, 100 120 h - 100 ↑erα - - - - [47]

BPA Juvenile 0, 100 60 days - 100 ↑kiss1, kiss2, gnrh3, erα,
cyp19a, cyp19b - - - - [46]

BPA Adult 0, 10, 100, 1000 15 days
10 100 ↓vtg1 (♀) - - - -

[40]
100 1000 ↑vtg1 (♂) - - - -

BPA Adult 0, 100, 2000 42 days
- 100 ↑vtg1(lai♂) - - ↓GSI (♂) -

[52]
100 2000 ↑esr1, vtg2 (♂) - - - -
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Table 3. Cont.

Chemical Stage
(Type)

Exposure
Concentration (µg/L)

Exposure
Duration

No Observed
Adverse

Effect Level
(µg/L)

Lowest
Observed
Adverse

Effect Level
(µg/L)

Toxicity Effect

Ref
Gene Hormone Protein Organ Organism

BPA Embryo 0, 100, 1000, 5000 96 h

- 100 ↑vtg1, cyp17a1 - - - -

[42]100 1000 ↑esr1, esr2a, esr2b, hsd17b1 - - - -

1000 5000 ↑cyp19a1 - - - -

BPA Adult 0, 25, 50, 100, 250, 500 15 days 100 250 ↑vtg1 (♂) - - - - [31]

BPA Adult 0, 500, 1000, 1500 21 days - 500 - - ↑VTG (♂) - - [51]

BPA Adult 0, 500, 1000, 1500 21 days
- 500 ↑vtg1, esr2b, cyp19a1a (♂) ↑E2 (♂) ↑VTG (♂) - -

[56]
500 1000 ↑esr1 (♂),

↓star, cyp17a1 (♂) ↓T (♂) - - -

BPA Embryo 0, 10, 100, 500, 750,
1000, 2500, 5000 7 days

500 750 ↑cyp19b - - - -
[55]

1000 2500 ↑vtg - - - -

BPA Adult 0, 40, 200, 1000 21 days 200 1000 - - ↑VTG (♂) - - [53]

BPA Adult 0, 2000 35 days - 2000 ↑vtg (♂) - - - - [41]

BPA Embryo 0, 1141, 2282, 3424
(=0, 5, 10, 15 µM) 120 h 1141 2282 ↑vtg1 - - - - [43]

BPA Embryo(GFP)
0, 11, 22, 114, 228, 1141, 2282

(=0, 0.05, 0.1, 0.5, 1, 5, 10
µM)

2 days 1141 2282 ↑vtg1, cyp19a1b - - - - [45]

BPA Juvenile(albino) 0, 2282 (=10 µM) 20 days - 2282 ↓fshβ - - ↓Ovary
growth ↑♀/♂ratio [34]

BPA Embryo
0, 114, 228,

570, 1141, 2282
(=0, 0.5, 1, 2.5, 5, 10 µM)

7 days >2282 - vtg1 - - - - [33]

BPA Embryo 0, 804, 2010, 4020, 6030 96 h 4020 6030 ↑vtg1 - - - - [35]

BPA Adult 0, 0.1, 2, 20, 200, 400, 1000,
2000 11 days 1000 2000 ↑vtg1 (♂) - - - - [38]

BPAF Embryo 0, 20, 200, 1000 96 h

- 20 ↑vtg1, esr2b - - - -

[42]20 200 ↑esr1, esr2a, cyp19a1,
hsd17b1 - - - -

200 1000 ↑cyp17a1 - - - -

BPAF Adult 0, 5, 25, 125 120 days

5 25 ↑vtg1 (♂)
↑E2 (♂)

- - -

[57]

↓T (♂)

25 125

↑gnrh2, fshβ, lhβ, fshr, star,
cyp17, cyp19a, cyp19b (♂)

↑E2 (♀) - - ↓F1 fertility↑fshr (♀)

↓star (♀)
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Table 3. Cont.

Chemical Stage
(Type)

Exposure
Concentration (µg/L)

Exposure
Duration

No Observed
Adverse

Effect Level
(µg/L)

Lowest
Observed
Adverse

Effect Level
(µg/L)

Toxicity Effect

Ref
Gene Hormone Protein Organ Organism

BPAF Embryo(GFP) 0, 16, 33, 168, 336, 1681
( = 0, 0.05, 0.1, 0.5, 1, 5 µM) 2 days

33 168 ↑cyp19a1b - - - -
[45]

168 336 ↑vtg1 - - - -

BPAF Adult 0, 500, 1000, 1500 21 days - 500 - - ↑VTG (♂) - - [51]

BPAF Adult 0, 50, 250, 1000 28 days 250 1000 ↑vtg (♂) ↑E2 (♂) - - - [58]

BPC Embryo(GFP) 0, 14, 28, 140, 281, 1405
( = 0, 0.05, 0.1, 0.5, 1, 5 µM) 2 days

- 14 ↑vtg1 - - - -
[45]

140 281 ↑cyp19a1b - - - -

BPF Juvenile 0, 0.1, 1, 10, 100, 1000 60 days

- 0.1 - - ↑VTG - -

[46]

1 10 ↑kiss1r, fshr, vtg, erα,
cyp19a

↑LH, FSH,
GnRH - - -

10 100 ↑kiss1, lhr (♀), erβ, cyp19b - - - -

100 1000 ↑gnrh3, lhr (♂) - - - -

>1000 - kiss2, kiss2r, sv2c - - GSI (♀) -

BPF Adult 0, 1, 10, 100, 1000 21 days

- 1 ↑fshβ (♂) - - - -

[61]

1 10 ↑lhβ, gnrh3, vtg (♂) ↓T (♂) - - -

10 100

↑gnrh2, gnrhr1, gnrhr2,
cyp19a, fshr, lhr (♂)

↑E2 (♂) - - -↑fshr (♀)

↓fshβ, 17βhsd, star (♀)

100 1000

↑cyp11a (♂, ♀)

↓T (♀),↑E2 (♀) - ↓GSI (♂, ♀) ↓Fecundity,
↓F1 survival

↓17βhsd, cyp17, star (♂)

↓lhr (♀)

BPF Juvenile 0, 1, 10, 100, 1000 60 days

- 1 ↑cyp19a1a, vtg - - - -

[60]
1 10 ↓amh, foxl2 ↑E2 (♂, ♀),↓T

(♂, ♀) - - -

10 100 ↑dmrt1 - - - ↑Intersex

100 1000 ↓ff1d - - - -

BPF Adult(GFP) 0, 2.28, 22.8, 228, 2282(=0,
0.01, 0.1, 1, 10 µM) 7 days 2.28 22.8 - - ↑VTG (♂) - - [59]

BPF Embryo 0, 0.1, 1, 10, 100, 1000 120 h 10 100 ↑erα - - - - [47]

BPF Embryo 0, 200, 2000, 10,000 96 h
200 2000 ↑vtg1 - - - -

[42]
2000 10,000 ↑esr1, esr2a, esr2b, cyp19a1,

cyp17a1, hsd17b1 - - - -
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Table 3. Cont.

Chemical Stage
(Type)

Exposure
Concentration (µg/L)

Exposure
Duration

No Observed
Adverse

Effect Level
(µg/L)

Lowest
Observed
Adverse

Effect Level
(µg/L)

Toxicity Effect

Ref
Gene Hormone Protein Organ Organism

BPS Adult 0, 0.5, 5, 50 21 days

- 0.5 - ↑E2 (♂) - ↓GSI (♀) ↓Fecundity

[62]
5 50

↑gnrh3, gnrhr1, gnrhr2,
fshβ, lhβ, fshr, lhr, cyp19b,

hmgra, hmgrb, cyp11a,
3βhsd, cyp17, 17βhsd,

cyp19a (♂)

↓T (♂)
- ↓GSI (♂) -

↑gnrh3, fshβ, hmgra, hmgrb
(♀) ↑E2 (♀)

BPS Adult 0, 1, 10, 30 120 days - 1 ↑esr2a, esr2b (♀) - - - - [63]

BPS Adult 0, 0.1, 1, 10, 100 75 days

0.1 1 - ↑E2 (♂) - - -

[64]1 10 - ↓T (♂),↑E2 (♀) ↑VTG (♀) ↓GSI (♂) ↓Fecundity

10 100 - ↑VTG (♂) ↓GSI (♀) -

BPS Embryo 0, 100 120 h 10 100 ↑gnrh3, kiss1, erα - - - - [48]

BPS Embryo 0, 0.1, 1, 10, 100, 1000 120 h 10 100 ↑erα - - - - [47]

BPS Juvenile 0, 100 60 days - 100 ↑kiss1, kiss2, kiss1r, gnrh3,
erα, erβ, cyp19a, cyp19b - - - - [46]

BPS Embryo 0, 500, 5000, 25,000 96 h >25,000 - vtg1, esr1, esr2a, esr2b,
cyp19a1, cyp17a1, hsd17b1 - - - - [42]

BPSIP Adult 0, 0.5, 5, 50 21 days

0.5 5 ↓cyp19a, cyp19b, fshr (♂) ↓T (♂) - ↓GSI (♂) -

[65]5 50

↑gnrh2, gnrhr2, gnrhr4, erα
(♂) ↓E2 (♂)

- - -↓fshβ, cyp17, 17βhsd (♂)

↑gnrh2, gnrhr2, gnrhr4,
fshβ, cyp19b, erα, er2β,

cyp17, cyp19a (♀)
↑E2, T (♀)
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3.2.1. Effects on Reproduction

The reproductive process in fish is regulated by steroidogenesis and coordinated
interactions between steroid hormones on the HPG axis [66]. Therefore, chemicals that
alter the concentration of sex hormones and the expression of steroidogenesis-related genes
could affect the endocrine system’s functionality, eventually influencing the reproduction of
fish [67]. Exposure to bisphenols in the parental generation induced a significant decrease in
fecundity [32,37,61,62,64]. Parental exposure to bisphenols is essential because no excretion
mechanism exists in the eggs [62]. One explanation for the reproductive effect of parental
generation and the developmental effect of offspring generation is the change in hormones
and genes in the HPG axis.

3.2.2. Effects on Relative Gonad Weight

The gonadosomatic index (GSI), which is the ratio of the gonad weight to body weight,
has been used as a biomarker for endocrine disruption. GSI indicates the effects on the
development of reproductive organs along with a decrease in fecundity and a change in
sex ratio [68]. Male zebrafish were more sensitive to exposure to bisphenols than females.
Male zebrafish exposed to BPA, BPF, BPS, and BPSIP significantly decreased GSI at 5–100
µg/L [37,52], 1000 µg/L [61], 10–50 µg/L [62,64], and 5 µg/L [65], respectively (Figure 2).
Several studies have reported that estrogenic chemicals reduce GSI by altering the number
and size of germ cells in zebrafish [69,70]. These observations indicate that alternatives
such as BPS and BPSIP can affect gonadal development, which is similar to BPA.
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3.2.3. Effects on Vitellogenesis

Vitellogenin is a yolk precursor expressed in females and is used as a biomarker for
endocrine disruptors. Figure 3 shows the studies on vitellogenin protein production and
vitellogenin gene transcription in male zebrafish exposed to BPA [31,37,38,40,41,52,56],
BPAF [57,58], and BPF [61]. Male zebrafish exposed to BPA, BPAF, BPF, and BPS signifi-
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cantly increased vitellogenin production at 10–1000 µg/L [36,39,51,53,54,56], 500 µg/L [51],
22.8 µg/L [59], and 100 µg/L [64], respectively. In male zebrafish exposed to BPA,
BPAF, and BPF, vitellogenin mRNA expression was significantly increased at 5–2000
µg/L [31,37,38,40,41,52,56], 25–1000 µg/L [57,58], and 10 µg/L [61], respectively. These
studies demonstrate that it is possible to induce endocrine disruption at a detectable
concentration in aquatic environments [71].
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3.2.4. Effects on Sex Hormones and Genes Related to HPG Axis

The concentration and ratio of 17β-estradiol (E2) and testosterone (T) hormones have
been widely used as integrated biomarkers for reproduction. In the studies summarized
here, the adverse effects of BPA and its alternatives on hormone levels were sex-dependent,
and a significant increase in E2 and decrease in T concentrations were observed in male
zebrafish exposed to BPA, BPAF, BPF, BPS, and BPSIP (Figure 4). Interestingly, changes in
sex hormones in male zebrafish were more sensitive to the toxicity of its alternatives than
BPA. For example, male zebrafish exposed to BPS significantly increased E2 compared to
the control group even at 0.5–1 µg/L [62,64]. The decrease in T hormone was up to 200
times more sensitive than BPA for most alternatives (e.g., BPAF, BPF, BPS, and BPSIP) [57,60–
62,64,65]. These results suggest that the endocrine disruption of BPA alternatives is no less
than that of BPA and may significantly affect sex hormones in males.
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Significant increases in aromatase (cyp19) genes are well supported by changes in
the two sex hormones. CYP19 enzyme is involved in the final step in converting of T to
E2 [72], and enzyme activities are generally well correlated with their mRNA levels [73].
Cyp19a mRNA expression increased significantly in male zebrafish exposed to BPA [37,56],
BPAF [57], BPF [61], and BPS [62] (Figure 4). Interestingly, the adverse effects of BPA
alternatives on gene transcription were sex-dependent, with males being more sensitive
than females.

In the HPG axis, gonadotropin-releasing hormone (GnRH) in the hypothalamus
stimulates luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in teleosts [74].
Gonadotropin hormones in the pituitary regulate the synthesis of sex hormones, E2 and T.
In terms of homeostasis, it is meaningful to examine the effects of BPA and its alternatives
on the GnRH, LH, and FSH of zebrafish. Zebrafish possess the hormones GnRH2 and
GnRH3, as well as four different GnRH receptors [75]. While there are few studies are
measuring the GnRH hormone [46], it was frequently confirmed that the expression of gnrh2
or gnrh3 genes in zebrafish exposed to BPA, BPAF, BPF, BPS, and BPSIP was significantly
increased (Table 3) [46,48,57,61,62,65]. These results suggest that BPA analogs can directly
or indirectly (e.g., a negative feedback action in the hypothalamus compensates for the
reduced E2 production) affect GnRH.

LH and FSH, which bind to specific receptors and induce gametogenesis, were also
confirmed by measuring hormone or gene expression in zebrafish exposed to BPA and
its alternatives. The β-subunit mRNA encoding LH and FSH were generally upregulated
in male zebrafish exposed to BPAF [57], BPF [61], and BPS [62]. Two possibilities can be
responsible for the decrease in the T hormone, despite a significant increase in gonadotropin
hormone-related mRNA expression in male zebrafish exposed to BPA alternatives. The first
option suggests that the rate of E2 production with the aromatase enzyme is higher than
that observed with the T hormone. In contrast, the second option proposes the possibility
of decreased expression of several genes involved in steroidogenesis (e.g., star, 17βhsd, and
cyp17).

The commonalities and differences in toxicity of BPA analogs have been explained
based on their chemical structure [65,76]. Bisphenols have a phenolic group in common.
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The hydrophobic group of the propane moiety and the 4-hydroxyl group on the A-phenyl
ring are suggested regulatory factors that can cause differences in the BPA analog toxic-
ity [76,77]. If the estrogenicity and anti-androgenicity of BPA are due to the phenolic ring,
the endocrine disruption would be possessed even if BPA analogs are used as substitutes.

3.3. Effects of BPA and Its Alternatives on HPT Axis

For elucidating endocrine disruption, bisphenol analogs have primarily been studied
focusing on reproductive toxicity, whereas developmental toxicity due to thyroid endocrine
disruption has been studied less relatively. Ten studies showed that BPA, BPAF, BPF, BPS,
and BPZ influenced hatchability, time-to-hatch, spontaneous movement, thyroid hormone
production, and mRNA expression related to the HPT axis (Table 4) [78–87].
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Table 4. Summary of studies about hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to bisphenol A and its alternatives.

Chemical Stage
(Type)

Exposure
Concentration (µg/L)

Exposure
Duration

No Observed
Adverse Effect

Level
(µg/L)

Lowest
Observed

Adverse Effect
Level
(µg/L)

Toxicity Effect

Ref
Gene Hormone Organ Organism

BPA Embryo 0, 2, 22, 228
(=0, 0.01, 0.1, 1 µM) 24 h

- 2 ↑tg, pax8 - - -
[79]

2 22 ↑tsh, pax2a - - -

BPA Adult 0, 2, 20 4 min 2 20 - ↓T4(♀) - ↓F1 survival [80]

BPA Embryo 0, 80, 400, 2000, 10,000 120 h

- 80 ↑hhex - - -

[83]

80 400 ↑ttr, dio1, ugt1ab ↑T3 - -

400 2000 ↑tg, trα - - ↑Time-to-hatch

2000 10,000 - - - ↓Hatchability

>10,000 - - - - Length

BPA Embryo 0, 804, 2010, 4020, 6030 96 h - 804 ↑tshβ - - - [78]

BPA Embryo
(GFP) 0, 2282 (=0, 10 µM) 168 h >2282 - trα, trβ - - - [85]

BPAF Embryo 0, 5, 50, 500 168 h

- 5 ↑ttr ↓FT3 - -

[84]5 50 ↑tshβ, slc5a5, tg, dio1, dio2 ↓TT4, FT4, TT3 - -
↓trα, trβ

BPAF Adult 0, 24.7 21 days - 24.7 ↑trh, trhr1, tshβ, dio2 (♂) - - - [82]
↓tpo (♂)

BPF Embryo 0, 0.2, 2, 20, 200 144 h

0.2 2 ↑crh, tg - - -

[81]2 20 ↑nis, dio2, ugt1ab ↑TSH - -
↓ttr

20 200 - ↑T3, ↓T4 - -

BPF Embryo 0, 80, 400, 2000, 10,000 120 h

- 80 - - - ↑Time-to-hatch

[83]400 2000 ↑hhex, ugt1ab ↑T4 - -

>10,000 - - - - Length

BPS Adult 0, 1, 10, 100 120 days

- 1
↑dio2, dio3, ugt1ab (♀), dio2

(♂) ↑T3(♀), F1 T3 -
↓F1

spontaneous
movement

[86]↓crh, tshβ (♂) ↓T4(♂, ♀), F1 T4 - -

1 10 ↑crh, dio1 (♂, ♀) - - -

10 100 ↑tshβ (♀), dio3 (♂) - - -

BPS Embryo 0, 1, 3, 10, 30 168 h
1 3 ↓ttr - - -

[87]
3 10 ↑crh, tg, dio1, ugt1ab ↓T4,↑TSH - -
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Table 4. Cont.

Chemical Stage
(Type)

Exposure
Concentration (µg/L)

Exposure
Duration

No Observed
Adverse Effect

Level
(µg/L)

Lowest
Observed

Adverse Effect
Level
(µg/L)

Toxicity Effect

Ref
Gene Hormone Organ Organism

BPS Embryo 0, 400, 2000, 10,000, 50,000 120 h

- 400 - - - ↑Time-to-hatch

[83]
400 2000 ↑crh, tshβ, tshr, hhex, tpo, ttr,

ugt1ab - - -

10,000 50,000 - ↑T3 - -

>50,000 - - - - Length

BPZ Embryo 0, 40, 180, 680, 2900 120 h

180 680 ↑tshβ - - -

[83]680 2900 - - - ↑Time-to-hatch

>2900 - - - - Length
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3.3.1. Effects on Development

Experimental evidence showed that hatchability, time-to-hatch, eyeball size nor-
malized to the body length, and spontaneous movement were affected by exposure to
BPA [80,83], BPF [83], BPS [83,86], and BPZ [83]. Spontaneous movement, any distinguish-
able movement inside the chorion of embryos, was significantly decreased in fish exposed
to environmentally relevant concentration (1 µg/L) of BPS [86]. Especially, significant
delay of the time-to-hatch were observed after the exposure to BPA, BPF, BPS, and BPZ [83].
Longer hatching duration of embryos can make them more susceptible to predators and
mortality via environmental factors [88]. The effective concentration of BPA was up to
5~25-fold greater than those of BPF or BPS [83]. These results suggest that the endocrine
disruption potential of BPF and BPS is no less than that of BPA.

3.3.2. Effects on Thyroid Hormones and Genes Related to HPT Axis

Similar to the HPG axis, the thyrotropin-releasing hormone (TRH) with the
corticotrophic-releasing hormone (CRH) of the HPT axis secrete thyroid-stimulating hor-
mone (TSH) from the hypothalamus [89]. TSH secreted by the pituitary then regulates
the synthesis of thyroid hormone (TH), that is thyroxine (T4) and triiodothyronine (T3).
Measurement of thyroid hormones is commonly used in zebrafish, as it is the most in-
tegrated endpoint in assessing thyroid endocrine disruption [90]. Zebrafish exposed to
BPA [80,83], BPAF [84], BPF [81,83], and BPS [83,86,87] were affected by either activating or
suppressing hormone production. Interestingly, significant decreases in T4 concentrations
along with increases in TSH concentration were commonly observed in fish exposed to BPF
and BPS [81,87]. Moreover, changes in thyroid hormones were more sensitive to the toxicity
of BPS than BPA (Figure 5). These results suggest that the thyroid endocrine disruption
of BPA alternatives is no less than that of BPA and may significantly affect on thyroid
hormone homeostasis. Decreases in T4 could reduce the TH availability in target tissues
and subsequently influence metabolic pathways [78,84].
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TSH has been measured to assess the potential mechanism of thyroid dysfunction.
TSH levels increased significantly after BPA analog exposure [81,87], which might be
involved in the negative feedback mechanism. Significant up-regulation of tshβ genes is
also well supported by changes in TSH levels. TRH and CRH stimulate TSH secretion,
and transcription of trh and crh genes were significantly upregulated after exposure to
BPAF, BPF, and BPS [81–83,86,87]. The results of these studies suggest that the increase in
TSH concentrations and upregulation of trh and crh caused by bisphenol exposure may
be attributed to the promotion of thyroid hormone synthesis and its subsequent release to
compensate for the decreased T4 levels in zebrafish.

The transcription of various genes in the HPT axis has been measured in zebrafish
exposed to BPA, BPAF, BPF, BPS, and BPZ. Iodothyronine deiodinases (Dio) are the key
regulators of T4 and T3 bioavailability [91], and three types of dio enzymes (Dio1, Dio2, and
Dio3) and genes (dio1, dio2, and dio3) have been found in zebrafish [92]. Dio2 enzyme plays
a vital role in catalyzing the conversion of T4 into biologically active T3 [91]. Significant
increases in dio2 mRNA expression in zebrafish exposed to BPAF [82,84], BPF [81], and
BPS [86] have been reported, and an increase in T3 and a decrease in T4 were observed
together in some studies [81,86]. These results suggest that BPA analogs potentially affect
dio2 gene transcription and thyroid hormone production.

Overall, the results demonstrated that BPA analogs significantly changed thyroid
hormone concentrations and modified the mRNA expression of key genes involved in the
HPT axis, suggesting thyroid endocrine disruption in zebrafish. BPA analogs and thyroid
hormones’ chemical structures have similarities; therefore, these chemicals exhibit the
property of binding to thyroid receptors and competing with the thyroid hormone [93].
Since endocrine systems interact with each other, further studies are needed to assess BPA
alternatives’ primary target among the endocrine axes.

4. Conclusions

The present study summarized the endocrine-disrupting potential of BPA and its
alternatives in zebrafish and identified knowledge gaps. The summary highlights of this
study are as follows:
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• BPA alternatives have a similar or more significant toxic potential than that of BPA.
• Several BPA alternatives may cause reproductive dysfunction by interfering in the

regulatory mechanisms of the HPG axis or inducing vitellogenin in males.
• Males were more sensitive to the adverse effects on sex hormone levels, as well as

gene transcriptions, than females.
• Environmentally relevant concentration of BPA alternatives has the potential to inhibit

the normal development of embryo/larvae by disrupting thyroid hormone endocrine
system.

The modifications of phenolic rings and bridging carbon or the longer length of the
alkyl substitutes seem to influence endocrine-disrupting activity. However, the apparent
relationship between their structure and endocrine-disrupting activity was not clarified.
Further toxicological information on BPA alternatives is required to understand the envi-
ronmental health implications of these alternatives and to develop proper management
strategies.
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